
Linux® User’s Guide

0898004-9.6
August 2025

Copyright 2025 by Concurrent Real-Time, Inc. All rights reserved.

本書またはその一部は、Concurrent Real-Timeの社員、顧客、エンドユーザーによるConcurrent Real-Timeの製品を使用

することを目的とします。本書はいかなる理由があろうとも当社の許可なく複製・変更することはできません。

本書に含まれる情報は、本書発行時点での正確な情報ですが、予告なく変更されることがあります。Concurrent Real-
Timeは明示的、暗示的に関わらず本書に含まれる情報に対して保障できかねます。

Concurrent Real-Time, Inc.およびそのロゴはConcurrent Real-Time, Inc.の登録商標です。当社のその他すべての製品名は

Concurrent Real-Time, Inc.の商標です。また、その他全ての製品名が各々の所有者の商標または登録商標です。
Linux®は、Linux Mark Instituteのサブライセンスに従い使用しています。

改定履歴:

Date Level Effective With
August 2002 000 RedHawk Linux Release 1.1
September 2002 100 RedHawk Linux Release 1.1
December 2002 200 RedHawk Linux Release 1.2
April 2003 300 RedHawk Linux Release 1.3, 1.4
December 2003 400 RedHawk Linux Release 2.0
March 2004 410 RedHawk Linux Release 2.1
July 2004 420 RedHawk Linux Release 2.2
May 2005 430 RedHawk Linux Release 2.3
March 2006 500 RedHawk Linux Release 4.1
May 2006 510 RedHawk Linux Release 4.1
May 2007 520 RedHawk Linux Release 4.2
April 2008 600 RedHawk Linux Release 5.1
June 2008 610 RedHawk Linux Release 5.1
October 2008 620 RedHawk Linux Release 5.2
December 2009 630 RedHawk Linux Release 5.4
May 2011 640 RedHawk Linux Release 6.0
March 2012 650 RedHawk Linux Release 6.0
September 2012 660 RedHawk Linux Release 6.3
February 2013 670 RedHawk Linux Release 6.3
August 2013 680 RedHawk Linux Release 6.3
May 2014 700 RedHawk Linux Release 6.5
August 2014 710 RedHawk Linux Release 6.5
March 2015 750 RedHawk Linux Release 7.0
March 2016 780 RedHawk Linux Release 7.2
March 2016 800 RedHawk Linux Release 7.2A
June 2017 810 RedHawk Linux Release 7.3
June 2018 820 RedHawk Linux Release 7.5
October 2019 900 RedHawk Linux Release 8.0
November 2020 920 RedHawk Linux Release 8.2
March 2021 930 RedHawk Linux Release 8.2a
December 2021 940 RedHawk Linux Release 8.4
June 2022 940 RedHawk Linux Release 8.4a
September 2022 960 RedHawk Linux Release 8.4b
March 2023 1000 RedHawk Linux Release 9.1Beta
June 2023, March 2024 1020 RedHawk Linux Release 9.2
August 2025 1030 RedHawk Linux Release 9.6

注意事項：

本書は、Concurrent Real-Time, Inc.より発行された「RedHawk Linux User’s Guide」を日本語に翻訳した

資料です。英文と表現が異なる文章については英文の内容が優先されます。

iii

前書き

マニュアルの範囲

本書は3つのパートにより構成されます。Part 1の情報はリアルタイム・ユーザー向けです。

Part 2はシステム管理者向けです。Part 3は附録、用語解説、索引で構成されます。以下は、本

書の内容の概略です。

マニュアルの構成

本書は以下のセクションで構成されます:

Part 1 – リアルタイム・ユーザー

• 1章:「序文」は、RedHawk Linux OSの手引きおよびリアルタイム機能の概要を説明しま

す。
• 2章:「リアルタイム性能」は、割り込み応答、プロセス・ディスパッチ・レイテンシー

(PDL : Process Dispatch Latency)およびデターミニスティック(応答時間が予測可能)なプロ

グラムの実行を含むリアルタイム性能の実現に関する問題を説明します。シールドCPU
モデルについても説明します。

• 3章:「リアルタイム・プロセス間通信」は、POSIX®とSystem Vのメッセージ送受信、共

有メモリ機能の使い方を説明します。
• 4章:「プロセス・スケジューリング」は、プロセスのスケジューリングの概要とPOSIXス

ケジューリングのポリシーと優先度を説明します。
• 5章:「プロセス間同期」は、共有リソースへ同期アクセスする協同プロセス用にRedHawk

Linuxより提供されるインターフェースを説明します。(POSIXカウンティング･セマフ

ォ、System Vセマフォ、再スケジューリング制御ツール、条件同期ツールが含まれます)
• 6章:「プログラム可能なクロックおよびタイマー」は、RedHawk Linuxで利用可能な

RCIMおよびPOSIXのタイミング機能の概要を説明します。
• 7章:「システム・クロックおよびタイマー」は、システム時間計測とCPU単位のローカ

ル・タイマーを説明します。
• 8章:「ファイルシステムとディスクI/O」は、RedHawk Linux上でのXFSジャーナリング・

ファイルシステムおよびダイレクト・ディスクIO 実行手順を説明します。
• 9章:「メモリ・マッピング」は、プロセスが他のプロセスのアドレス空間へアクセスする

ためにRedHawk Linuxが提供する方法を説明します。
• 10章:「Non-Uniform Memory Access (NUMA)」は、特定のシステム上で利用可能なNUMA

サポートを説明します。

Part 2 – 管理者

• 11章:「カスタム・カーネルの構成および構築」は、RedHawk Linuxカーネルの構成およ

び構築方法について説明します。

RedHawk Linux User’s Guide

iv

• 12章:「カーネル・デバッギング」は、kdump、crashを使ったカーネル・メモリ・イメ

ージの保存、復元、解析のガイドラインを説明します。
• 13章:「PAMケーパビリティ」は、RedHawk LinuxのPAM認証機能を説明します。
• 14章:「デバイス・ドライバ」は、RedHawkの機能とデバイス・ドライバの記述に関連し

たリアルタイムの問題を説明します。
• 15章:「PCI-to-VMEサポート」は、RedHawkがサポートするPCI-VME間ブリッジを説明し

ます。
• 16章: 「PRTカーネル・オプション」は、RedHawkのオプションであるPREEMPR_RTリ

アルタイム・セマンティクスを備えた一連のPRTカーネルを説明します。

Part 3 - 共通事項

• 付録A:「メッセージ・キュー・プログラム例」は、POSIXおよびSystem Vのメッセージ・

キューの機能を解説するサンプル・プログラムを含みます。
• 付録B:「リアルタイム機能のためのカーネル・チューニング」は、RedHawk Linuxのユニ

ークな機能を制御するチューニング・パラメータおよびプレビルド・カーネルのデフォ

ルト値の一覧を含みます。
• 付録C:「ケーパビリティ」は、RedHawk Linuxに含まれるケーパビリティと各々より提供

されるパーミッション(アクセス権限)をリストアップします。
• 付録D:「32bitコードから64bitコードへの移植」は、x86_64プロセッサ上で32bitコードを

64bit処理へ移植するための情報をリストアップします。
• 付録E:「シールドCPU上のカーネル・レベル・デーモン」は、シールドCPU上でカーネ

ル・レベルのデーモンを実行する方法およびパフォーマンスを向上する方法を説明しま

す。
• 付録F:「シールドCPU上のプロセッサ間割り込み」は、シールドCPU上でプロセッサ間割

り込みを実行する方法およびパフォーマンスを向上する方法を説明します。
• 付録G:「シリアル・コンソールの設定」は、シリアル・コンソールを設定するための手

順を説明します。
• 付録H:「RedHawk起動コマンド・ライン・パラメータ」は、RedHawk特有の起動パラメ

ータを表示します。

前書き

v

構文記法

本書を通して使用される表記法は以下のとおりとなります。

斜体 ユーザーが特定する書類、参照カード、参照項目は、斜体にて表記します。

特殊用語も斜体にて表記します。

太字 ユーザー入力は太字形式にて表記され、指示されたとおりに入力する必要が

あります。ディレクトリ名、ファイル名、コマンド、オプション、manページ

の引用も太字形式にて表記します。

list プロンプト、メッセージ、ファイルやプログラムのリストのようなオペレー

ティング・システムおよびプログラムの出力はlist形式にて表記します。

[] ブラケット(大括弧)はコマンド・オプションやオプションの引数を囲みま

す。もし、これらのオプションまたは引数を入力する場合、ブラケットをタ

イプする必要はありません。

ハイパーテキスト・リンク
本資料を見ている時に項、図、テーブル・ページ番号照会をクリックすると

対応する本文を表示します。青字で提供されるインターネットURLをクリッ

クするとWebブラウザを起動してそのWebサイトを表示します。赤字の出版

名称および番号をクリックすると(アクセス可能であれば)対応するPDFのマニ

ュアルを表示します。

関連図書

以下の表にRedHawk Linuxのドキュメントを記載します。
これらのドキュメントは、Concurrent Real-TimeのWEBサイトにて参照または入手することが

可能です。

http://redhawk.concurrent-rt.com/docs/

RedHawk Linux Operating System Documentation Pub. Number
RedHawk Linux Release Notes 0898003
RedHawk Linux User’s Guide 0898004
Real-Time Clock & Interrupt Module (RCIM) User’s Guide 0898007
RedHawk Linux FAQ N/A
Optional RedHawk Product Documentation
RedHawk Linux Frequency-Based Scheduler (FBS) User’s Guide 0898005

http://redhawk.concurrent-rt.com/docs

RedHawk Linux User’s Guide

vi

vii

目次

前書き . iii

1章 序文

概要 . 1-1
RedHawk Linuxカーネル . 1-3
システム・アップデート. 1-4
リアルタイム機能 . 1-4

プロセッサ・シールディング . 1-4
プロセッサ・アフィニティ . 1-4
ユーザー・レベル・プリエンプション制御 . 1-5
高速ブロック/ウェイク・サービス . 1-5
RCIMドライバ . 1-5
Frequency-Based Scheduler . 1-5
/procの修正 . 1-6
カーネル・トレース機能 . 1-6
ptrace拡張 . 1-6
カーネル・プリエンプション . 1-6
リアルタイム・スケジューラ . 1-6
低レイテンシー拡張 1-7
優先度継承 . 1-7
高分解能プロセス・アカウンティング . 1-7
ケーパビリティのサポート . 1-7
カーネルのコア・ダンプ/クラッシュおよびライブ解析 1-8
ユーザー・レベル・スピン・ロック . 1-8
usermapと/procのmmap . 1-8
ハイパースレッディング . 1-8
XFSジャーナリング・ファイルシステム . 1-8
POSIXリアルタイム拡張 . 1-9

ユーザー優先度スケジューリング . 1-9
メモリ常駐プロセス 1-9
メモリ・マッピングおよびデータ共有 . 1-9
プロセス同期 . 1-10
非同期入出力 . 1-10
同期入出力 . 1-10
リアルタイム・シグナルの挙動 . 1-10
クロックおよびタイマー . 1-11
メッセージ・キュー . 1-11

2章 リアルタイム性能

シールドCPUモデルの概要 . 2-1
デターミニズムの概要 . 2-2
プロセス・ディスパッチ・レイテンシー . 2-2

割り込み禁止の効果 . 2-4
割り込みの影響 . 2-5
プリエンプション禁止の効果 . 2-7
オープン・ソース・デバイス・ドライバの影響 . 2-8

RedHawk Linux User’s Guide

viii

シールディングでリアルタイム性能を向上する方法 . 2-9
バックグラウンド・プロセスからのシールディング 2-9
割り込みからのシールディング . 2-10
ローカル割り込みからのシールディング . 2-10

CPUシールディングのインターフェース . 2-11
shieldコマンド . 2-11

shieldコマンド例 . 2-13
終了ステータス . 2-14
shieldコマンド拡張機能 . 2-14

cpuctlおよびcpustatシステムコール. 2-14
CPUシールディングの/procインターフェース . 2-15
systemdシールド・サービス . 2-15
CPUへの割り込み割り当て . 2-16

systemdシールド・サービス . 2-16
/procインターフェース . 2-17
管理割り込みに関するカーネル起動オプション 2-17

CPUへのプロセス割り当て . 2-17
runコマンド . 2-18
/procインターフェース . 2-18
sched_setaffinity() . 2-18
mpadvise() . 2-19
initへのCPUアフィニティ割り当て . 2-20

シールドCPUの設定例 . 2-20
デターミニズムを高める手順 . 2-23

メモリのページをロック . 2-23
プログラム優先度の設定 . 2-24
遅延割り込み処理の優先度設定 . 2-24
別プロセスの起床 . 2-24
キャッシュ・スラッシングの回避 . 2-25
物理メモリの予約 . 2-26
NUMAノードへのバインディング . 2-30
4-WayシステムのI/Oスループット . 2-30
ハイパースレッディングの理解 . 2-31

システム構成 . 2-33
推奨されるCPU構成 . 2-33

標準的なシールドCPUモデル . 2-34
割込みの分離を使ったシールド . 2-34
ハイパースレッドのシールド . 2-35
浮動小数点/整数の共有 . 2-36
データ・キャッシュの共有 . 2-36
単一プロセッサのシールド . 2-37

メモリ不足状態の回避 . 2-37
Linuxのデターミニズムに関する既知の問題 . 2-37

3章 リアルタイム・プロセス間通信

概要 . 3-1
POSIXメッセージ・キュー . 3-2
System Vメッセージ . 3-3

メッセージの利用 . 3-4
msggetシステムコール . 3-7
msgctlシステムコール . 3-9
msgsndおよびmsgrcvシステムコール . 3-10

