

コンカレント日本株式会社

2013

RCIM ETI 使用法
ETI:Edge-Triggered Interrupts
プロフェッショナルサービス部

RCIM には、『外部からトリガを受信し、それに同期をさせてソフトに割り込みをする』目

的のため、外部から信号を入力できる ETI（エッジトリガーインタラプト）が用意されて

います。
RCIM III and RCIM II support twelve ETIs (0-11);
RCIM I supports four ETIs (0-3).

RedHawk 側のデバイス名は「/dev/rcim/etiX」となります

詳細は、下記 URL の” Real-Time Clock and Interrupt Module (RCIM) Userís Guide”

http://redhawk.ccur.com/docs/root/1redhawk/Hardware/0898007-610.pdf
を見ていただきたいのですが、下記のような TTL 入力仕様になっています。

The external interrupt input signals are 5 volt TTL levels. The external interrupt
outputs (labeled EXT_PIG[0-11]) are driven using a 74ABT16240 line driver. The
external interrupt inputs are terminated with 180 ohms to +5 volts, 330 ohms and 0.1 uf
to ground. To drive this input requires a line driver that can sink at least 30 ma. The
input termination limits the speed of the external interrupt signals and helps prevent
noise from causing spurious interrupts. Since most line drivers can sink more current
than they can source, the falling edge of the signal will be faster.

この入力端子に、信号を入力していただきますと、レベル、立ち上がり、または、立下り

のエッジトリガーで非同期に SIGNAL 処理することが出来ます。
この入力仕様はユーザで変更可能ですので、cat /proc/driver/rcim/config でご確認ください。

$ cat /proc/driver/rcim/config

h/Not_Configured, sync/ptr

pig0|out0, pig1|out1, pig2|out2, pig3|out3, pig4|out4, pig5|out5

pig6|out6, pig7|out7, pig8|out8, pig9|out9, pig10|out10, pig11|out11

none|di0/f, none|di1/f, none|di2/f, none|di3/f, none|di4/f, none|di5/f

+5 volts

0.1 uF

180 Ω

30 mA
330 Ω

none|di6/f, none|di7/f, none|di8/f, none|di9/f, none|di10/f, none|di11/f

eti0/f, eti1/f, eti2/f, eti3/f, eti4/f, eti5/f

eti6/f, eti7/f, eti8/f, eti9/f, eti10/f, eti11/f

$ cat /proc/driver/rcim/eti0

eti0: armed, enabled, not pending, vecnum 0, signo 34 sigpid 6379,

nopens 1, keepalive NO.

設定例

Falling(立下りエッジ) デフォルト
$ echo eti0/f > /proc/driver/rcim/config

Rising(立ち上がりエッジ)
$ echo eti0/r > /proc/driver/rcim/config

Low(Low レベル)
$ echo eti0/l > /proc/driver/rcim/config

High(High レベル)
$ echo eti0/h > /proc/driver/rcim/config

大まかには下記のような手順で利用していただければ、入力した信号のタイミングで、

SIGRTMIN が発生いたします。

{
 int fd;
 if((fd = open("/dev/rcim/eti1", O_RDONLY)) == -1)
 {
 return(-1);
 }
 if(ioctl(fd, ETI_ATTACH_SIGNAL, SIGRTMIN) == -1)
 {
 return(-1);
 }
 if(ioctl(fd, ETI_ARM) == -1)
 {
 return(-1);
 }
 if(ioctl(fd, ETI_ENABLE) == -1)
 {
 return(-1);
 }
 return 0;
}

また、この ETI を利用する際のオンラインマニュアルおよび動作試験プログラムを、以下

に示します。

試験プログラムｈ,コンパイルした後、下記のようにテストをお願い致します。
例） ./eti /dev/rcim/eti1 1
テスト実施時、外部からの信号は不要です。

/*
 * ETI special file names under PowerMAX have the form /dev/reti/eti##.
 * There are two numeric digits in the name, i.e. eti0 is /dev/reti/eti00.
 * There are 4 ETIs per CPU board.
 */

#include <stdio.h>
#include <fcntl.h>
#include <sys/file.h>
#include <sys/signal.h>
#include <linux/rcim_eti.h>
//MODIFY #include <sys/eti.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <signal.h>

#define ERRHDR "** Edge Triggered Interrupt Test \n"

#define ERR_NULL 0
#define ERR_OPEN 1
#define ERR_CLOSE 2
#define ERR_IOCTL 3

char * case_msg = NULL;

#define DELAY_COUNT (100000)
unsigned long intr_wait = 99*DELAY_COUNT; /* wait for expected edge int */
unsigned long spur_wait = DELAY_COUNT; /* wait for spurious edge int */

unsigned long delay;
#define DELAY(WAIT) \
 for (delay=0; delay < WAIT && !interrupt_received; delay++);

#define MAXDEVPATHSZ 64
static char devname[MAXDEVPATHSZ];

#define DEFAULT_COUNT 100
int loop = DEFAULT_COUNT;

#define TRUE 1
#define FALSE 0

volatile int interrupt_received = FALSE;
int debug = FALSE;

int interrupt_signal();
extern int errno;