メッセージの送信 . 3-10

目次

ix

メッセージの受信 . 3-11
POSIX共有メモリ . 3-12

shm_openルーチンの利用 . 3-13
shm_unlinkルーチンの利用 . 3-15

System V共有メモリ . 3-15
共有メモリの利用 . 3-16
shmgetシステムコール . 3-19
shmctlシステムコール . 3-21
共有メモリ領域をI/O空間へバインド . 3-22

shmgetの利用 . 3-22
shmbindの利用 . 3-23

shmatおよびshmdtシステムコール . 3-23
共有メモリ領域の結合 . 3-24
共有メモリ領域の分離 . 3-24

共有メモリ・ユーティリティ . 3-24
shmdefineユーティリティ . 3-24
shmconfigコマンド . 3-25

4章 プロセス・スケジューリング

概要 . 4-1
プロセス・スケジューラの管理方法 . 4-2
スケジューリング・ポリシー . 4-3

デッドライン・スケジューリング(SCHED_DEADLINE) 4-3
ファーストイン・ファーストアウト・スケジューリング(SCHED_FIFO) 4-3
ラウンドロビン・スケジューリング(SCHED_RR) 4-4
タイムシェアリング・スケジューリング(SCHED_OTHER) 4-4
バッチ・スケジューリング(SCHED_BATCH) . 4-4
低優先度スケジューリング(SCHED_IDLE) . 4-5

性能向上のための手続き . 4-5
優先度設定方法 . 4-5
割り込みルーチン . 4-5
SCHED_FIFO vs SCHED_RR . 4-6
CPUをロックする固定優先度プロセス . 4-6
メモリのロック . 4-6
CPUアフィニティとシールド・プロセッサ . 4-7

プロセス・スケジューリング・インターフェース . 4-7
POSIXスケジューリング・ルーチン . 4-7

sched_setschedulerルーチン . 4-8
sched_getschedulerルーチン . 4-9
sched_setparamルーチン . 4-9
sched_getparamルーチン . 4-10
sched_yieldルーチン . 4-11
sched_get_priority_minルーチン . 4-11
sched_get_priority_maxルーチン . 4-12
sched_rr_get_intervalルーチン . 4-13

runコマンド . 4-13

5章 プロセス間同期

プロセス間同期の理解 . 5-1
再スケジューリング制御 . 5-3

再スケジューリング変数の理解 . 5-3
resched_cntlシステムコールの利用 . 5-4
再スケジューリング制御マクロの利用 . 5-5

RedHawk Linux User’s Guide

x

resched_lock . 5-5
resched_unlock . 5-6
resched_nlocks . 5-6

再スケジューリング制御ツールの適用 . 5-7
ビジーウェイト相互排他 . 5-7

spin_mutex変数の理解 . 5-8
spin_mutexインターフェースの利用 . 5-8
spin_mutexツールの適用 . 5-9
nopreempt_spin_mutex変数の理解 . 5-10
nopreempt_spin_mutexインターフェースの利用 . 5-11

POSIXカウンティング・セマフォ . 5-12
概要 . 5-12
インターフェース . 5-13

sem_initルーチン . 5-14
sem_destroyルーチン . 5-15
sem_openルーチン . 5-16
sem_closeルーチン . 5-18
sem_unlinkルーチン . 5-18
sem_waitルーチン . 5-19
sem_timedwaitルーチン . 5-19
sem_trywaitルーチン . 5-20
sem_postルーチン . 5-20
sem_getvalueルーチン . 5-20

POSIXミューテックスの基礎 . 5-21
ロウバスト・ミューテックス . 5-22
優先度継承 . 5-22
ユーザー・インターフェース . 5-22

pthread_mutex_consistent . 5-23
pthread_mutexattr_getprotocol. 5-23
pthread_mutexattr_getrobust . 5-24
pthread_mutexattr_setprotocol . 5-24
pthread_mutexattr_setrobust . 5-24

POSIXミューテックス・プログラムのコンパイル 5-25
System Vセマフォ . 5-25

概要 . 5-25
System Vセマフォの利用 . 5-26
semgetシステムコール . 5-29
semctlシステムコール . 5-30
semopシステムコール . 5-32

条件同期 . 5-34
postwaitシステムコール . 5-34
serverシステムコール . 5-35

server_block . 5-36
server_wake1 . 5-36
server_wakevec. 5-37

条件同期ツールの適用 . 5-38

6章 プログラム可能なクロックおよびタイマー

クロックおよびタイマーの理解 . 6-1
RCIMクロックおよびタイマー . 6-1
POSIXクロックおよびタイマー . 6-2

POSIX時間構造体の理解 . 6-3
POSIX clockルーチンの利用 . 6-4

目次

xi

clock_settimeルーチンの利用 . 6-4
clock_gettimeルーチンの利用 . 6-5
clock_getresルーチンの利用 . 6-5

POSIX timerルーチンの利用 . 6-6
timer_createルーチンの利用 . 6-6
timer_deleteルーチンの利用 . 6-8
timer_settimeルーチンの利用 . 6-8
timer_gettimeルーチンの利用 . 6-9
timer_getoverrunルーチンの利用 . 6-10

POSIX sleepルーチンの利用 . 6-11
nanosleepルーチンの利用 . 6-11
clock_nanosleepルーチンの利用 . 6-12

7章 システム・クロックおよびタイマー

システム時間計測 . 7-1
ローカル・タイマー . 7-1

機能 . 7-2
CPUアカウンティング . 7-2
プロセス実行時間のクォンタムおよび制限 . 7-3
インターバル・タイマーのデクリメント . 7-3
システム・プロファイリング . 7-3
CPU負荷バランシング . 7-3
CPU再スケジューリング . 7-4
POSIXタイマー . 7-4
RCU処理 . 7-4
その他 . 7-4

ローカル・タイマーの禁止 . 7-4

8章 ファイルシステムとディスクI/O

ジャーナリング・ファイルシステム . 8-1
XFSファイルシステムの作成 . 8-2
XFSファイルシステムのマウント . 8-2

ダイレクト・ディスクI/O . 8-2

9章 メモリ・マッピング

ターゲット・プロセスのアドレス空間へのマッピングの確立 9-1
mmap(2)の利用 . 9-1
usermap(3)の利用 . 9-3
検討事項 . 9-4
カーネル構成パラメータ . 9-4

10章 Non-Uniform Memory Access (NUMA)

概要 . 10-1
メモリ・ポリシー . 10-2
NUMAユーザー・インターフェース . 10-3

run(1)を利用したNUMAサポート(プロセス用) . 10-3
shmconfig(1)を利用したNUMAサポート(共有メモリ領域用) 10-5
システムコール . 10-7
ライブラリ機能 . 10-7
情報提供ファイルおよびユーティリティ . 10-7

RedHawk Linux User’s Guide

xii

ノード統計値 . 10-8
マッピングされたページのノードID . 10-8

numastatを利用したNUMA成功/失敗統計値 . 10-9
NUMAバランシング . 10-10

NUMAバランシングの有効化 . 10-11
シールディングの相互作用 . 10-11
シールディングの制限 . 10-11

性能ガイドライン . 10-12
タスク全体のNUMA mempolicy . 10-12
共有メモリ領域 . 10-13

構成 . 10-13

11章 カスタム・カーネルの構成および構築

序文 11-1
カーネル・パッケージの構築手順 . 11-1

Rocky互換システムの手順 . 11-2
Ubuntuベース・システムの手順 . 11-3

xconfig . 11-4
3rdパーティ・ドライバ・モジュールの構築. 11-5
動的カーネル・モジュール・サポート . 11-6

12章 カーネル・デバッギング

概要 . 12-1
VMcore生成イベント . 12-1

vmlinuxネームリスト・ファイルの保存 . 12-2
VMcore構成 . 12-2
kdump構成の更新 . 12-4
scp VMcore生成の構成 . 12-5
NFS VMcore生成の構成 . 12-6
sysctl(1) kdumpオプション . 12-8
crashを利用したダンプの解析 . 12-8

ダンプ・ファイルの解析 . 12-9
実行中システムの解析 . 12-9
ヘルプの入手 . 12-10

NMI割り込み . 12-10
NMIウォッチドッグ . 12-11

13章 PAMケーパビリティ

序文 13-1
PAMサービス・ファイル . 13-2

PAM構成ファイル . 13-2
ロール・ベース・アクセス制御 . 13-4

ロール . 13-4
グループ . 13-5
ユーザー . 13-5

実例：リアルタイム・ユーザー向けPAMケーパビリティの構成 13-5
通常使用されるサービスの割り当て . 13-6
リアルタイム・ロールの割り当て . 13-6
リアルタイム・ユーザーの割り当て . 13-7
リアルタイム・ケーパビリティの確認 . 13-7

目次

xiii

14章 デバイス・ドライバ

デバイス・ドライバの種類の理解 . 14-1
ユーザー・レベル・デバイス・ドライバの開発 . 14-1

PCIリソースへのアクセス . 14-1
PCI BARインターフェース . 14-2

bar_scan_open(3) . 14-3
bar_scan_next(3) . 14-3
bar_device_cuont(3) . 14-4
bar_scan_rewind(3) . 14-4
bar_scan_close(3) . 14-4
free_pci_device(3) . 14-5
bar_mmap(3) . 14-5
bar_munmap(3) . 14-5

カーネル・スケルトン・ドライバ . 14-6
サンプル・ドライバの機能の理解 . 14-6
ドライバのテスト . 14-9

カーネル・レベル・デバイス・ドライバの開発 . 14-11
ドライバ・モジュールの構築 . 14-11
カーネルの仮想アドレス空間 . 14-11
リアルタイム性能の問題 . 14-11

割り込みルーチン . 14-11
割り込み機能の遅延(ボトム・ハーフ) . 14-12

ソフトIRQとタスクレット . 14-13
ワーク・キュー . 14-13
優先度の理解 . 14-13

マルチ・スレッディングの問題 . 14-14
ユーザー空間I/Oドライバ(UIO) . 14-14
性能の解析 . 14-15

15章 PCI-to-VMEサポート

概要 . 15-1
文書 . 15-2
ハードウェアのインストール . 15-2

開梱 . 15-2
アダプター・カードの設定 . 15-3
PCIアダプター・カードのインストール . 15-4
VMEバス・アダプター・カードのインストール . 15-4
アダプター・ケーブルの接続 . 15-4

ソフトウェアのインストール . 15-5
構成 . 15-6

btpモジュール . 15-6
デバイス・ファイルおよびモジュール・パラメータ仕様 15-6
VMEバス・マッピング . 15-7

ユーザー・インターフェース . 15-7
API関数 . 15-8
バインド・バッファの実装 . 15-9

bt_get_info BT_INFO_KMALLOC_BUF. 15-9
bt_set_info BT_INFO_KMALLOC_SIZ. 15-10
bt_set_info BT_INFO_KFREE_BUF . 15-10
バインド・バッファの追加情報 . 15-11

bigphysareaパッチ . 15-11
btpモジュールのアンロード . 15-11
bt_bindとrem_addr_pパラメータ . 15-12

RedHawk Linux User’s Guide

xiv

ローカル・メモリ . 15-11
VMEバス空間へのマッピングおよびバインド . 15-13

bt_hw_map_vme . 15-13
bt_hw_unmap_vme . 15-14
/procファイル・システム・インターフェース 15-15

VMEバス・マッピングの表示 . 15-15
VMEバス・マッピングの生成 . 15-15
VMEバス・マッピングの削除 . 15-16

アプリケーション例 . 15-17
bt_bind_mult . 15-18
bt_bind_multsz . 15-19
bt_hwmap . 15-19
bt_hwunmap . 15-19
readdma . 15-20
shmat . 15-20
shmbind . 15-20
shmconfig-script . 15-21
vme-mappings . 15-21
writemem . 15-21
writedma. 15-21

16章 PRTカーネル・オプション

PRTとは？. 16-1
RedHawk vs PRT . 16-1
PRTの注意事項 . 16-2
PRTカーネル・フレイバー . 16-2
追加リソース . 16-3

付録A メッセージ・キュー・プログラム例

POSIXメッセージ・キュー例 . A-1
System Vメッセージ・キュー例 . A-4

付録B リアルタイム機能のためのカーネル・チューニング

付録C ケーパビリティ

概要 . C-1
ケーパビリティ . C-1

付録D 32bitコードから64bitコードへの移植

序文 D-1
手順 . D-2
コーディング要件 . D-2

データ型のサイズ . D-2
long型 . D-3
ポインタ . D-3
配列 . D-4
宣言 . D-4
明示的なデータ・サイズ . D-4
定数 . D-4

目次

xv

API . D-4
呼び出し規約 . D-5
条件付コンパイル . D-5
その他 . D-6

コンパイル . D-6
テスト/デバッグ . D-6
性能問題 . D-6

メモリのアライメントおよび構造体のパディング D-6

付録E シールドCPU上のカーネル・レベル・デーモン

付録F シールドCPU上のプロセッサ間割り込み

概要 . F-1
グラフィクス割り込み . F-1
RedHawkページ・プール・ドライバ . F-2
ユーザー・アドレス空間のTLBフラッシュ割り込み . F-3

付録G シリアル・コンソールの設定

付録H RedHawkの起動コマンド・ライン・パラメータ

RedHawk Linux User’s Guide

xvi

1-1

1
序文

1

本章は、RedHawk Linuxの紹介およびオペレーティング・システムに含まれているリアルタイ

ム機能の概要を提供します。

1

概要 1

Concurrent Real-TimeのRedHawk™ Linux® は、オープン・ソースLinuxオペレーティング・シ

ステムのリアルタイム・バージョンです。互換性およびパフォーマンスを必要とする複雑な

タイム・クリティカル・アプリケーションをサポートするため、標準Linuxカーネルを基に改

良が行われました。RedHawkは、すべてのシステム・オペレーションを直接制御するシング

ル・プログラミング環境をサポートするため、シングル・カーネル設計を利用します。この

設計は、デターミニスティックなプログラムの実行および割り込みに対するレスポンスを可

能とし、更に高I/Oスループットとデターミニスティックなファイル、ネットワーキング、グ

ラフィックI/O操作を同時に提供します。RedHawkはシミュレーション、データ収集、工業制

御機器、医療画像システム、自立走行車が求めるデターミニスティック・アプリケーション

のための理想的なLinux環境です。

RedHawkはConcurrent Real-TimeのiHawkシステムに各々含まれています。iHawkシステムは多

様なアーキテクチャや構成が利用可能な対象型マルチプロセッサ(SMP)のシステムです。

x86アーキテクチャのシステムについては、一般的なCentOS(Community ENTerprise Operating
System®)が含まれています。ARM64アーキテクチャではUbuntuが提供されます。ベースのデ

ィストリビューション(CentOSまたはUbuntu)は、以下、ベースLinuxディストリビューション

と称します。

インストール・ディスクは、リアルタイム・カーネルと特定のカーネル機能にアクセスする

ためのライブラリを提供します。カーネルを除き、ベースLinuxディストリビューションの全

てのコンポーネントは標準的な方法で動作します。それらは修正されていないLinuxユーティ

リティ、ライブラリ、コンパイラ、ツール、インストーラを含んでいます。オプションの

NightStar™ RT開発ツールは、タイム・クリティカルなアプリケーションの開発や周期実行、

パフォーマンスをモニタリングするプロセスのスケジュールに使用出来る Frequency-Based
Scheduler(FBS)およびパフォーマンス・モニタを利用することが可能です。

RedHawkカーネルは、オープン・ソースのパッチと最高水準のリアルタイム・カーネルを提

供するためにConcurrent Real-Timeが開発した機能の両方を統合します。これらの多くの機能

は、40年以上のリアルタイム・オペレーティングシステムの開発の経験に裏づけられた

Concurrent Real-Timeが実現したリアルタイムUNIX®より派生しています。これらの特徴は、

本章の 「リアルタイム機能」セクションの中でもう少し詳細な情報を記載しています。

SMPシステムへの対応は高度に最適化されています。シールドCPUとして知られるユニーク

なコンセプトは、プロセッサの一部を最もデターミニスティックなパフォーマンスを必要と

するタスク専用とすることができます。個々のCPUは、割り込み処理、カーネル・デーモ

ン、割り込みルーチン、その他のLinuxタスクよりシールドすることが可能です。プロセッ

サ・シールディングは、15μ秒未満の割り込み応答を保証する高度なデターミニスティック

な実行環境を提供します。

RedHawk Linux User’s Guide

1-2

RedHawk Linuxは、少なくともカーネル3.xおよび4.xをベースとする他のLinuxディストリビュ

ーションのようにPOSIX準拠のレベルは同等です。Concurrent Real-Timeは標準Linuxには存在

しないPOSIXリアルタイム拡張を加えることで更なるPOSIXの互換性を付加しました。Intel
x86とARM64の両アーキテクチャ上のLinuxは、Concurrent Real-Timeのx86およびARM64の
iHawkシステムが動作するそれらのプラットフォーム上で動作するようパッケージ・アプリケ

ーションが設計された事実上のバイナリ標準を定義しました。

NightStar RTは、マルチプロセッサ向けタイム・クリティカル・アプリケーションの制御、監

視、解析、デバッグを行うためのConcurrent Real-Timeの強力なツールセットです。RedHawk
のカーネルには、アプリケーション実行への干渉を最小限に抑えて効果的に機能するツール

の強化機能が含まれています。すべてのツールは、同一システム上でもリモートでもアプリ

ケーション制御を邪魔することなく同じように実行されます。

NightStar RTツールには、以下のものが含まれています。詳細な情報は個々のUser’s Guideを参

照してください。

• NightView™ ソースレベル・デバッガー：マルチ言語、マルチプロセッサ、マルチプロ

グラム、マルチ・スレッドの監視、デバッグをシングルGUIで行います。NightViewは、

アプリケーションの実行速度で実行中のプログラムに修正を加えるためのホットパッ

チ、データ変更・修正、条件付きブレークポイント/モニタポイント/ウォッチポイントの

各機能を持っています。

• NightTrace™ 実行時間アナライザー：動作中のアプリケーションの挙動を解析するため

に使用します。ユーザーおよびシステムの動きを高分解能タイムスタンプにて記録およ

びマークします。アプリケーション実行中に発生したこれらのイベントの詳細な挙動を

グラフィック表示します。NightTraceは複数のプロセス、複数のプロセッサ上の挙動、分

散システム上で実行されたアプリケーション、ユーザー/カーネルの相互関係を表示する

理想的なツールです。その強力な機能は特定のイベントやカーネル/ユーザーのステータ

スを調査することが可能です。

• NightSim™ 周期スケジューラ：周期実行を必要とするアプリケーションを簡単にスケジ

ューリングすることが可能です。開発者は連携する複数のプロセス、それらのプライオ

リティやCPUの割り当てを動的に制御することが可能です。NightSim は詳細かつ正確な

パフォーマンスの統計値とオーバーラン発生時の様々な処理の定義を提供します。

• NightProbe™ データモニター：実行中の複数のプログラムのデータのサンプリング、記

録、修正に利用します。プログラムデータはシンボルテーブルを参照して探し出しま

す。アプリケーションページはアプリケーション実行への影響を最小限にするために物

理レベルのページで共有されます。NightProbeは入出力用のGUIコントロールパネルを作

成することでデバッグ、解析、エラー挿入(Fault Injection)を代用することが可能です。

• NightTune™ パフォーマンスチューナー： CPU使用状況、コンテキスト・スイッチ、割

り込み、仮想メモリ使用状況、ネットワーク使用状況、プロセス属性、CPUシールディ

ング等のシステムやアプリケーション性能解析のためのGUIツールです。NightTuneはポ

ップアップ・ダイアログまたはドラッグ＆ドロップ操作で個々のプロセスまたはグルー

プの優先度、スケジューリング・ポリシー、CPUアフィニティを変更することができま

す。同時にCPUのシールディングやハイパースレッドの属性変更、個々の割り込みの割

り当てを変更することも可能です。

序文

1-3

RedHawk Linuxカーネル1

RedHawk Linuxカーネルは3種類存在し、それぞれがPRTリアルタイム有りおよび無しで利用

可能です。

システム管理者は、ブート・ローダーを介してどのカーネルのバージョンをロードするかを

選択することが可能です。表1-1にプレビルト・カーネルのそれぞれの概要を示します。

表1-1 プレビルト・カーネル

カーネルの種類 Generic Trace Debug
カーネル名称 * vmlinuz-kernelversion-

RedHawk-x.x
vmlinuz-kernelversion-
RedHawk-x.x-trace

vmlinuz-kernelversion-
RedHawk-x.x-debug

推奨使用方法 タイム・クリティカル・

アプリケーションの実行
NightStar RTツールを利用し

てパフォーマンス評価
アプリケーションまたはド

ライバの新規開発
概要 Genericカーネルは最も最

適化されており、最高の

パフォーマンスを提供し

ますが、NightStar RTツー

ルの利点すべてが必要だ

としても一部の機能が使

えません。

TraceカーネルはGenericカー

ネルの全ての機能がサポー

トされ、NightTraceツールの

カーネル・トレース機能を

提供しており、多くのユー

ザーに推奨します。
このカーネルはシステム起

動時にデフォルトでロード

されます。

DebugカーネルはTraceカー

ネルの全ての機能がサポー

トされ、更に実行時間の検

証が含まれ、カーネル・レ

ベル・デバッグのサポート

も提供します。
このカーネルはドライバの

開発やシステムの問題をデ

バッグする際に推奨しま

す。
Features
カーネル・デバッグ 無効 無効 有効
カーネル・トレース
(NightTraceを利用)

無効 有効 有効

高分解能プロセス・
アカウンティング

有効 有効 有効

NMI Watchdog 無効 無効 有効
Frequency Based
Scheduler (FBS)

モジュールがロードされ

たときに有効
モジュールがロードされた

ときに有効
モジュールがロードされた

ときに有効
パフォーマンス・モニ

タ
(PM)

無効 有効 有効

* kernelversion はそのカーネルをベースとするLinuxカーネル・ソースコードの公式バージョンです。
x.x はRedHawkのバージョン番号を示します。
例: vmlinuz-3.10.25-rt23-RedHawk-6.5.

RedHawk Linux User’s Guide

1-4

システム・アップデート1

「RedHawk Linux updates」はConcurrent Real-TimeのWebサイト「RedHawk Updates」からダウ

ンロードすることが可能です。詳細はRedHawk Linux Release Notes を参照してください。

NOTE

Concurrent Real-TimeはベースLinuxディストリビューションにアップ

デートをダウンロードすることを推奨しません。Concurrent Real-Time
以外のソースからのアップグレードのインストール(特にgccとglibcに
対して)は、システムが不安定となる可能性がありますので推奨しま

せん。外部からのセキュリティのアップデートは必要であればインス

トールすることは可能です。

リアルタイム機能1

本セクションはオペレーティング・システムのリアルタイム処理やパフォーマンスを含む機

能の簡単な説明を提供します。以下に記載された機能に関する更に詳細な情報は、本書の後

続の章にて提供します。オンラインで読まれている方は、参照用語上をクリックすることで

直ぐにその情報を表示することが可能です。一部の機能は全アーキテクチャに適用されてお

らず、一部は全アーキテクチャでサポートされていません。そのような場合、章の中に適用

されていないもしくはサポートされていないことを示す注記があります。

プロセッサ・シールディング1

Concurrent Real-Timeは割り込みやシステムデーモンに関連した予測できない処理から選択し

たCPUを保護(シールド)する方法を開発しました。クリティカルなプライオリティの高いタス

クを特定のCPUにバインドし、多くの割り込みやシステムデーモンを他のCPUへバインドす

ることにより、マルチ・プロセッサ・システムの特定CPU上において最高のプロセス・ディ

スパッチ・レイテンシー(PDL)を得ることができます。2章ではシールディングCPUの手本を

紹介し、またレスポンス時間向上およびデターミニズム強化のテクニックを説明します。

プロセッサ・アフィニティ1

複数のCPU上で複数のプロセスを実行するリアルタイム・アプリケーションでは、システム

の全てのプロセスのCPU割り当てを明示的に制御することが望ましい。この機能はConcurrent
Real-Timeよりmpadvise(3)ライブラリ・ルーチンや run(1)コマンドを通して提供されます。

追加情報については2章およびmanページを参照してください。

序文

1-5

ユーザー・レベル・プリエンプション制御1

複数のCPU上で動作する複数のプロセスを所有するアプリケーションがプロセス間でデータ

を共有する動作をする時、2つ以上のプロセスの同時アクセスによる破壊を防ぐために共有デ

ータへのアクセスは保護する必要があります。共有データの保護のための最も効果的なメカ

ニズムはスピン・ロックですが、スピン・ロックを保持している間にプリエンプトする可能

性のあるアプリケーションが存在すると効果的に使用することができません。効果を維持す

るためにRedHawkはアプリケーションがプリエンプションを瞬時に無効にするためのメカニ

ズムを提供します。ユーザー・レベルのプリエンプション制御に関するより詳細な情報は5章
とresched_cntl(2)のmanページを参照してください。

高速ブロック/ウェイク・サービス1

多くのリアルタイム・アプリケーションは複数の協同プロセスで構成されています。これら

のアプリケーションはプロセス間同期をするための効果的な方法を必要としています。

Concurrent Real-Timeが開発した高速ブロック/ウェイク・サービスは、他の協同プロセスから

のウェイクアップ通知を待ち構えているプロセスを瞬時にサスペンドすることが可能です。

詳細な情報については、2章、5章およびpostwait(2)とserver_block(2)のmanページを参照し

てください。

RCIMドライバ1

Real-Time Clock and Interrupt Module(RCIM)をサポートするためのドライバがインストールさ

れています。この多目的PCIカードは以下の機能を備えています。

• 最大12個の外部デバイス割り込み

• 最大8個のシステムへの割り込み可能なリアルタイム・クロック

• アプリケーションからの割り込み作成が可能な最大12個のプログラマブル割り込みジェ

ネレータ

これらの機能はRCIMがインストールされているシステム上でローカル割り込みをすべて作成

することが可能です。複数のRedHawk Linuxシステムは相互にチェーン接続することが可能

で、他のRCIMがインストールされたシステムに対してローカル割り込みの配信が最大12個ま

で可能です。これは1つのタイマー、1つの外部割り込み、もしくは1つのアプリケーション・

プログラムが複数のRedHawk Linuxシステムを同期させるために同時に割り込むことを許可し

ています。更にRCIMには複数のシステムを共通時間で共有させることが出来る同期高分解能

クロックが含まれています。更なる情報については、本書の6章とReal-Time Clock & Interrupt
Module (RCIM) User’s Guide を参照してください。

Frequency-Based Scheduler 1

Frequency-Based Scheduler (FBS)は、所定周期の実行パターンにより動作するアプリケーショ

ンをスケジューリングするためのメカニズムです。FBSはプログラムが実行する時間になった

ときにプロセスを起こすための非常にしっかりしたメカニズムも同時に提供します。更に周

期アプリケーションのパフォーマンスがデッドラインを超える場合にプログラムマーが利用

可能な様々なオプションにより追跡することが可能です。

RedHawk Linux User’s Guide

1-6

FBSは周期実行アプリケーションをスケジュールするためのNightSimツールの基となるカーネ

ル・メカニズムです。更なる情報については、Frequency-Based Scheduler (FBS) User’s Guide
とNightSim RT User’s Guide を参照してください。