/***
*
* ETI main test
*
***/
main(argc, argv)
int argc;
char **argv;
{
 int fd;
 int count;

 if (argc < 2)
 {
 printf("No ETI device pathname argument.\n");
 exit(1);

 }

 if (argc > 2)
 debug = TRUE;

 strcpy(devname, argv[1]);

 printf("ETI test: %s\n", devname);

 /* Open the specified ETI device */

 if ((fd = open(devname, O_RDWR)) == -1)
 {
 etitst_err(ERR_OPEN, ERRHDR);
 exit(1);
 }
 eti_attach_signal(fd, SIGUSR1, interrupt_signal);

 for (count = 0; count < loop; count++)
 {
 /* case 1 */
 case_msg = "Case: clear, arm, enable, request";
 eti_clear(fd);
 eti_arm(fd);
 eti_enable(fd);
 eti_request(fd);
 DELAY(intr_wait); /* wait for signal */
 if (!interrupt_received)
 {
 etitst_err(ERR_NULL, ERRHDR);
 printf("** ERROR: Interrupt NOT received on: %s\n", devname);
 exit(1);
 }

 /* case 2 */
 case_msg = "Case: clear, arm, disable, request";
 eti_clear(fd);
 eti_arm(fd);
 eti_disable(fd);
 eti_request(fd);
 DELAY(spur_wait); /* wait for signal */
 if (interrupt_received)
 {
 etitst_err(ERR_NULL, ERRHDR);
 printf("** ERROR: Unexpected interrupt received on: %s\n", devname);
 exit(1);
 }

 /*
 * case 3
 */
 case_msg = "Case: clear, arm, disable, request, enable";
 eti_enable(fd);
 DELAY(intr_wait); /* wait for signal */
 if (!interrupt_received)
 {
 etitst_err(ERR_NULL, ERRHDR);
 printf("** ERROR: Interrupt NOT received on: %s\n", devname);
 exit(1);
 }
 } /* end loop */

 /*
 * clean up and exit
 */
 eti_clear(fd);
 eti_disarm(fd);
 eti_disable(fd);

 close(fd);

 exit(0);

}

/***
*
* ioctl error
*
***/
ioctl_err(cmd)
char *cmd;
{
 etitst_err(ERR_IOCTL, ERRHDR);
 printf("error in performing an %s ioctl\n", cmd);
 exit(1);
}

/***
*
* arm ETI
*
***/
eti_arm(fd)
int fd;
{
 if (debug)
 printf("ETI_ARM\n");

 if (ioctl(fd, ETI_ARM, 0) == -1)
 ioctl_err("ETI_ARM");
}

/***
*
* disarm ETI
*
***/
eti_disarm(fd)
int fd;
{
 if (debug)
 printf("ETI_DISARM\n");

 if (ioctl(fd, ETI_DISARM, 0) == -1)
 ioctl_err("ETI_DISARM");
}

/***
*
* enable ETI
*
***/
eti_enable(fd)
int fd;
{
 if (debug)
 printf("ETI_ENABLE\n");

 if (ioctl(fd, ETI_ENABLE, 0) == -1)
 ioctl_err("ETI_ENABLE");
}

/***
*
* disable ETI
*
***/
eti_disable(fd)
int fd;
{
 if (debug)
 printf("ETI_DISABLE\n");

 if (ioctl(fd, ETI_DISABLE, 0) == -1)

 ioctl_err("ETI_DISABLE");
}

/***
*
* set ETI request
*
***/
eti_request(fd)
int fd;
{
 if (debug)
 printf("ETI_REQUEST\n");

 if (ioctl(fd, ETI_REQUEST, 0) == -1)
 ioctl_err("ETI_REQUEST");
}

/***
*
* Attach handler to signal
*
***/
eti_attach_signal(fd, sig, func)
int fd;
int sig;
void (*func)();
{
 struct sigaction sigs; /* sigaction(2) */

 if (debug)
 printf("ETI_ATTACH_SIGNAL\n");

 sigaction(sig, (struct sigaction*)NULL, &sigs);
 sigs.sa_handler = (void (*)())func;
 sigaction(sig, (struct sigaction*)(&sigs), (struct sigaction*)NULL);

 if (ioctl(fd, ETI_ATTACH_SIGNAL, (char*)sig) == -1)
 ioctl_err("ETI_ATTACH_SIGNAL");
}

/***
*
* Clear any pending interrupts
*
***/
eti_clear(fd)
int fd;
{
 if (debug)
 printf("Clear ETI\n");

 eti_arm(fd);
 eti_enable(fd);
 DELAY(spur_wait); /* wait for signal pending, in case */

 interrupt_received = FALSE;
}

/***
*
* signal handler
*
***/
interrupt_signal()
{
 interrupt_received = TRUE;

 signal(SIGUSR1, (void*)interrupt_signal);

 if (debug)
 printf("*** Interrupt ***\n");
}

/***
*
* error reporting
*
***/
etitst_err(tst, err)
int tst;
char *err;
{
 printf(err);
 printf("** ETI device: %s\n", devname);

 if (case_msg)
 printf("** %s\n", case_msg);

 if (tst == ERR_OPEN)
 {
 printf("open() failed(), (errno = %d)\n", errno);
 }
 else if (tst == ERR_IOCTL)
 {
 printf("ioctl() failed(), (errno = %d)\n", errno);
 }
}

rcim(4) Concurrent RedHawk Linux rcim(4)

NAME
 rcim - Real-Time Clock and Interrupt Module

DESCRIPTION
 The Real-Time Clock and Interrupt Module (RCIM) is a standard PCI-based
 card that provides synchronized clocks, edge-triggered interrupts,
 real-time clocks, and programmable interrupts.

 If RCIM boards of various systems are chained together, an interrupt
 can be distributed to all connected RCIMs, and from there to all the
 associated host systems.

 This man page provides a summary overview of all versions of the RCIM
 board and driver. "RCIM" refers to common functionality among the ver-
 sions. A specific RCIM board version is designated in full; e.g.,
 "RCIM II". For more details on various subsystems, see rcim_rtc(4),
 rcim_eti(4), rcim_pig(4), rcim_distrib_intr(4), rcim_sync_clocks(4).

 Types of RCIM’s
 RCIM-I is the earliest design. It fitted into a PCI slot and used cus-
 tom-built analog cables to chain the RCIM-I’s of various systems
 together. This variant also sports either 4 or 8 of each interrupt
 type (RTCs, PIGs, ETIs, ETOs, and DIs). Also on board were two time-
 of-day counters: a simple tick counter and a Posix time counter, both
 incremented every 400 nsecs. When cabled together, all the slave
 (downstream) RCIM-I’s would tick in unison with that of the master
 (head-of-chain) RCIM. However, even though hardware made these coun-
 ters tick in unison, there was no hardware support to get the Posix
 time-of-day initial values to agree, and only limited (simultaneous
 zeroing) support available to get the tick counter values to agree.

 The RCIM-II improved on this by converting the form factor from PCI to
 PCI-X, by chaining RCIM’s together via standard Ethernet cables rather
 than via custom-built cables, by using digital (serialized packet)
 rather than analog signaling down the cables, by expanding all inter-
 rupt types from 8 to 12 examples of each, by providing the operating
 system two methods to finely control the operational frequency of the
 RCIM, and, if cabled together, to transmit this modified operational
 frequency from master to all the slaves, so that they too could operate
 in unison with the master. Various high precision crystals are avail-
 able as options, and in addition, an optional GPS module is available
 which the provided system software will periodically query to determine
 how much the RCIM must be sped up or slowed down by to match world
 atomic time.

 The RCIM-III, the latest and best of the pack, improved on the RCIM-II
 by going to the PCIe form factor, by supporting MSI-X interrupts, by
 going to optical cabling as the default, and by the Master RCIM sending
 down the cable, once per second, its notion of Posix time. Each of the
 slave systems can now, through provided software, use this broadcasted
 timestamp to make its slaved RCIM’s posix time exactly match up to that
 of the master’s (see rcimdate(8)). In this model, only one RCIM .. the
 master .. needs a GPS, all the slave RCIMs need only to have their
 Posix time track the master’s in order to get the same benefits.

 RCIM-III’s come in two versions, an earlier version which only supports
 isolated mode, and a later version that supports cabling as described
 above.

 Connection Modes
 An RCIM module may be used in one of four modes, depending on how it is
 cabled:

 Isolated Mode There are no connections to any other RCIM.

 Master Mode The RCIM is at the head of a chain of RCIMs. There is no

 cable connection going into the RCIM, only a cable con-
 nection going out.

 Pass-through Slave Mode
 The RCIM is connected to two other RCIMs--there is an
 input cable connection coming from the previous RCIM in
 the chain, and an output cable connection going to the
 next RCIM in the chain.

 Final Slave Mode
 The RCIM is connected to exactly one other RCIM. There
 is an input cable connection going into a final slave
 RCIM, but no output cable connection coming out of it.

 The RCIM board has hardware to sense the combination of connected
 cables and automatically determines the operating mode.

 Note that all RCIMs connected in a chain must be of the same
 model--e.g., all RCIM IIs.

 Synchronized Clocks
 An RCIM board provides two synchronized clocks: the tick clock and the
 POSIX clock. The tick clock is a 64-bit non-interrupting counter that
 counts by one on each tick of the common 400ns clock signal. The tick
 clock cannot be set to a specific time, it can only increment or be set
 to zero. Hence the tick clock cannot be adjusted on the fly to approx-
 imate the current time of day, as would be required of a true time-of-
 day clock.

 The POSIX clock is a 64-bit non-interrupting counter encoded in POSIX
 1003.1 format. The upper 32 bits contain seconds and the lower 32 con-
 tain nanoseconds. This clock is incremented on each tick of the common
 400ns clock signal. This clock can be set to a specific time.

 When the RCIM board is part of an RCIM chain, then all clocks on all
 the RCIM boards in the chain are incremented in unison, as they are all
 driven by a common 400ns clock signal emanating from the master RCIM.

 When an RCIM board is part of an RCIM chain, the tick clocks on all
 slave RCIMs become read-only. They are incremented and cleared in syn-
 chronization with whatever incrementing and clearing is being done to
 the tick clock located on the master RCIM. However, the POSIX clocks
 each remain read-write, and a value written to the POSIX clock of one
 RCIM board does not change the value of the POSIX clocks of any of the
 other RCIM boards in the chain.