/procの修正1

特権を持ったプロセスが他のプロセスのアドレス空間の値を読み書きを可能にするため、修

正はプロセスのアドレス空間をサポートする/procで行われます。これはNightProbeデータ・モ

ニタリング・ツールやNightViewデバッガのサポートに利用されます。

カーネル・トレース機能1

カーネルの動きをトレースする機能が追加されました。これにはカーネル・トレース・ポイ

ントの挿入、カーネルのトレース・メモリ・バッファの読み取り、トレース・バッファの管

理を行うためのメカニズムが含まれています。カーネル・トレース機能はNigthTraceにより利

用できます。カーネル・トレースに関する情報はNightTraceの資料を参照してください。

ptrace拡張1

Linuxのptraceデバッギング・インターフェースは、NightViewデバッガーの機能をサポートす

るために拡張されました。追加された機能：

• デバッガ・プロセスが現在停止状態ではないプロセスのメモリを読み書きする機能

• デバッガがデバッグ中のプロセスのシグナルの一部だけをトレースする機能

• デバッガがデバッグ中のプロセス内の新しいアドレスで効率的に実行を再開する機能

で、これは条件付きイベント・ポイントを実装するためにNightViewデバッガで使用され

ます

カーネル・プリエンプション1

カーネル内で実行中の低優先度プロセスを高優先度プロセスがプリエンプトするための機能

が提供されます。標準的なLinux下の低優先度プロセスは、カーネルから抜けるまで実行し続

け、ワーストケースのプロセス・ディスパッチ・レイテンシーとなります。データ構造体を

保護するメカニズムは、対称型マルチプロセッサをサポートするためにカーネルに組み込ま

れています。

リアルタイム・スケジューラ1

リアルタイム・スケジューラは、システム内で動作中のプロセスがいくつであっても固定長

のコンテキスト・スイッチ時間を提供します。また、対称型マルチプロセッサ上で動作する

真のリアルタイム・スケジューリングも提供します。

序文

1-7

低レイテンシー拡張1

カーネルが使用する共有データ構造体を保護するため、カーネルはスピン・ロックとセマフ

ォによりその共有データ構造体へアクセスするコード・パスを保護します。スピン・ロック

のロック処理は、スピン・ロックが保持している間はプリエンプションや割り込みが無効と

なることを命じます。低レイテンシー拡張は、より良い割り込み応答時間を提供するために

最悪の状況となるプリエンプションが特定されたアルゴリズムに手を加えています。

優先度継承1

スリーピーウェイト相互排他メカニズムとして使用されるセマフォは優先度反転の問題を引

き起こす可能性があります。クリティカル・セクション内で実行される1つ以上の低優先度プ

ロセスが1つ以上の高優先度プロセスの動作を妨げるときに優先度反転を引き起こします。優

先度継承はクリティカル・セクション内で実行中の低優先度プロセスの優先度を待機中の最

高優先度プロセスへ一時的に引き上げることを生じます。これは、クリティカル・セクショ

ン内で実行中のプロセスがクリティカル・セクションから離れるまで実行し続けるために十

分な優先度を持つことを確実にします。詳細な情報については5章を参照してください。

高分解能プロセス・アカウンティング1

メインストリ－ムであるkernel.orgのLinuxカーネル内では、システムはとても大雑把なメカニ

ズムを使ってプロセスのCPU実行時間を計算しています。これは特定のプロセスが使用する

CPU時間の量がとても不正確になる可能性があることを意味します。高分解能プロセス・ア

カウンティング機能はとても正確なCPU実行時間計算のためのアルゴリズムを提供し、優れ

たアプリケーションの性能モニタリングを可能にします。この機能はConcurrent Real-Timeが
提供する全てのRedHawk Linuxプレビルト・カーネルの中に盛り込まれ、標準LinuxのCPUア

カウンティング・サービスとそれらのカーネルのパフォーマンス・モニタに利用されます。

CPUアカウンティング方式に関する情報は7章を参照してください。

ケーパビリティのサポート1

Pluggable Authentication Module (PAM)は、ユーザーに特権を割り当てるメカニズムを提供し、

認証プログラムを再コンパイルすることなく認証ポリシーを設定できます。この仕組みの下

では、ルートだけが許可された特権を必要とするアプリケーションを非rootユーザーが実行で

きるように設定することが可能です。例えば、メモリ内のページをロックする機能は個々の

ユーザーやグループに割り当て可能な所定の特権により提供されます。

特権は、設定ファイルを通して許可されます。ロールは有効なLinuxケーパビリティのセット

です。定義されたロールは、予め定義されたロールのケーパビリティを継承する新しいロー

ルと一体となって後に続くロールの基礎的要素として使用されます。ロールはシステム上で

ケーパビリティを定義してユーザーおよびグループに割り当てます。

PAMの機能に関する情報は13章を参照してください。

RedHawk Linux User’s Guide

1-8

カーネルのコア・ダンプ/クラッシュおよびライブ解析1

kexec-toolとcrushオープン・ソース・パッチが提供するkexecおよびkdumpは、他のカーネル

のクラッシュ・ダンプをロードして取り込みことを有効にし、crashユーティリティはそのダ

ンプを解析するために提供されます。crashユーティリティはライブ・システムでも使用する

ことが可能です。クラッシュ・ダンプ解析に関する詳細な情報については12章を参照してく

ださい。

ユーザー・レベル・スピン・ロック1

RedHawk Linuxのビジーウェイト相互排他ツールには低オーバーヘッドのビジーウェイト相互

排他変数(スピン・ロック)と初期化、ロック、アンロック、クエリー・スピン・ロックが可能

なマクロのセットが含まれます。効果を上げるためにユーザー・レベル・スピン・ロックは

ユーザー・レベル・プリエンプション・コントロールと一緒に利用する必要があります。詳

細は5章を参照してください。

usermapと/procのmmap 1

libccur_rtライブラリに属する usermap(3)ライブラリ・ルーチンは、簡単なCPUの読み書き

を利用して現在実行中のプログラムのロケーションを効果的に監視および変更するためのア

プリケーションを提供します。

/procファイルシステムのmmap(2)は、自分自身のアドレス空間の中に他のプロセスのアドレ

ス空間の一部を割り当てることを許可するusermap(3)のための基本となるカーネル・サポー

トです。従って、他の実行中のプログラムの監視および変更はread(2)およびwrite(2)システ

ムコールによる/procファイルシステムのオーバーヘッドを発生させる事なくアプリケーショ

ン自身のアドレス空間の中で簡単なCPUの読み書きとなります。詳細な情報については9章を

参照してください。

ハイパースレッディング1

ハイパースレッディングはIntel Pentium Xeonプロセッサの機能です。これは1つの物理プロセ

ッサをオペレーティング・システムに2つの論理プロセッサのように見せる効果があります。

2つのプログラムカウンターは各々のCPUチップの中で同時に実行されるため、事実上、各々

のチップはデュアルCPUとなります。物理CPUのハイパースレッディングは、キャッシュミ

スや特殊命令のようなものを2つのレジスターセット間で高速ハードウェアベースのコンテキ

スト・スイッチを利用することにより“並行”して複数のタスクを実行することが可能で

す。RedHawk Linuxにはハイパースレッディングのサポートが含まれています。リアルタイム

環境においてこの機能を効果的に使用する詳細な情報については2章を参照してください。

XFSジャーナリング・ファイルシステム1

SGIが提供するXFSジャーナリング・ファイルシステムはRedHawk Linuxに実装されていま

す。ジャーナリング・ファイルシステムは処理を記録するためにジャーナル(ログ)を使用し

ます。システム・クラッシュの事象が発生した場合、バックグラウンド・プロセスは再起動

を実行し、ジャーナルからジャーナリング・ファイルシステムへのアップデートを終了しま

す。このようにファイルシステムのチェックの複雑さを徹底的に省くことで復旧時間を削減

します。SGIは、性能と拡張性を補助するためにBツリーを広範囲にわたり利用したものをベ

ースとしたマルチ・スレッド、大容量ファイルおよび大容量ファイルシステムが利用可能な

64bitファイルシステム、拡張属性、可変長ブロックサイズを実装しています。詳細について

は8章を参照してください。

序文

1-9

POSIXリアルタイム拡張1

RedHawk Linuxは、ISO/IEC 9945-1に記述されているPOSIXリアルタイム拡張により定義され

た殆どのインターフェースをサポートしています。以下がサポートされている機能です。

• ユーザー優先度スケジューリング
• プロセス・メモリ・ロック
• メモリ・マップド・ファイル
• 共有メモリ
• メッセージ・キュー
• カウンティング・セマフォ
• リアルタイム・シグナル
• 非同期I/O
• 同期I/O
• タイマー(高分解能バージョンをサポート)

ユーザー優先度スケジューリング1

RedHawk Linuxはユーザー優先度スケジューリングに適応しています－固定優先度POSIXスケ

ジューリングでスケジュールされたプロセスは、実行時の状態に応じてオペレーティング・

システムにより優先度が変更されることはありません。結果として生じるメリットはカーネ

ルのオーバーヘッドの削減とユーザーコントロールの増加です。プロセス・スケジューリン

グ機能は4章に記載されています。

メモリ常駐プロセス1

ページングとスワッピングはアプリケーション・プログラムに予測できないシステム・オー

バーヘッド時間を付加します。パフォーマンス低下の原因となるページングとスワッピング

を排除するため、RedHawk Linuxは確実なプロセスの仮想アドレス空間常駐の割り当てをユー

ザーに許可しています。mlock(2), mlock2(2), munlock(2), mlockall(2), munlockall(2)の
POSIXシステムコールおよびRedHawk Linuxのmlockall_pid(2)とmunlockall_pid(2)システム

コールは物理メモリにあるプロセスの仮想アドレス空間の全てまたは一部をロックおよびア

ンロックすることが可能です。

RedHawkはカーネル・デーモンがメモリ移動できないようにするためにmlock2(2),
mlockall(2), mlockall_pid(2)のシステムコールに渡すことが可能な追加のフラグも提供しま

す。回避することを意図するフラグとカーネルの動作はnoautomigrate(7)で文書化されてい

ます。詳細はmanページを参照して下さい。

RedHawk Linuxのsigbus_pagefaults(7)デバッグ・サポートは、ユーザー・ページをロック

した後でも発生し続ける可能性のある予期せぬページ・フォルトを探すために使用すること

も可能です。

メモリ・マッピングおよびデータ共有1

RedHawk LinuxはIEEE規格1003.1b-1993およびSystem V IPCメカニズムに準拠する共有メモリ

およびメモリ・マッピング機能をサポートします。POSIX機能はメモリ・オブジェクトの利

用を通してプロセスがデータを共有することを許可し、1つまたはそれ以上のプロセスのアド

レス空間にマップ可能な指定された記憶領域を関連したメモリと共有することを許可しま

す。

RedHawk Linux User’s Guide

1-10

メモリ・オブジェクトにはPOSIX共有メモリ・オブジェクト、レギュラーファイル、いくつ

かのデバイス、ファイル・システム・オブジェクト(ターミナル、ネットワーク等)が含まれ

ます。プロセスはオブジェクト上のアドレス空間の一部にマッピングすることにより直接メ

モリ・オブジェクト内のデータにアクセスすることが可能です。これはカーネルとアプリケ

ーション間のデータコピーを排除するため、read(2)およびwrite(2)システムコールを使うよ

りも更に効果的です。

プロセス同期1

RedHawk Linuxは協同プロセスが共有リソースへのアクセスを同期するために利用可能な多様

なツールを提供します。

IEEE規格1003.1b-1993に準拠するカウンティング・セマフォは、マルチ・スレッド化されたプ

ロセス内の複数のスレッドが同一リソースへのアクセスを同期することが可能です。カウン

ティング・セマフォはリソースの使用および割り当てが可能なタイミングを判定する値を持

っています。プロセス間セマフォをサポートするSystem V IPC セマフォも利用可能です。

セマフォに加えてConcurrent Real-Timeが開発した一連のリアルタイム・プロセス同期ツール

は、再スケジューリングの影響を受けるプロセスの制御、連続したプロセスのビジーウェイ

ト相互排他メカニズムによるクリティカル・セクションへのアクセス、プロセス間のクライ

アント－サーバ相互関係の調整の各機能を提供します。これらのツールにより、優先度反転

を抑制するスリーピー・ウェイト相互排他を提供するためのメカニズムを構成することが可

能になります。

同期ツールの説明および利用手順は5章で提供されます。

非同期入出力1

非同期でI/O操作を実行できるということはI/O操作の開始とブロックせずにI/O完了からの復

帰が可能であることを意味します。RedHawk LinuxはIEEE規格1003.1b-1993に準拠したライブ

ラリ・ルーチンのグループによる非同期I/Oに対応しています。これらのインターフェースは

プロセスが非同期での読み書き処理の実行、シングルコールによる複数の非同期I/O操作の開

始、非同期I/O操作の完了待機、待機している非同期I/O操作のキャンセル、非同期ファイルの

同期実行が可能です。この”aio”機能はシステム上のinfoページ(”info libc”)に記載されていま

す。

同期入出力1

RedHawk LinuxはIEEE規格1003.1b-1993に準拠した同期I/O機能もサポートしています。POSIX
同期I/Oはアプリケーションのデータとファイルの整合性を確実にする手段を提供します。同