 The tick clock can be read on any system, master or slave, using direct
 reads when the device file /dev/rcim/sclk is mapped into the address
 space of a program. Information on how to do this may be found in
 rcim_sync_clocks(4).

 Tick clock initialization (zeroing) can be invoked using the
 rcim_clocksync(1) command. The rcim_clocksync(1) command can only be
 performed on an isolated or a master RCIM. Tick clock synchronization
 can also occur automatically whenever the RCIM master boots, but this
 is disabled by default due to its potentially disruptive nature on the
 slave systems. See the rcim_clocksync(1) man page for more details.

 The POSIX clock is accessed in a manner similar to the tick clock in
 that the same utilities and device files are used.

 The RCIM-I and II boards have no hardware support for setting the POSIX
 clocks of all boards to a consistent value. It is possible to pause
 the operation of the RCIM board chain, and then synchronize in software
 the POSIX clocks during the pause, using the rcim_clocksync(1) utility.
 This requires setup and an operational TCP/IP network between the sys-
 tems of the chain.

 The RCIM-III board periodically transmits its Posix time-of-day value
 from the master to all the slaves. This is done once per second on the
 second mark. The slaves, in turn, snapshot this and snapshot their own
 Posix time-of-day values into special read-only registers on the RCIM.

 With these snapshots system software, if so desired, can keep the Posix
 time of each slave exactly in sync with that of the master. See rcim-
 date(8) for more details.

 On an RCIM system equipped with the optional GPS module and ntpd run-
 ning, the POSIX clock on the RCIM containing the GPS module is synchro-
 nized to GPS time.

 Edge-Triggered Interrupts
 Each RCIM board has incoming external interrupt lines, called ETIs or
 Edge-Triggered Interrupts, so named after their most common mode of
 operation. These lines permit users to provide their own interrupt
 sources. The RCIM processes and delivers these interrupts to the host
 system and, if configured to do so, routes and delivers them to all
 other RCIMs in the chain as distributed interrupts. RCIMs II and III
 support twelve ETIs (0-11); RCIM I supports four (0-3).

 Each ETI can be configured independently of the others. An ETI may
 treat the incoming signal as an edge or level sensitive interrupt. If
 edge sensitive, it may raise an interrupt on either the rising or the
 falling edge. If level sensitive, it may raise interrupts for either
 the high or the low signal value. Configuration parameters are
 selected when the RCIM board and driver are initialized, and remain
 constant for the life of the driver, or until changed through the
 /proc/driver/rcim/config interface. See CONFIGURATION below for
 details.

 Applications in turn arm or disarm, enable or disable each ETI on each
 system on the fly, as appropriate to the needs of those applications.

 In addition to delivering its ETI interrupts to the attached host sys-
 tem, each RCIM board can be configured to route the output of any or
 all of its ETIs to some set of the distributed interrupt lines. In
 this way an ETI can be broadcast and delivered to all interested hosts
 that are in the RCIM chain. ETIs may also be routed to the RCIM
 board’s external output interrupt lines.

 For more information on how to configure and use ETIs, see the CONFIGU-
 RATION section of this man page, rcim_eti(4), or the ETI description in
 the Real-Time Clock and Interrupt Module (RCIM) User’s Guide, pub num-
 ber 0898007.

 Distributed Interrupts
 The real heart and power of the RCIM board lies in its distributed
 interrupt (DI) system. These are signal lines that are shared among
 all RCIM boards in an RCIM chain. For each distributed interrupt line,
 one RCIM board is configured to drive that line with one of its inter-
 nal signal sources (RTCs, ETIs, PIGs). All boards, including the board
 that is driving the line, are capable of listening in on the line and
 sending an interrupt to the attached host system, if so configured.
 RCIMs II and III support twelve DIs (0-11); RCIM I supports eight
 (0-7).

 Each RCIM board must configure each incoming distributed interrupt sig-
 nal line as either an edge-triggered interrupt that triggers on the
 rising or falling edge, or as a level triggered interrupt that triggers
 on the high or the low value.

 Applications in turn arm or disarm, enable or disable each distributed
 interrupt on each system on the fly, as appropriate to the needs of
 those applications.

 For more details on how to configure and use distributed interrupts,
 see the CONFIGURATION section of this man page, rcim_distrib_intr(4),
 or the Distributed Interrupt description in the Real-Time Clock and
 Interrupt Module (RCIM) User’s Guide.

 External Output Interrupts
 Each RCIM board has a connector which provides output interrupt lines.
 Equipment can be attached to and be controlled by those lines. Any
 signal source available within the RCIM, including the distributed
 interrupt lines, can be configured to drive these external output

 interrupt lines. RCIMs II and III support twelve external output
 interrupts (0-11); RCIM I supports four (0-3).

 For more information on external output interrupts, see the CONFIGURA-
 TION section of this man page or the External Output Interrupts
 description in the Real-Time Clock and Interrupt Module (RCIM) User’s
 Guide.

 Real-Time Clocks
 Real-time clocks (RTCs) are decrementing counters that generate an
 interrupt each time they reach zero. They may be one-shot or periodic;
 if periodic, the original load value is automatically reloaded into the
 counter each time zero is reached. The resolution of each RTC is pro-
 grammable, ranging from 1 microsecond to 10 milliseconds per tick.
 RCIMs II and III support eight RTCs (0-7); RCIM I supports four (0-3).

 In addition to delivering its RTC interrupts to the attached host sys-
 tem, each RCIM board can be configured to attach the output of any or
 all of its RTCs to some set of the distributed interrupt lines. In
 this way an RTC interrupt can be broadcast and delivered to all inter-
 ested hosts that are in the RCIM chain. RTC interrupts can also be
 used as a source for an RCIM board’s external output interrupts.

 For more details on how to configure and use RTCs, see the CONFIGURA-
 TION section of this man page, rcim_rtc(4), or the Real-Time Clocks
 section of the Real-Time Clock and Interrupt Module (RCIM) User’s
 Guide.

 Programmable Interrupts
 A programmable interrupt generator (PIG) is an output signal generator
 capable of switching between a high and low signal value under direct
 control of user software. This can be used as an interrupt source to
 drive any combination of distributed interrupt lines or external inter-
 rupt output lines. RCIMs II and III support twelve PIGs (0-11); RCIM I
 supports four (0-3).

 For more details on how to configure and use PIGs, see the CONFIGURA-
 TION section of this man page, rcim_pig(4), or the Programmable Inter-
 rupt Generator section of the Real-Time Clock and Interrupt Module
 (RCIM) User’s Guide.

 Proc Filesystem Interface
 The RCIM driver makes its internal state viewable through various proc
 filesystem files. Unless otherwise stated these files are read-only.
 They may be found in directory /proc/driver/rcim and are:

 config The RCIM configuration, displayed in a form that can be cut
 and pasted as the value for an RCIM configuration variable.

 A write of a suitably formatted string to this file will
 change the configuration. See CONFIGURATION below for
 details.

 interrupts A count of all incoming RCIM ETI, distributed, and RTC
 interrupts, in total and per cpu.

 status Various RCIM board status values not displayed in any of
 the other procfs files.

 rawregs A commented hexadecimal display of all readable RCIM board
 registers.

 rtcN The status of each of the real-time clocks: whether each is
 running, what their current countdown values are, etc.

 etiN The status of each of the ETIs: whether each is armed,
 enabled, etc.

 diN The status of each of the distributed interrupt lines:
 whether each is armed, enabled, etc.

 Device Interface
 The RCIM driver makes its services available to applications via a

 character device driver interface. The following special files in
 /dev/rcim are used:

 rcim master rcim board status/control
 sclk access to the RCIM tick and POSIX clocks
 rtcN real-time clocks 0 through 7
 etiN external interrupts 0 through 11
 diN distributed interrupts 0 through 11
 pigN programmable interrupt generators 0 through 11

 The initialization script /etc/init.d/rcim creates the RCIM special
 files automatically on each system boot. If the driver is loaded at
 other times, then the user should take care to run this script at those
 times also.

PROGRAM INTERFACE
 An application controls an RCIM by invoking open(2) close(2), ioctl(2),
 and mmap(2) calls against special file /dev/rcim/rcim. Other special
 files exist and are owned and documented by their respective sub-
 drivers:

 rcim_rtc(4)
 rcim_eti(4)
 rcim_pig(4)
 rcim_distrib_intr(4)
 rcim_sync_clocks(4)

 The following ioctl operations are available for /dev/rcim/rcim:

 RCIM_GET_INFO

 #include <sys/types.h>
 #include <rcim.h>
 ioctl (fildes, command, arg)
 int fildes, command;
 struct rcim_ginfo *arg;

 Returns information about the RCIM, including version numbers,
 connection modes and tunable values. The layout of struct
 rcim_ginfo is in /usr/include/rcim.h.

 RCIM_GET_ADDR

 #include <sys/types.h>
 #include <rcim.h>
 ioctl (fildes, command, arg)
 int fildes, command;
 struct rcim_gaddr *arg;

 Returns the virtual and physical address of the RCIM control regis-
 ters. The layout of struct rcim_gaddr may be found in
 /usr/include/rcim.h.

 The mmap(2) system call may be used to map in some or all of the device
 registers of the RCIM board. For the register layout, see the data
 structure rcim_mem_t in /usr/include/linux/rcim_ctl.h.

CONFIGURATION
 The RCIM driver can be configured to be either a module or be stati-
 cally linked into the kernel. This is selected at the time the kernel
 is built from source, via the RCIM configuration option accessible
 through the Character Devices selection of the Kernel Configuration
 GUI.

 When the RCIM driver initializes, it looks for two possible configura-
 tion options. For a statically linked RCIM driver, these tunables can
 be specified on the LILO or Grub command line. For an RCIM driver in
 module form, tunables can be specified on the insmod(8) command line,
 or be placed in modprobe.conf(5), where the modprobe(8) invocation in
 the startup script /etc/init.d/rcim will find them.

 The rest of this section discusses the rcim tunable option. See the
 following MSI INTERRUPT CONFIGURATION section for information about MSI

 interrupts.