期出力操作は出力デバイスに書き込まれたデータの記録を確実にします。同期入力操作はデ

バイスから読み取ったデータと現在ディスク上に存在するデータのミラーであることを確実

にします。詳細な情報についてはmanページを参照してください。

リアルタイム・シグナルの挙動1

リアルタイム・シグナルの挙動はIEEE規格1003.1b-1993に含まれている、リアルタイム・シグ

ナル番号、複数の特定シグナル発生のキューイングのサポート、複数の同種類のシグナル発

生を区別するためにシグナルが作成されたときのアプリケーション定義された値の規格のサ

ポート等によって仕様が定められています。

序文

1-11

POSIXシグナル管理機能には、シグナル受信待ち、シグナルおよびアプリケーション定義の

値のキューイングが可能な sigtimedwait(2), sigwaitinfo(2), sigqueue(2)システムコールが含

まれています。詳細な情報についてはmanページを参照してください。

クロックおよびタイマー1

高分解能POSIXクロックおよびタイマーのサポートがRedHawk に含まれています。POSIXク

ロック全体はタイムスタンプやコード・セグメント長の計測のような目的で使用されます。

POSIXタイマーはアプリケーションが高分解能クロック上の相対または絶対時間を使用する

ことで単発または定期的なイベントをスケジュールすることが可能です。アプリケーション

は個々のプロセスで複数のタイマーを作成することが可能です。更には非常に短い時間プロ

セスをスリープ状態にするために利用でき、また、スリープ時間の計測に使用されるクロッ

クを指定できる高分解能スリープのメカニズムを提供します。追加の情報は6章を参照してく

ださい。

メッセージ・キュー1

IEEE規格1003.1b-1993上のPOSIXメッセージ送信機能はRedHawk Linux に含まれており、ファ

イルシステムとして実行されます。POSIXメッセージキュー・ライブラリ・ルーチンはメッ

セージ・キューの作成、オープン、問合せ、破棄、メッセージの送受信、送信メッセージの

優先度設定、メッセージ到達時の非同期通知リクエストが可能です。POSIXメッセージ・キ

ューはSystem V IPCメッセージとは関係なく動作し、System V IPCメッセージも利用できま

す。詳細は3章を参照してください。

RedHawk Linux User’s Guide

1-12

2-1

2
リアルタイム性能

212

本章ではRedHawk Linuxでのリアルタイム性能を実現することに関連したいくつかの問題を明

確にします。本章の主な焦点は、最高のリアルタイム性能を得るためにプロセスおよび割り

込みをシステム内のCPUの一部に割り当てるシールドCPUモデル となります。

リアルタイム性能で重要なことは割り込み応答、プロセス・ディスパッチ・レイテンシー、

デターミニスティックなプログラムの実行を明確にすることです。これらの指標上で様々な

システム動作の影響を明確にし、最適なリアルタイム性能のための手法を提供します。

シールドCPUモデルの概要2

シールドCPUモデルは対称型マルチ・プロセッサ・システムにおいて最高のリアルタイム性

能を得るためのアプローチです。シールドCPUモデルはリアルタイム・アプリケーションの

デターミニスティックな実行、同じく割り込みに対してデターミニスティックな応答を可能

にします。

コード・セグメントの実行に必要な時間が予測可能かつ一定である時、タスクはデターミニ

スティックな実行状態となります。同様に割り込みの応答に必要な時間が予測可能かつ一定

である時、割り込み応答もデターミニスティックとなります。コード・セグメントの実行ま

たは割り込み応答を測定した時間が標準的なケースとは明らかに異なり最悪であった時、そ

のアプリケーション性能はジッター が発生している状態と言う。リソースを共有するための

メモリ・キャッシュやメモリ・コンテンションのようなコンピュータ・アーキテクチャ機能

が原因で、計測した実行時間の中に常にジッターが含まれます。それぞれのリアルタイム・

アプリケーションは容認できるジッターの量を明確にする必要があります。

シールドCPUモデルでは、特定の重要なリアルタイム機能に対してハイグレードなサービス

を保証する方法としてタスクと割り込みをあるCPUに割り当てます。特に高優先度タスク

は、1つまたはそれ以上のシールドCPUに制限し、殆どの割り込みや低優先度タスクはそれ以

外のCPUに制限します。高優先度タスクを動作させる役割を持つCPUが、割り込みに関連し

た予測できない処理やシステムコールを経由してカーネル空間にいる他の低優先度プロセス

の動きから遮断されているこのCPUの状態をシールドCPU と呼びます。

シールドCPU上で実行されるべきタスクの種類の例：

• 割り込み応答時間の保証を要求するタスク
• 最速の割り込み応答時間を要求するタスク
• 高周期で実行しなければならないタスク
• デッドラインを満足するためにデターミニスティックな実行を要求するタスク
• オペレーティング・システムからの割り込みを容認できないタスク

RedHawk Linux User’s Guide

2-2

様々なレベルのCPUシールディングは、高優先度割り込み応答しなければならない、または

デターミニスティックな実行を要求するタスクのために異なる度合いのデターミニズムを提

供します。シールドCPUで可能となるシールディングのレベルを明確にする前にシステムが

外部イベントにどのように応答するのか、コンピューター・システムのいくつかの通常オペ

レーションが応答時間およびデターミニズムにどのような影響を与えているのかを理解する

必要があります。

デターミニズムの概要2

デターミニズム は一定時間内で特定のコード・パス(順に実行される命令セット)を実行する

ためのコンピューター・システムの能力に言及します。ある状態から他へ変化したコード・

パスの実行時間の範囲はシステムでのデターミニズムの度合いを示します。

デターミニズムは、ユーザー・アプリケーションのタイム・クリティカルな部分を要求時間

で実行するだけでなく、カーネル内のシステム・コードを要求時間で実行することも当ては

まります。プロセス・ディスパッチ・レイテンシーのデターミニズムは、例えば、割り込み

のハンドリング、ターゲット・プロセスの起床、コンテキスト・スイッチの実行、ターゲッ

ト・プロセスがカーネルから抜け出すのを許可、のような実行されなければならないコー

ド・パスに依存します。(「プロセス・ディスパッチ・レイテンシー」セクションにて用語プ
ロセス・ディスパッチ・レイテンシー を明記し、マルチ・プロセッサ・システム内の特定

CPUで最高のプロセス・ディスパッチ・レイテンシーを得るためのモデルを紹介します。)

プログラム実行のデターミニズムにおいて最大のインパクトは割り込みの受信です。これは

割り込みがシステム内では常に最高優先度の機能であり、割り込みの受信が予測不可能－プ

ログラム実行中は遅れることなく如何なるポイントでも発生する可能性がある－であるため

です。重要ではない割り込みからのシールディングは、高優先度タスク実行中にデターミニ

ズムの向上に最大のインパクトを得ることになります。

プログラム実行でのデターミニズム向上のそのほかのテクニックについては「デターミニズ

ムを高める手順」セクションに明記されています。

プロセス・ディスパッチ・レイテンシー2

リアルタイム・アプリケーションは実在イベントに応答すること、実在イベントのハンドリ

ングに必要な処理を与えられた期限(デッドライン)内に終了することが出来なければなりま

せん。実在イベントに応答するために必要な計算はデッドラインの前に終了していなければ

ならず、さもなければその結果は不正確であるとみなされます。割り込みへの応答が異常に

長い1つの事例は、デッドラインを超えたことが原因である可能性があります。

用語プロセス・ディスパッチ・レイテンシー は、割り込みによって通知される外部イベント

発生から外部イベント待ちプロセスがユーザー・モードでの最初の命令を実行するまでの時

間経過を意味します。リアルタイム・アプリケーションにとって予想される最悪のプロセ

ス・ディスパッチ・レイテンシーは基準の鍵になります。それは、デッドラインを満足する

ことを保証するリアルタイム・アプリケーション性能を左右する最悪の応答時間であるため

です。

リアルタイム性能

2-3

プロセス・ディスパッチ・レイテンシーは以下のイベント発生のシーケンスに掛かる時間で

構成されます。

1. 割り込みコントローラは割り込みを通知し、CPUへの例外割り込みを作成します。

2. 割り込みルーチンが実行され、割り込みを待っている(ターゲット)プロセスが起こされ

ます。

3. 現在実行中のプロセスは停止され、コンテキスト・スイッチが機能するためターゲッ

ト・プロセスが実行可能となります。

4. ターゲット・プロセスは割り込み待ちでブロックされていたカーネルポイントから抜け

ます。

5. ターゲット・プロセスはユーザー・モードで実行します。

この一連のイベントはプロセス・ディスパッチ・レイテンシーの理想のケースを表してお

り、図2-1に図示されています。上記1～5の番号が図2-1の中に記述されています。

図2-1 標準的なプロセス・ディスパッチ・レイテンシー

プロセス・ディスパッチ・レイテンシーは、アプリケーションが外部イベントに対して応答

可能なスピードを表しているので、イベント駆動型リアルタイム・アプリケーションにとっ

てとても重要な基準となります。殆どのリアルタイム・アプリケーションの開発者が、彼ら

のアプリケーションが特定のタイミング制約を満たす必要があるため、予想される最悪のプ

ロセス・ディスパッチ・レイテンシーに興味を持っています。

プロセス・ディスパッチ・レイテンシーはいくつかのオペレーティング・システムの通常操

作、デバイス・ドライバ、ハードウェアに影響します。以下のセクションではプロセス・デ

ィスパッチ・レイテンシーでのいくつかのジッターの原因を観察します。

RedHawk Linux User’s Guide

2-4

割り込み禁止の効果2

オペレーティング・システムは共有データ構造体を破壊されるのを避けるために共有データ

構造体へのアクセスを保護しなければなりません。割り込みレベルでデータ構造体がアクセ

スされることが可能な時、いつそのデータ構造体がアクセスされようとも割り込みを無効に

する必要があります。これは、同じ共有データ構造体の更新最中にプログラム・レベル・コ

ードに割り込んで共有データ構造体が破壊されることから割り込みコードを保護します。こ

れはカーネルが短時間割り込みを無効にする主要な理由です。

割り込みが無効であるとき、応答しようとしている割り込みは再び割り込みが有効となるま

でアクティブになることが出来ないため、プロセス・ディスパッチ・レイテンシーは影響を

受けます。このケースでは、割り込み待機中タスクのプロセス・ディスパッチ・レイテンシ

ーは割り込みが無効である状態が続く時間だけ延長されます。これは図2-2に図示されていま

す。この図表内では、低優先度プロセスが割り込みを無効にするシステムコールを実行しま

した。割り込みが現在無効であるため、高優先度割り込みが発生した時にアクティブになる

ことは出来ません。低優先度プロセスがクリティカル・セクションを終了した時、割り込み

が有効となり、アクティブな状態となって割り込みサービス・ルーチンがコールされます。

通常の割り込み応答のステップから完了までは普通の方法となります。図2-2に記述された1～
5の番号は2-3ページで説明した通常のプロセス・ディスパッチ・レイテンシーのステップを表

します。

明らかに割り込みが無効となっているオペレーティング・システム内のクリティカル・セク

ションは、良好なプロセス・ディスパッチ・レイテンシーを得るために最小限に抑えれなけ

ればなりません。

図2-2 割り込み無効によるプロセス・ディスパッチ・レイテンシーへの影響

リアルタイム性能

2-5

割り込みの影響2

割り込みの受信は割り込みを無効にしたことと同じようにプロセス・ディスパッチ・レイテ

ンシー影響を及ぼします。ハードウェア割り込みを受信したとき、システムは現在の割り込

みよりも優先度が同等かそれ以下の割り込みをブロックします。単純なケースを図2-3に図示

します。ターゲットの割り込みの前に高優先度割り込みが発生した場合、高優先度割り込み

が発生するまでターゲットの割り込みの遅延を招くことになります。図2-3に記述された1～5
の番号は2-3ページで説明した通常のプロセス・ディスパッチ・レイテンシーのステップを表

します。

図2-3 高優先度割り込みによるプロセス・ディスパッチ・レイテンシーへの影響

割り込みの相対的な優先度はプロセス・ディスパッチ・レイテンシーに影響しません。低優

先度割り込みがアクティブになる時でも、高優先度割り込みに対するプロセス・ディスパッ

チ・レイテンシーへの割り込みの影響は同等です。これは割り込みが常にユーザー・レベ

ル・コードよりも高い優先度で実行されているためです。従って、我々は高優先度割り込み

のための割り込みルーチンを提供するかもしれませんが、その割り込みルーチンは実行中の

ユーザー・レベル・コンテキストを全ての割り込みの実行が完了するまで取得することが出

来ません。プロセス・ディスパッチ・レイテンシーにおけるこの低優先度割り込みの影響は

図2-4に図示されています。これらの処理方法の順序は図2-3での高優先度割り込みのケースと

は異なりますが、プロセス・ディスパッチ・レイテンシーにおける影響は同等です。

RedHawk Linux User’s Guide

2-6

図2-4に記述された1～5の番号は2-3ページで説明した通常のプロセス・ディスパッチ・レイテ

ンシーのステップを表します。

図2-4 低優先度割り込みによるプロセス・ディスパッチ・レイテンシーへの影響

プロセス・ディスパッチ・レイテンシーに対する明確な影響で割り込みの無効化と割り込み

受信とで最大の違いの1つは、割り込みが実行しているアプリケーションに対して非同期かつ

予測不可能な時に発生することです。これは利用可能なシールディングの様々なレベルを理

解することが重要です。

複数の割り込みが特定のCPU上で受信が可能な時、プロセス・ディスパッチ・レイテンシー

への影響は深刻となる可能性があります。これは複数の割り込み処理ルーチンが高優先度割

り込みのプロセス・ディスパッチ・レイテンシーが完了する前に処理されなければならない

割り込みが積み重なることが可能であるためです。図2-5は高優先度割り込みに応答しようと

している間に2つの割り込みがアクティブになるケースを示します。図2-5に記述された1～5の
番号は2-3ページで説明した通常のプロセス・ディスパッチ・レイテンシーのステップを表し