 The rcim tunable option (rcim=RCIMoptions) may be used to set various
 rcim configuration options. For a statically linked RCIM driver, this
 tunable can be specified on the LILO or Grub command line. For an RCIM
 driver in module form, this tunable can be specified on the insmod(8)
 command line, or be placed in modprobe.conf(5), where the modprobe(8)
 invocation in the startup script /etc/init.d/rcim will find it.

 The rcim tunable accepts a comma-separated list of option names. For
 example:

 $insmod rcim rcim=’eti1/rising, di3/high, eti0|di6’

 In this example, eti #1 is configured to trigger on the rising edge,
 distributed interrupt #3 triggers on a high value, and distributed
 interrupt #6 is to be driven by eti #0.

 A write of a suitably formatted string to /proc/driver/rcim/config will
 change the configuration. Example: echo eti2/r >/proc/driver/rcim/con-
 fig changes ETI #2 to trigger on a rising edge. It is recommended that
 changes be made only when the RCIM is not in use.

 Available Configuration Options
 Options are comma separated and are processed from left to right. If
 the same option is specified more than once, the rightmost option is
 the one in effect when the RCIM driver finishes its configuration.

 Any option state not specified is left at its default value.

 Available options include:

 diN/[rising|falling|high|low]
 Configures one of the distributed interrupts to trigger on the
 rising edge, the falling edge, on a high signal value or on a
 low signal value.

 The flags (rising, falling, etc.) can be reduced to a single
 character and are case insensitive.

 Examples:
 di0/high
 di5/L
 di7/Rising

 Default: falling

 etiN/[rising|falling|high|low]
 Configures one of the ETIs to trigger on the rising or falling
 edge of its input signal, or on the high or low signal value.

 The flag words (rising, falling, etc.) can be reduced to a sin-
 gle character and are case insensitive.

 Examples:
 eti0/falling
 eti1/r
 eti2/h
 eti3/LOW

 Default: falling

 source|diN
 Configures one of the distributed interrupt lines to be driven
 by one of the signal sources within the RCIM. Available sources
 include:

 pigN - one of the PIGs.
 rtcN - one of the RCIM RTCs.
 etiN - one of the RCIM ETIs.
 none - This RCIM is not to drive this distributed interrupt.

 Examples:

 none|di0
 pig1|di1
 rtc3|di3

 Default: none

 source|outN
 Configures one of the RCIM external output lines to be driven by
 the given source. Available sources include:

 rtcN - drive the output line with this RTC.
 pigN - drive the output line with this PIG.
 etiN - drive the output line with this ETI.
 diN - drive the output line with this distributed interrupt.
 none - let the interrupt output line float.

 Examples:
 rtc3|out0
 di5|out2

 Defaults:
 pig0|out0
 pig1|out1
 pig2|out2
 pig3|out3
 etc.

 host/hostname
 Specifies the Internet name of the system to which the master
 RCIM board is attached. Though not used by the RCIM driver, this
 value is supplied to applications that ask for it.

 Default: Not_Configured

 sync | nosync (RCIM I)
 sync | nosync [r|t|p] (RCIM II,III)
 Specifies if this RCIM is to use its local clock (nosync) or use
 the cable clock driven by the master RCIM’s local clock (sync).

 On RCIM IIs and III, the timing sources can be configured sepa-
 rately. The default is all.
 r real-time clock
 t tick clock
 p POSIX clock

 Default: sync

 Examples:
 nosync
 sync/tp
 nosync/r

 clock | noclock
 Specifies if this RCIM is to be registered as a clocksource for
 the system. The default is "clock". Note that once the RCIM is
 registered as a clocksource, it cannot be "unregistered." Also,
 if the RCIM is configured as a module and registered as a clock-
 source, it is locked in (rmmod rcim will fail).

MSI INTERRUPT CONFIGURATION
 The latest version of RCIM III supports the use of MSI interrupts and
 by default, the rcim kernel driver will initialize the hardware to use
 MSI interrupts instead of PCI INTA interrupts whenever possible. By
 using MSI interrupts, the RCIM III is guaranteed of having its own non-
 shared interrupt, thus providing more reliable interrupt response
 times.

 In addition to the rcim tunable option, the disable MSI option
 (nomsi=1) may be used to disable MSI interrupts on RCIM III cards.
 When this option is specified, the rcim driver will fallback to using
 the PCI INTA interrupt method. For performance reasons, this option
 should only be used if a problem with MSI interrupts is suspected.

FILES
 /dev/rcim/rcim, /usr/include/rcim.h, /usr/include/linux/rcim_ctl.h,
 /dev/rcim/sclk, /proc/driver/rcim, /etc/sysconfig/rcim.

SEE ALSO
 rcim_rtc(4), rcim_eti(4), rcim_pig(4), rcim_distrib_intr(4),
 rcim_sync_clocks(4), modprobe.conf(5), insmod(8), modprobe(8),
 rcim_clocksync(1), rcimdate(8).

COPYRIGHT
 Copyright (C) 2002 Concurrent Computer Corporation.

 June 2008 rcim(4)

rcim_eti(4) Concurrent RedHawk Linux rcim_eti(4)

NAME
 rcim_eti - RCIM edge-triggered interrupt character device driver

DESCRIPTION
 The RCIM edge-triggered interrupt (ETI) device driver provides a soft-
 ware interface to the external input interrupt lines available on an
 RCIM board. A special device file is associated with each possible RCIM
 ETI device.

 ETI Hardware Features
 An ETI is an external interrupt input line. A board connector makes
 twelve such lines available on each RCIM II and III board (0-11); four
 (0-3) on each RCIM I board. The intent is for users to attach appro-
 priately designed signal generating equipment to these lines. The RCIM
 will continuously examine the signal values on these lines, generating
 interrupts whenever the input signal value meets certain (preconfig-
 ured) conditions.

 One requirement the RCIM imposes on attached equipment is that the sig-
 nal being fed into an RCIM ETI must hold any low or high value for at
 least 1.5 microseconds before changing to the next state. If this
 requirement is not met, the ETI may not generate all the interrupts the
 user would otherwise expect.

 How the incoming signal is converted to interrupt requests is part of
 the configuration of each ETI, performed at board initialization time
 and remains constant for the life of the driver, or until changed
 through the /proc/driver/rcim/config interface. See rcim(4) for
 details. The possible configuration states are:

 edge-triggered, rising edge
 Each rising edge is treated as an interrupt request.

 edge-triggered, falling edge
 Each falling edge is treated as an interrupt request.

 level-triggered, high level
 The interrupt is repeatedly requested as long as the signal is
 being held high.

 level-triggered, low level
 The interrupt is repeatedly requested as long as the signal is
 being held low.

 These interrupt requests are fed into an interrupt engine maintained
 for each ETI by the RCIM board. This engine operates as follows:

 Because interrupt requests are really attempts to set the request
 bit of the ETI, these attempts are not allowed to succeed unless the
 ETI has its armed bit set.

 When the armed bit is not set, the request bit is summarily cleared
 on each tick of the RCIM clock. This in effect turns off the ETI.

 As long as the request bit remains set, the RCIM periodically tries
 to move this bit to the pending bit and clear the request bit at the
 same time.

 This operation is not allowed to proceed as long as the pending bit
 remains set from some previous transfer. It also will not proceed
 unless the enable bit is set.

 The enable bit may be thought of as granting the RCIM board permis-
 sion to deliver any interrupt requests that it has accepted. When
 the ETI is disabled, the ETI accepts interrupt requests, but delays
 delivering the interrupt until it is re-enabled.

 The value of the pending bit is what the ETI outputs. When the

 pending bit is set the ETI is outputting an interrupt to whatever
 other subsystems that ETI has been routed to. When the pending bit
 is clear the ETI is not trying to output an interrupt. The host
 computer to which the RCIM board is attached always has the ETI
 pending bit routed to it. Other possibilities include RCIM boards
 and the RCIM external output interrupt lines. These routing possi-
 bilities are documented in rcim(4).

 The ETI interrupt handler on the attached host computer must clear
 the pending bit each time it finishes processing a delivered inter-
 rupt. This prepares the way for the RCIM board to immediately pro-
 cess a fresh instance of this ETI interrupt, should one have been
 requested while the driver was busy processing the previous
 instance. If a request is not outstanding, prepares the way for an
 interrupt to be generated the next time an interrupt request is
 made.

 From an operational point of view, an ETI is manipulated as follows:

 1. An ETI must be armed for anything to happen. If it is not armed,
 the ETI summarily clears any unprocessed interrupt request and
 does not accept any new interrupt requests, even those generated
 by software. This state is changeable with the ioctl(2) commands
 ETI_ARM and ETI_DISARM.

 2. An ETI must be enabled for successfully requested interrupts to
 be delivered. If the ETI is not enabled, interrupt requests are
 accepted but they are not passed on. This state is changeable
 with the ioctl(2) commands ETI_ENABLE and ETI_DISABLE.

 3. An ETI input signal line is not the only way an interrupt request
 can be generated. The RCIM permits software to set the request
 bit directly using the ioctl(2) command ETI_REQUEST.

 Accessing the ETI Files
 Each ETI is referenced through its own special device file:

 /dev/rcim/etiN

 where N is the ID of the ETI. The files are created automatically on
 system boot by the /etc/init.d/rcim initialization script.

 User Interface
 An ETI is controlled by open(2), close(2), and ioctl(2) system calls.
 The read(2), write(2) and mmap(2) commands are not used by this driver.

 The open(2) call assigns a file descriptor to one ETI.

 A close(2) call frees the file descriptor and, if it is the last close,
 disarms the ETI if the IOCTLKEEPALIVE state is not set.

 All device manipulation is done using ioctl(2). The #defines used
 below can be found in /usr/include/rcim.h.

 Note that all of the ioctl(2) commands documented below can also be
 applied to distributed interrupt devices, as documented in rcim_dis-
 trib_intr(4). Thus these ioctl’s can be used when one is writing
 generic code that doesn’t particularly care whether the device is an
 ETI or a DI.

 The following ioctl(2) calls have the form:

 #include <sys/types.h>
 #include <sys/ioctl.h>
 #include <rcim.h>

 ioctl(fildes, command, 0)
 int fildes, command;

 The commands are:

 ETI_ARM Arms the edge-triggered interrupt.

 ETI_DISARM Disarms the edge-triggered interrupt.

 ETI_ENABLE Enables the edge-triggered interrupt.