ます。CPUが割り込みを受信した時、CPUは割り込みが可能なCPUからの低優先度の割り込み

を無効にします。もしこの期間に低優先度の2番目の割り込みがアクティブになったとして

も、最初の割り込みがアクティブである限りブロックされます。最初の割り込みサービスが

完了した時、2番目の割り込みはアクティブになりサービスが提供されます。もし2番目の割

り込みが最初の割り込みよりも高優先度であった場合、その割り込みは即座にアクティブに

なります。2番目の割り込み処理が完了した時、最初の割り込みは再びアクティブになりま

す。どちらのケースもユーザー・プロセスは、すべての保留中の割り込みのサービスが完了

するまでは実行が抑制されます。

恐らく、それは割り込みがアクティブであり続け、システムが高優先度割り込みに応答する

ことを決して許可しない異常なケースとなる可能性があります。

リアルタイム性能

2-7

複数の割り込みが特定のCPUに割り付けられる時、割り込みが積み重ねられることが原因で

そのCPUのプロセス・ディスパッチ・レイテンシーは予測しにくくなります。

図2-5 複数割り込みによるプロセス・ディスパッチ・レイテンシーへの影響

プリエンプション禁止の効果2

RedHawk Linuxには割り込みレベルでロックされない共有リソースを保護するクリティカル・

セクションが存在します。このケースでは、このクリティカル・セクション間で割り込みを

ブロックする理由がありません。しかし、このクリティカル・セクション間で発生したプリ

エンプションは、もし新しいプロセスが同じクリティカル･セクションに入ってきた場合に共

有リソースを破壊する原因となる可能性があります。従って、このようなクリティカル・セ

クションのタイプでプロセスが実行している間は、プリエンプションは無効となります。プ

リエンプションのブロックは割り込みの受信が遅延しません。しかし、もしその割り込みが

高優先度プロセスを起こす場合は、プリエンプションが再び有効となるまでそのプロセスに

切り替わる可能性はありません。同一CPUが要求されているとするならば、プロセス・ディ

スパッチ・レイテンシーの実際の影響はまるで割り込みが無効にされたのと同じになりま

す。プロセス・ディスパッチ・レイテンシーにおけるプリエンプション無効の効果は図2-6に
図示されています。

RedHawk Linux User’s Guide

2-8

図2-6に記述された1～5の番号は2-3ページで説明した通常のプロセス・ディスパッチ・レイテ

ンシーのステップを表します。

図2-6 プリエンプション無効によるプロセス・ディスパッチ・レイテンシーへの影響

オープン・ソース・デバイス・ドライバの影響2

デバイス・ドライバはスーパーバイザー・モードで実行するので、Linuxカーネルの一部とな

ります。これは、デバイス・ドライバは割り込みが無効またはプリエンプションが無効の

Linuxの機能をコールすることが自由であることを意味します。デバイス・ドライバも割り込

みを処理しますので、割り込みレベルで過ごす時間を制御します。本章の前セクションで示

したようにデバイス･ドライバの動きは割り込み応答やプロセス・ディスパッチ・レイテンシ

ーに影響する可能性があります。

RedHawk Linuxで有効なデバイス・ドライバは、リアルタイム性能に不利な影響を与えないこ

とが確かであることをテストしています。オープン・ソース・デバイス･ドライバの著者は割

り込みレベルで過ごす時間の最小化や割り込み時間の無効化を働きかける一方、実際には、

様々な気遣いレベルでオープン・ソース・デバイス･ドライバは記述されています。もし付け

加えたオープン・ソース・デバイス･ドライバを有効にした場合、RedHawk Linuxが提供する

プロセス・ディスパッチ・レイテンシーの保証に悪影響を与えるかもしれません。

デバイス・ドライバに関連するリアルタイムの問題の詳細な情報については「デバイス・ド

ライバ」章を参照してください。

リアルタイム性能

2-9

シールディングでリアルタイム性能を向上する方法2

本セクションは、CPUシールディングの特性の違いがユーザー・プロセスの割り込み応答能

力(プロセス・ディスパッチ・レイテンシー)とユーザー・プロセス実行のデターミニズムを

どのように向上するかを検証します。

シールディングを有効にする場合、すべてのシールディングの特性は規定値で有効になりま

す。これはシールドCPU上における最高のデターミニスティックな実行環境を提供します。

各々のシールディング特性のさらに詳細な情報は後述されています。ユーザーは各シールデ

ィング特性が与える影響、特性の一部は通常のシステム機能への副作用を持っているという

ことを十分に理解すべきです。現在サポートされているシールディング特性の3つのカテゴリ

ーは、

• バックグラウンド・プロセスからのシールディングs
• 割り込みからのシールディング
• ローカル割り込みからのシールディング

各々の特性はCPU単位で個別に選択可能です。各々のシールディング特性は後述されていま

す。

バックグラウンド・プロセスからのシールディング2

このシールディング特性はCPUをシステム内の一部のプロセスのために予約することを可能

にします。この特性はCPUの割り込み応答を最速、予測可能であることを望むときにその

CPU上で有効にすべきです。プロセス・ディスパッチ・レイテンシー上の最高の保障は、割

り込みに応答するタスクだけが割り込みを割り付けられたCPU上で実行する時に実現されま

す。

CPUがバックグラウンド・プロセスを実行可能である時、割り込みを割り付けたそのCPU上

の極めてデターミニスティックな応答を要求される高優先度タスクのプロセス・ディスパッ

チ・レイテンシーに影響を与える可能性があります。これはバックグラウンド・プロセスが

割り込みまたはプリエンプションを無効にできるシステムコールを呼ぶ可能性を秘めている

ためです。これらの処理は、本セクションの「割り込み禁止の効果」および「プリエンプシ

ョン禁止の効果」で説明されているようにプロセス・ディスパッチ・レイテンシーに影響を

与えます。

CPUがバックグラウンド・プロセスを実行可能である時、高優先度プロセスの実行中にデタ

ーミニズムへの影響はありません。これはバックグラウンド・プロセスの優先度が高優先度

プロセスよりも低いことが想定されます。注意すべきことは、バックグラウンド・プロセス

はシグナルやserver_wake1(3)インターフェースのような他のカーネルのメカニズムを介して

プロセスを起床するために必要な時間に影響を及ぼす可能性があることです。

システム内の各プロセスまたはスレッドは、CPUアフィニティ・マスクを持っています。そ

のCPUアフィニティ・マスクは、プロセスまたはスレッドをどのCPU上で実行するかを決定

します。CPUアフィニティ・マスクは親プロセスから継承され、mpadvise(3)ライブラリ・ル

ーチンまたはsched_setaffinity(2)システムコールを経由して設定することが可能です。CPU
がプロセスからシールドされている時、CPUはシールドCPUを含むCPUセットに明示的に設定

されたCPUアフィニティを持つプロセスとスレッドのみを実行します。つまり、プロセスの

CPUアフィニティ・マスクがシールドされていないCPUの場合、そのプロセスはシールドさ

れていないCPU上でのみ実行されます。バックグラウンド・プロセスからシールドされた

CPU上でプロセスまたはスレッドを実行するためには、シールドCPUだけを指定したCPUアフ

ィニティ・マスクを持っていなければなりません。

RedHawk Linux User’s Guide

2-10

Linuxによって作成された特定のカーネル・デーモンは、システム内の各CPU上に複製されま

す。プロセスからシールドされているCPUは、これらの「CPU毎」のデーモンをシールドCPU
から移動することはありません。これらのデーモンの影響は、カーネル構成や注意深いアプ

リケーション挙動の制御を通じて避けることが可能です。CPU毎カーネル・デーモンからジ

ッターを避けるための機能や方法は付録Eで説明しています。

割り込みからのシールディング2

このシールディング特性はシステムが受信した割り込みの一部だけを処理するために予約す

ることを可能にします。最も高速、最も予測可能なプロセス・ディスパッチ・レイテンシー

であることが望ましい時、またはアプリケーションの実行時間にデターミニズムがあること

が望ましい時、このシールディング特性を有効にするべきです。

何故なら割り込みはCPU上で常に最高優先度の機能であり、割り込みのハンドリングはプロ

セス・ディスパッチ・レイテンシーと高優先度タスクのコード・パスの実行に必要な時間の

両方に影響を与える可能性があります。これは「割り込みの影響」セクションで説明されて

います。

各デバイスの割り込みはIRQと結合されます。これらIRQはどのCPUで割り込みを受信するか

を決定するCPUアフィニティを持っています。割り込みが特定CPUへ送られない時、割り込

みコントローラはその時に発生した割り込みをハンドリングするためにIRQアフィニティ・マ

スクのCPUセットからCPUを選びます。IRQアフィニティは「実際の」アフィニティ設定に反

映されるようにshield(1)コマンドによって、または/proc/irq/<irq-no>/smp_affinity_listを通

して修正されます。

もしすべてのCPU上ですべての割り込みを無効にすることが好ましい場合、推奨する手順

は、1つのCPUを除いてそれ以外のすべてのCPUを割り込みからシールドし、シールドされて

いないCPU上でlocal_irq_disable(2)をコールすることに留意してください。詳細はmanペー

ジを参照してください。

一部の機能は割り込みがシールドCPUへ送信される原因となる可能性があります。プロセッ

サ間割り込みは、他のCPUにCPU毎の特定タスクをハンドルすることを強制する方法として

利用されます。プロセッサ間割り込みはシールドCPUに目立つジッターを引き起こす可能性

があります。完全な議論は付録Fを参照してください。

ローカル割り込みからのシールディング2

ローカル割り込みは各CPUと一体となった専用タイマーのための特別な割り込みです。

RedHawk Linuxでは、このタイマーはカーネル内やユーザー・レベルにおいて様々なタイムア

ウトのメカニズムで利用されています。この機能は7章の中で説明されいます。初期設定では

この割り込みはシステム内のすべてのCPU上で有効となっています。

この割り込みは10ミリ秒毎に発せられ、このローカル割り込みはシステム内で最も頻繁に実

行される割り込みルーチンの1つとなります。従って、このローカル割り込みはリアルタイ

ム・アプリケーションにとってジッターの大きな原因となります。

CPUがローカル・タイマーからシールドされたとき、ローカル割り込みは事実上無効とな

り、そのCPUのローカル・タイマーによって提供される機能はもはや実行されません。しか

しながら、ローカル・タイマーはローカル・タイマーがシールドされていない他のCPU上で

実行され続けます。これらの機能のいくつかは、他の手段によって提供されている間は失わ

れることになります。

リアルタイム性能

2-11

特定CPU上でローカル割り込みが無効である時に失われる機能の1つは、CPU実行時間計算の

ための低分解能メカニズムです。これはCPU上で実行される各プロセスに使われるCPU時間

がどの程度なのかを測定するメカニズムです。いつローカル割り込みが発生しようとも、最

後のクロック・ティック分の時間は割り込まれたプロセスに加算されます。もし高分解能プ

ロセス・アカウンティングが構成されていた場合、CPU時間はローカル割り込みが有効であ

るか否かは関係なく性格に計算されます。高分解能プロセス・アカウンティングは7章の「シ

ステム・クロックおよびタイマー」に明記されています。

CPUがローカル・タイマーからシールドされた時、ローカル割り込みはシールドCPUに割り

付けられたプロセスによってPOSIXタイマーとnanosleepの機能のために使われ続けます。従

って、もしローカル・タイマー割り込みを完全に取り除くことが重要である場合、POSIXタ

イマーまたはnanosleepの機能を利用しているアプリケーションをそのようなCPUに割り付け

るべきではありません。もしプロセスがシールドCPU上で実行することが許されない場合、

そのタイマーはプロセスの実行が許されたCPUへ移動されます。

一部の機能のためにローカル・タイマーや利用可能な手段を無効にする影響についての全て

の解説は7章の「システム・クロックおよびタイマー」を参照してください。

CPUシールディングのインターフェース2

本セクションは、シールドCPUを構成するために利用可能なコマンド・レベルおよびプログ

ラミング・インターフェースの両方について記述します。シールドCPUを構成するためによ

くある事例も記述しています。

shieldコマンド2

shield(1)コマンドは選択したCPUに対して指定したシールド特性を設定します。shieldコマン

ドはシールドCPUとしてCPUを特徴付けるために使用されます。シールドCPUは、アプリケー

ション・コードの実行にかかる時間のデターミニズムを向上させるために一部のシステム機

能から保護します。

shieldコマンドの実行によって作用する論理CPUのリストは、CPU番号または範囲のリストを

コンマ区切りで渡します。

shieldコマンドを実行するための書式：

shield [OPTIONS]

オプションについては表2-1で説明します。

以下に記載されたオプションの中で、CPULISTは論理CPUをコンマ区切りの値または値の範

囲を表しています。例えば、CPUのリスト“0-4,7” は、CPU番号0,1,2,3,4,7 を指定していま

す。

RedHawk Linux User’s Guide

2-12

表2-1 shield(1)コマンドのオプション

オプション 概要
--irq=CPULIST, -i CPULIST 割り込みからCPULIST のすべてのCPUをシール

ドします。指定されたCPU上で実行される唯一

の割り込みは、他のCPU上で実行されることを

防ぐためにCPUアフィニティを指定された割り

込みとなります。

--loc=CPULIST, -l CPULIST 指定されたCPUのリストはローカル・タイマー

からシールドされます。ローカル・タイマーは

時間ベースのサービスをCPUに提供します。ロ

ーカル・タイマーを無効にすることは、ユーザ

ー/システムの時間計算やラウンドロビンのよう

な一部のシステムの機能が無効となる可能性が

あります。全ての解説は7章を参照してくださ

い。

--proc=CPULIST, -p CPULIST 指定されたCPUのリストは無関係なプロセスか

らシールドされます。非シールドCPU上で実効

することを許可されたアフィニティ・マスクを

所有するプロセスは、非シールドCPU上で実行

されるだけとなります。シールドCPU以外のい

ずれかのCPU上での実行が不可能となるプロセ

スは、シールドCPU上での実行が許可されま

す。

--all=CPULIST, -a CPULIST 指定されたCPUのリストは利用可能な全てのシ

ールド特性を所有することになります。各々の

シールド特性の意味を理解するために上記の

個々のシールドオプションの説明を参照してく

ださい。

--procfs, -P 様々なシールド・マスクへのアクセスに古いproc
fsインターフェースを使用することを強制しま

す。

--help, -h 利用可能なオプションと使用方法を説明しま

す。

--version, -V コマンドの現在のバージョンを印字します。

--reset, -r 全CPUに対してシールド特性をリセットしま

す。シールドされたCPUはない状態となりま

す。

--current, -c アクティブな全てのCPUの現在の設定を表示し

ます。

NOTE

shieldコマンドはユーザーのCPUアフィニティ設定を上書きしませ

ん。CPUアフィニティ設定がプロセスまたはIRQが他のCPUで実行す

るのを妨げる場合、シールドされたCPUで実行し続けます。これはエ

ラーとは見なされません。

リアルタイム性能

2-13

例えば、プロセスがCPU 1～5で実行するように割付けました。そのCPUアフィニティ設定は

次のようになります：

1-5 user 1-5 actual 1-5 effective - bash

その後、CPU 3がシールドされます。プロセスのCPUアフィニティは変更され、CPU 3はその

actualとeffectiveアフィニティから除外されますが当初の意図はユーザー・アフィニティ設定

に記憶されます。

1-5 user 1-2,4-5 actual 1-2,4-5 effective - bash

今、CPU 1～5がシールドされていると仮定します。プロセスには実行可能なCPUアフィニテ

ィに他のCPUがありません。プロセスはシールドされたCPUで実行し続けます。

1-5 user 1-5 actual 1-5 effective - bash

シールドされたCPUから移動するには、プロセスのCPUアフィニティを変更する必要があり

ます。

NOTE

システムの全てのCPUがシールドされた場合、同じ効果が見られま

す。全てのCPUをシールドすると全てのシールドが無効となって次の

警告が出力されます：

WARNING: All processors are inactive or shielded
from interrupts! This is the same as having no cpus
shielded from interrupts.