 ETI_DISABLE Disables the edge-triggered interrupt.

 ETI_REQUEST Generates the edge-triggered interrupt using software.
 This sets the same ETI request bit that the incoming
 signal line sets when it detects an interrupt condi-
 tion.

 ETI_WAIT Causes the process to sleep until the next ETI inter-
 rupt from this device, or until an ETI_WAKEUP is per-
 formed on this device by another task, or until the
 task is interrupted by a signal.

 ETI_WAKEUP Wakes up all processes currently sleeping in ETI_WAIT
 on this device.

 The following ioctl(2) calls have the form:

 #include <sys/types.h>
 #include <sys/ioctl.h>
 #include <rcim.h>

 ioctl(fildes, command, arg)
 int fildes, command, arg;

 The commands are:

 ETI_VECTOR
 Associates the Linux interrupt handlers at IRQ arg with this ETI.
 Whenever this ETI fires, the interrupt handlers at the associated
 IRQ are also invoked. An arg of zero clears a previously estab-
 lished association. An ETI will not accept a new IRQ association
 until a previously established association has been removed.

 This service allows other Linux drivers to register their inter-
 rupt handlers, which themselves have no hardware interrupt, with
 the RCIM’s RTC interrupt handler. The Frequency Based Scheduler
 (FBS) is one such user. This service is not intended to be
 called by application code.

 Other drivers can find a safe, unused IRQ for their handlers
 using the kernel function find_unused_irq(). They can then
 attach their handlers to this IRQ using request_irq() and finally
 they can attach that driver to some ETI via this ioctl(2) com-
 mand.

 IOCTLVECNUM
 The generic ioctl command IOCTLVECNUM is identical to ETI_VECTOR
 and may be used in those situations where one does not care what
 device type (be it ETI, RTC, DI, or whatever) to which the addi-
 tional IRQ is being attached.

 ETI_KEEPALIVE
 A non-zero value for arg sets the keepalive state for this ETI.
 If arg is zero, the keepalive state for this ETI is cleared.

 When the keepalive state is set for an ETI then the ETI does not
 shut down when the final close to the associated ETI device is
 made. When the keepalive state is reset, the ETI device is auto-
 matically shut down on final close.

 IOCTLKEEPALIVE
 A generic version of ETI_KEEPALIVE that may be used in those sit-
 uations where one does not care what type of device (be it ETI,
 RTC, DI, or whatever) is being ordered to remain alive after
 close.

 ETI_ATTACH_SIGNAL
 If arg is non-zero then it is a signal number, and each time this

 ETI generates an interrupt this signal will be sent to the pro-
 cess thread group which made the call. If arg is zero then sig-
 nal sending capability for this ETI, if it was enabled, is dis-
 abled.

 IOCTLSIGATTACH
 A generic version of ETI_ATTACH_SIGNAL that may be used in those
 situations where one does not care what type of device (be it
 ETI, RTC, DI, or whatever) is being ordered to send signals.

 The following ioctl(2) commands expect arg to be a pointer to an inte-
 ger value:

 ETI_GETICNT
 Returns the number of times this ETI has fired.

 IOCTLGETICNT
 A generic version of ETI_GETICNT. Potentially supportable by any
 driver that would like to return interrupt counts to its users.

 ETI_INFO
 Places information about the edge-triggered interrupt in the
 integer pointed to by arg. The defined bitfields are:

 ETI_TYPE_RCIM
 RCIM edge-triggered interrupt. This is set if the device
 is actually an RCIM based ETI and is reset if it is some
 other ETI device.

 ETI_TYPE_RCIM_MASTER
 This ETI is located on the master RCIM.

 ETI_TYPE_RCIM_DISTRIB
 This ETI drives some RCIM distributed interrupt.

CONFIGURATION
 The tunable ‘rcim=’ controls all configurable features of the RCIM
 driver, including the setup of ETIs. See rcim(4) for details.

 The file /proc/driver/rcim/config provides information on the configu-
 ration of the ETIs on the local RCIM board.

FILES
 /dev/rcim/etiN, /proc/driver/rcim/etiN, /usr/include/rcim.h

ERRORS
 On failure, open(2) and ioctl(2) return -1 and set errno to one of the
 following error codes.

 ENODEV The edge-triggered interrupt device does not exist.

 ENXIO The edge-triggered interrupt device is not properly config-
 ured.

 EBUSY The edge-triggered interrupt is in use by another device
 driver.

 EBADF The values specified for fildes is not a valid open file
 descriptor.

 EINVAL Request or argument is not valid.

 EINTR ETI_WAIT was interrupted by a signal.

 EPERM Command is IOCTLVECNUM or ETI_VECTOR and the specified IRQ is
 not within the allowed range of values.

 EFAULT Command is IOCTLGETICNT or ETI_GETICNT and the specified
 integer pointer value for arg is not valid.

 EBUSY Command is IOCTLVECNUM or ETI_VECTOR and the device already
 has an IRQ association.

SEE ALSO
 rcim(4), rcim_distrib_intr(4), open(2), close(2), ioctl(2).

COPYRIGHT
 Copyright (C) 2002 Concurrent Computer Corporation.

 June 2008 rcim_eti(4)