WARNING: All processors are inactive or shielded
form processes! This is the same as having no cpus
shielded from processes.

管理割り込みはshieldコマンドで移動されない割り込みクラスの実例です。最近の殆どの

NIC, RAID, NVMEデバイスはCPU毎の割り込みを生成します。CPU毎の割り込みは管理割り

込みとして分類されます。そのCPUアフィニティは1つのCPUのみ設定されるため、shieldコ
マンドでそれらの割り込みは移動されません。

プロセスまたはIRQが他のCPUで実行するのをCPUアフィニティ設定が妨げる場合、CPUアフ

ィニティ設定を変更する必要があります。IRQおよびプロセスのCPUアフィニティ設定の変更

の詳細については2-16ページの「CPUへの割り込み割り当て」と2-17ページの「CPUへのプロ

セス割り当て」をそれぞれ参照して下さい。

shieldコマンド例2

以下のコマンドは、最初に全てのシールド特性をリセットし、次にCPUの0, 1, 2を割り込みか

らシールド、そしてCPUの1をローカル・タイマーからシールド、CPUの2を無関係なプロセ

スからシールド、最後に変更後の新しい全ての設定を表示します。

shield -r -i 0-2 -l 1 -p 2 -c

RedHawk Linux User’s Guide

2-14

以下のコマンドは、CPUの1, 2, 3を割り込み、ローカル・タイマー、無関係なプロセスからシ

ールドします。CPUの0は全ての割り込みやシールドCPUのターゲットではないプロセスをサ

ービスする「多目的」CPUとして残します。全てのシールド特性がCPUのリストに設定され

ます。

shield --all=1-3

終了ステータス2

通常、終了ステータスは0です。誤記または範囲外の数字などの構文エラーがある場合、

shieldコマンドはエラー(終了ステータス1)のみを返します。ユーザーはオプションなしの

shieldコマンドを実行してシステムの状態を確認する必要があります。

shieldコマンド拡張機能2

以下に記載された拡張機能は、経験のあるユーザーが使用されることを推奨します。

CPULIST 内で指定されるCPUは‘+’または‘-’の記号を前に置く事が可能で、そのケースのリス

トのCPUは既にシールドされたCPUのリストに追加(‘+’)または除外(‘-’)します。

オプションは複数回使用することが可能です。例えば、“shield -i 0 -c -i +1 -c”は、現在の設定

にCPU 0を割り込みからシールドし、現在の設定を表示した後に再度CPU 1を割り込みからシ

ールドするCPUのリストを追加することを表します。

cpuctlおよびcpustatシステムコール2

cpuctl関数は一部のCPUセットにシールドもしくはダウン操作のいづれかを実行します。詳

細についてはcpuctl(2)のmanページを参照して下さい。

#include <sys/cpucntl.h>
#include <cpuset.h>

int cpucntl(int cmd, unsigned int sz, void *mask);

gcc [options ...] file -lccur_rt ...

詳細についてはcpuctl(3)のmanページを参照して下さい。

cpustat関数はシステムのCPUに関する基本的な問合せを行います。詳細については

cpustat(2)のmanページを参照して下さい。

#include <sys/cpustat.h>
#include <cpuset.h>

int cpustat(int numcmd, unsigned int int_sz, int * num);
int cpustat(int maskcmd, unsigned int set_sz,cpuset_t * mask);
int cpustat(int tblcmd, unsigned int tbl_sz,

 struct cpustat_cpuid *tbl);

gcc [options ...] file -lccur_rt ...

リアルタイム性能

2-15

CPUシールディングの/procインターフェース2

CPUシールドのカーネル・インターフェースは以下のファイルを使用する/procファイルシス

テムを経由します。

/proc/shield/procs プロセスのシールド：ビットマスクを使用
/proc/shield/procs-list プロセスのシールド：CPUリストを使用
/proc/shield/irqs IRQのシールド：ビットマスクを使用
/proc/shield/irqs-list IRQのシールド：CPUリストを使用
/proc/shield/ltmrs ローカル・タイマーのシールド：ビットマスクを使用
/proc/shield/ltmrs-list ローカル・タイマーのシールド：CPUリストを使用

全てのユーザーはこれらのファイルを読むことが可能ですが、ルートまたはCAP_SYS_NICE
ケーパビリティを持つユーザーだけが書き換えることが可能です。

上記の接尾辞-listが付いた/procファイルはシールドされたCPUのリストを返します。ファイ

ルへ書き込む時、CPUのリストが期待されます。例：

echo 10-11,8 > /proc/shield/procs
cat /proc/shield/procs
8,10-11

上記の接尾辞-listなしのファイルは16進数値をASCIIで返します。この値はシールドされた

CPUのビットマスクです。設定されたビットはシールドされたCPUと一致します。設定され

た各ビットのポジションは、そのビットによりシールドされている論理CPUの番号です。

例：

001 – 0ビット目が設定されているのでCPU #0がシールド
002 - 1ビット目が設定されているのでCPU #1がシールド
004 - 2ビット目が設定されているのでCPU #2がシールド
006 - 1ビット目と2ビット目が設定されているのでCPU #1と#2がシールド

ファイルへ書き込む時、16進数値のASCIIが期待されます。この値は上記と同一フォームのシ

ールドCPUのビットマスクです。その値は間もなく新しいシールドCPUセットとなります。

追加の情報についてはshield(5)のmanページを参照してください。

systemdシールド・サービス2

systemd shieldサービスは起動時に選択されたCPUに対してシールド属性を設定するために

使用することが可能です。本サービスはシステムがシールドされた状態を再起動後も維持す

ることが必要である場合に便利です。変更は構成ファイル/etc/sysconfig/shield内で行われま

す。本ファイル自身がドキュメントとなっています。

次の例では、CPU 10～12と15がプロセスからシールドされ、CPU 17～19は全てからシールド

されます。サービスが再起動されるので次のリブートの代わりに直ぐに実行されます。

/etc/sysconfig/shieldファイルを編集してこれらの変数を設定して下さい：

SHIELD_PROCESSES=10-12,15
SHIELD_ALL=17-19

RedHawk Linux User’s Guide

2-16

シールド・サービスの再開で変更を実施して下さい：

systemctl restart shield

最後のコマンドの状態を見るには：

systemctl status shield

CPUのシールド状況を確認するにはオプションなしでshieldコマンドを実行して下さい：

shield

CPUへの割り込み割り当て2

IRQのCPUアフィニティはオペレーティング・システムにより設定されます。IRQのCPUアフ

ィニティを変更する2つの起こり得る理由は：

1. IRQが1つ以上のシールドされたCPUにより処理されることが要求される。

2. IRQが1つ以上シールドされたCPUから移動されることが要求される。

CPU毎の割り込み(管理割り込みとも呼ぶ)はシールドされたCPUから移動される必要がある可

能性のある割り込みのクラスです。管理割り込みのCPUアフィニティはこれらの手法のいず

れかで変更される可能性がありますが、後述の「管理割り込みに関するカーネル起動オプシ

ョ」項はその割り込みクラスに関する具体的なソリューションであることに注意して下さ

い。

systemdシールド・サービス2-16

systemd shieldサービスは起動時に選択されたCPUに対してシールド属性を設定するために

使用することが可能です。これは特定のCPUにIRQを割り当てることも可能です。変更は構成

ファイル/etc/sysconfig/shieldで行われます。本ファイル自身がドキュメントとなっていま

す。

例えば、次の行をshieldサービス構成ファイルに追加することでenp4s0f0割り込みをCPU 0
～4に割り当て、割り込み番号55, 60, 61をCPU 0と2に割り当てることが可能です。最初の割り

当てには「=」の前に「+」記号はありませんが、残り全てはあることに注意して下さい。

IRQ_ASSIGN=”0-4:enp4s0f0;“
IRQ_ASSIGN+=”0,2:55; 0,2:60; 0,2:61;“

コマンドでシールド・サービスを再開して下さい：

systemctl restart shield

変更がシステムに対して行われますが再起動は必要ではありません。コマンドで再開の状況

を確認して下さい：

systemctl status shield

/poc/<irq-no>/smp_affinity_listを読むことで変更を確認することが可能です。

この変更は再起動後も維持することに注意して下さい。

リアルタイム性能

2-17

/procインターフェース2-17

特定のIRQのCPUアフィニティは対応する/poc/<irq-no>/smp_affinity_listファイルに書き込む

ことで設定することが可能です。本ファイルはCPUのリストを必要とします。

次の例では、IRQ番号11はCPU 0～10, 13で実行するように設定されます：

echo “0-10,13” > /proc/irq/11/smp_affinity_list

この変更は再起動後は維持しないことに注意して下さい。

管理割り込みに関するカーネル起動オプション2

CPU毎割り込みは管理割り込みとして分類されます。最近の殆どのNIC, RAID, NVMEデバイ

スはCPU毎の割り込みを生成します。管理割込みはリアルタイム性能に影響を及ぼす可能性

がありますので管理割込みの移動が必要となる場合があります。

各IRQの個々のディレクトリ下にあるmanagedという名前の/proc/irqファイルは、IRQが移動

するのが可能かどうかを示していることに注意して下さい。managed=0の場合、IRQは割り

当てられたCPUを移動することは可能ですが、managed=1の場合は出来ません。全てのIRQ
は移動するのがシステムのデフォルトです。

カーネル起動パラメータmsi_affinity_maskを設定すると、起動時に全てのMSI(X)管理割込みに

対してアフィニティ・マスクを設定します。

msi_affinity_mask=<cpulist>

cpulistはCPUのリストを設定する必要があります。このリストに範囲またはカンマ区切り

のリストを含めることが可能です。cpulistはCPU 0を含める必要があることに注意して下

さい。

カーネル起動オプションはblscfg(1)コマンド(Ubuntu)システムではccur-grub2(1))を介して追

加することが可能です。例：

blscfg –kopt-add msi_affinity_mask=0-5,7 <kernel-index>
blscfg –kopt-add irq_affinity =0-5,7 <kernel-index>

新しく追加されオプションである-Cオプションで確認することが可能です：

blscfg –C <kernel-index>

変更を有効にするには再起動が必要となることに注意して下さい。

CPUへのプロセス割り当て2

本セクションは利用可能なCPUセットへのプロセスまたはスレッドの割り付け方法を記述し

ます。プロセスが実行を許可されたCPUセットはCPUアフィニティとして知られています。

規定値では、プロセスまたはスレッドはシステム内のどのCPU上でも実行が可能です。プロ

セスまたはスレッド毎にビットマスクまたはCPUアフィニティを持っており、スケジュール

可能なCPUを決定します。プロセスまたはスレッドは、fork(2)またはclone(2)からCPUアフィ

ニティを継承しますが、その後アフィニティが変わる可能性はあります。

mpadvise(3)の呼び出しでMPA_PRC_SETBIASコマンドを指定、または run(1)コマンドの -b
bias オプションを指定するすることで、1つまたは複数のプロセスまたはスレッドのCPUアフ

ィニティを設定することが可能です。

RedHawk Linux User’s Guide

2-18

sched_setaffinity(2)もCPUアフィニティを設定するために使用することが可能です。/procイ
ンターフェースもまた使用することが可能です。

CPUアフィニティを設定するために以下の条件を満足する必要があります。

• 有効な呼び出し元プロセスのユーザーIDは、CPUアフィニティを設定しようとしている

登録されているプロセスのユーザーIDと一致していなければならない、もしくは、

• 呼び出し元プロセスはCAP_SYS_NICEケーパビリティを持っている、またはルートでな

ければなりません

CPUアフィニティは init(8)プロセスに割り当てることが可能です。すべての一般的なプロセ

スはinitの子プロセスです。結果、一般的なプロセスのほとんどはinitのCPUアフィニティ、

もしくはinitのCPUアフィニティの一部のCPUと同じCPUアフィニティになるはずです。(前
述の)特権を持ったプロセスだけはCPUをそれらのCPUアフィニティに加えることができま

す。initへの制限されたCPUアフィニティの割り当ては、すべての一般的なプロセスをinitと
同じCPUサブセットへ制限します。その例外は、適切なケーパビリティを明示的に修正した

CPUアフィニティを持つプロセスです。もしinitのCPUアフィニティを変更したいと考えるの

であれば、「initへのCPUアフィニティ割り当て」セクション以下の説明を参照してくださ

い。

runコマンド2-18

runコマンドは4章の「runコマンド」およびrun(1)のmanページに記載されています。runコマ

ンドはCPUのリストにプロセスを割り付けるために使用することが可能です。簡単な例を次

に示します：

次の例では、プロセス15のCPUアフィニティをCPU5で実行するように設定します：

run -b 5 -p 15
cat /proc/15/affinity-list
5 user 5 actual 5 effective - bash

/procインターフェース2-18

特定のプロセスのCPUアフィニティは対応する/poc/<proc-id>/affinity-listファイルへの書き込

みによって設定することが可能です。本ファイルはCPUのリストを必要とします。

次の例では、プロセスID 55で識別されるプロセスをCPU 3で実行するように設定します。そ

のuser, actual, effectiveはその後にCPU 3に設定されます：

echo 3 > /proc/55/affinity-list
cat /proc/55/affinity-list
3 user 3 actual 3 effective - bash

この変更は再起動後は維持しないことに注意して下さい。

sched_setaffinity()2

sched_setaffinity()はIDがpidのスレッドのCPUアフィニティ・マスクをmask で指定された

値に設定します。pid がゼロの場合、呼び出したスレッドが使用されます。引数

cpusetsize はmask で指し示されたデータのバイト単位の長さです。

リアルタイム性能

2-19

sched_getaffinity()はIDがpid のスレッドのアフィニティ・マスクをmask で指し示された

構造体に書き込みます。引数cpusetsize はmask の大きさをバイト単位で指定します。

概要

#define _GNU_SOURCE
#include <sched.h>

int sched_setaffinity (pid_t pid, size_t cpusetsize,

const cpu_set_t *mask);

int sched_getaffinity (pid_t pid, size_t cpusetsize,

cpu_set_t *mask);

詳細についてはsched_setaffinity(2)およびsched_getaffinity(2)に関するmanページを参照し

て下さい。

mpadvise()2

mpadviseは、様々なマルチプロセッサーの機能を実行します。CPUはcpuset_tオブジェク

トへのポインターを指定することで識別し、それは1つ以上のCPUの組み合わせを指定しま

す。ここでは制御コマンドのみを示します。CPUの設定に関する詳細な情報については

mpadvise(3)およびcpuset(3)のmanページを参照してください。

概要

#include <mpadvise.h>

int mpadvise (int cmd, int which, int who, cpuset_t *setp)

gcc [options] file -lccur_rt ...

制御コマンド

以下のコマンドは、プロセス、スレッド、プロセス・グループもしくはユーザーによるCPU
利用の制御を提供します。

MPA_PRC_GETBIAS 指定されたプロセス内の全スレッドのCPUアフィニティ

(MPA_PID)、もしくは指定されたスレッドに対する正確な独自バイ

アス(MPA_TID)に対応するCPUセットを返します。

MPA_PRC_SETBIAS 指定されたプロセス内の全スレッドのCPUアフィニティ

(MPA_PID)、もしくは指定されたスレッドの独自CPUアフィニティ

(MPA_TID)を指定されたcpusetへ設定します。プロセスのCPUアフ

ィニティを変更するため、現在のユーザーが CAP_SYS_NICEケー

パビリティを持っていない限り、有効なユーザーIDは(exec(2)か
ら)登録されたプロセスのユーザーIDと一致しなければなりませ

ん。

MPA_PRC_GETRUN 指定されたスレッドが現在実行中(または実行待機中)のCPUと一致

する正確なCPUを含むCPUセットを返します(MPA_TID)。
MPA_PIDが指定されるとき、非スレッドプ・ログラムのCPU1つお

よびマルチ・スレッド・プログラムの全スレッドが使用するCPU一

式を返します。この値が返される頃には、CPU割り当てが既に変わ

っている可能性があることに注意してください。

RedHawk Linux User’s Guide

2-20

initへのCPUアフィニティ割り当て2

一般的な全てのプロセスは init(8)の子プロセスです。既定値で initはシステム内の全ての

CPUを含むマスクを所有し、それらのCPUアフィニティの修正が可能な特殊なケーパビリテ

ィを持つ唯一の選ばれたプロセスです。もしそれがCPUのサブセットに制限された既定の全

プロセスによって要求された場合、CPUアフィニティは特権を持つユーザーによって initプ
ロセスへ割り付けることが可能です。この目的を達成するため、run(1)コマンドはシステム初

期化プロセスの中で初期段階で呼び出すことが可能です。

例えば、initとその全ての子プロセスをCPU 1,2,3へ割り付けるために以下のコマンドをシステ

ム初期化(inittab(5)を参照)の初期段階で呼ばれる /etc/rc.sysinitスクリプトの最後に追加す

ることが可能です。initプロセスはこのコマンドの中では常に1であるプロセスIDを用いて指

定しています。

/usr/bin/run -b 1-3 -p 1

同じ効果がshield(1)コマンドを利用することにより得ることが可能です。このコマンドを利

用する利点は、どのランレベルであってもコマンド・ラインから実行できることです。

shieldコマンドはシールドされたCPU上で既に動作しているプロセスの移動を処理します。更

にshieldコマンドを使い異なるシールドのレベルを指定することも可能です。本コマンドの

詳細な情報については、「shieldコマンド」セクションまたはshield(1)のmanページを参照し

てください。

例えば、動作中のプロセスからCPU 0をシールドするためには、以下のコマンドを実行しま

す。

shield -p 0

CPUをシールドした後、常にシールドCPUで指定したプロセスを動作させるためにrunコマン

ドを利用します。

例えば、予めプロセスからシールドしたCPU 0上で mycommandを実行するためには、以下

のコマンドを実行します。

run -b 0 ./mycommand

シールドCPUの設定例2

以下の例は、RCIMのエッジトリガー割り込みに対する最高の割り込み応答を保証するための

シールドCPUの使い方を示します。つまり、この目的はRCIM上で発生したエッジトリガー割

り込み時にユーザー・レベル・プロセスが起き上がるために必要な時間の最適化、およびプ

ロセスが起き上がるときのためにデターミニスティックな実行環境を提供することです。こ

の場合、シールドCPUはRCIMの割り込み処理とその割り込みに応答するプログラムだけを設

定しなければなりません。

最初のステップは、shield(1)コマンドを通してシールド・プロセッサから割り込みを切り離

す指示をします。最高の割り込み応答を得るためにローカル・タイマー割り込みは無効に

し、バックグラウンド・プロセスは除外します。

CPU 1がそれらの結果を達成するためのshieldコマンドは、

shield -a 1

現段階でシールドされたCPU １上の割り込みは無し、実行を許可されたプロセスもありませ

ん。CPUのシールド状況は以下の方法を利用することで確認することが可能です。

リアルタイム性能

2-21

shield(1)コマンド経由：

$ shield -c
CPUID irqs ltmrs procs

0 no no no

1 yes yes yes

2 no no no

3 no no no

cpu(1)コマンド経由：

$ cpu
cpu chip core ht ht-sibling state shielding

--- ---- ---- -- ---------- ----- ---------

0 0 - 0 2 up none

1 3 - 0 3 up proc irq ltmr

2 0 - 1 0 up none

3 3 - 1 1 up none

または /procファイルシステム経由：

cat /proc/shield/irqs-list
1

全ての割り込みがCPU 1上での実行から排除されます。この例では、目的はシールドされた

CPU上で特定の割り込みに応答することであり、CPU 1にRCIMの割り込みの割り付けとCPU
1上で割り込みに応答するプログラムの実行を許可する必要があります。

最初のステップはRCIMの割り込みが割り付けられたIRQを判断することです。この割り込み

とIRQ間の割り当てはマザーボード上のデバイスおよび特定のPCIスロットのPCIデバイスによ

って変わることはありません。もしPCIボードが新しいスロットへ移動した場合はそのIRQの

割り付けは変わるかもしれません。所有するデバイスのIRQを見つけるために以下のコマンド

を実行します。

$ cat /proc/interrupts
CPU0 CPU1 CPU2 CPU3

 0: 665386907 0 0 0 IO-APIC-edge timer
 4: 2720 0 0 0 IO-APIC-edge serial
 8: 1 0 0 0 IO-APIC-edge rtc
 9: 0 0 0 0 IO-APIC-level acpi
 14: 9649783 1 2 3 IO-APIC-edge ide0
 15: 31 0 0 0 IO-APIC-edge ide1
 16: 384130515 0 0 0 IO-APIC-level eth0
 17: 0 0 0 0 IO-APIC-level rcim,Intel,...
 18: 11152391 0 0 0 IO-APIC-level aic7xxx,...
 19: 0 0 0 0 IO-APIC-level uhci_hcd
 23: 0 0 0 0 IO-APIC-level uhci_hcd
NMI: 102723410 116948412 0 0 Non-maskable interrupts
LOC: 665262103 665259524 665264914 665262848 Local interrupts
RES: 36855410 86489991 94417799 80848546 Rescheduling interrupts
CAL: 2072 2074 2186 2119 function call interrupts
TLB: 32804 28195 21833 37493 TLB shootdowns
TRM: 0 0 0 0 Thermal event interrupts
SPU: 0 0 0 0 Spurious interrupts
ERR: 0 0 0 0 Error interrupts
MIS: 0 0 0 0 APIC errata fixups

RedHawk Linux User’s Guide

2-22

上記リストの中でRCIMはIRQ 17に割り当てられています。そのIRQ番号が分かったら、RCIM
への割り込みをIRQ 17の/procファイルを介してシールド・プロセッサに割り付けることが可

能であることに注意して下さい。以下のコマンドはCPU 1にIRQ 17のCPUアフィニティ・マス

クを設定します。

echo 1 > /proc/irq/17/smp_affinity_list

IRQのための“smp_affinity_list”ファイルは、ルート・ユーザーだけがIRQの割り込みの割り

付けが変更可能なパーミッション付きでデフォルトでインストールされていることに注意し

てください。IRQ 17のアフィニティ用smp_affinity_debug_list /procファイルは変更が有効

になったことを確認するために読み取ることも可能です：

cat /proc/irq/17/smp_affinity_debug_list
1 user 1 actual 1 effective

“user”で返された値は、IRQのCPUアフィニティ用にユーザーにより指定されたCPUのリスト

であることに注意してください。“actual” で返された値は、存在しないCPUやシールドされた

CPUがリストから取り除かれた後のCPUのリストとなります。もしユーザーがシールドCPUと

非シールドCPUの両方を含むアフィニティ・リストを設定した場合、シールドCPUはIRQのア

フィニティ・リストから取り除かれるだけとなることに注意してください。これは、もし割

り込みを処理できるIRQのアフィニティ・リストの中に非シールドCPUがない場合、割り込み

からシールドされたCPUは割り込みを処理するだけだからです。この例では、CPU 1は割り込

みからシールドされていますが、このアフィニティ・リストはCPU 1のみが割り込みの処理を

許可されていることを示すのでCPU 1はIRQ 17を処理します。

smp_affinity_debug /procファイルは、CPUアフィニティをビットマスク形式で示すことに

注意して下さい：

cat /proc/irq/17/smp_affinity_debug
002 user 002 actual 002 effective

次のステップは、RCIMのエッジトリガー割り込みに応答するプログラムがシールドされたプ

ロセッサ上での実行を確認することです。システム内の各プロセスはCPUアフィニティが割

り付けられています。バックグラウンド・プロセスからシールドされたCPUにおいて、シー

ルドされたCPUだけを指定するCPUアフィニティ・リストを持つプロセスだけがシールドさ

れたプロセッサ上で実行することが許可されます。プロセスのアフィニティ・リストの中に

何らかの非シールドCPUが存在する場合、そのプロセスは非シールドCPU上でのみ実行され

ることに注意してください。

以下のコマンドは、ユーザープログラム“edge-handler”をリアルタイム優先度で実行し、CPU 1
上で動作することを強制します：

run -s fifo -P 50 -b 1 edge-handler

プログラムは「mpadvise()」セクションで説明されているmpadvise(3)ライブラリ・ルーチン

の呼び出しによって自身のCPUアフィニティを設定できることに注意してください。

run(1)コマンドはプログラムのアフィニティを確認するために使用することが可能です：

run -i -n edge-handler
Pid Tid Bias Actual Policy Pri Nice Name

9326 9326 0x2 0x2 fifo 50 0 edge-handler

“Bias”が返す値は、ユーザーによって指定されたプロセスのCPUアフィニティのビット・マス

クであることに注意してください。“actual”が返す値は、存在しないCPUやシールドされた

CPUがマスクから取り除かれた後に生じたアフィニティとなります。もしユーザーがシール

ドCPU/非シールドCPUの両方を含むアフィニティ・マスクを設定した場合、シールドCPUは

プロセスのアフィニティ・マスクから取り除かれただけとなることに注意してください。

リアルタイム性能

2-23

これは、もしプログラムを実行できるプロセスのアフィニティ・マスクの中に非シールド

CPUが存在しなければ、バックグラウンド・プロセスからシールドされたCPUはプロセスを

実行するだけだからです。この例では、CPU 1はバックグラウンド・プロセスからシールドさ

れますが、このアフィニティ・マスクはCPU 1だけがプログラムの実行を許可されたことを示

すため、CPU 1は“edge-handler”プログラムを実行します。

デターミニズムを高める手順2

以下のセクションでは、以下のテクニックを使ってパフォーマンスの向上が可能な様々な方

法を説明します。

• メモリ内のプロセスのページをロック
• 適切な静的優先度割り付けの利用
• 割り込みレベルから非クリティカルな処理を排除
• 迅速なプロセスの起床
• キャッシュ・アクセスの制御
• 物理メモリの予約
• NUMAシステムにおいてプログラムからローカル・メモリへのバインド
• ハイパースレッドの慎重利用
• 低メモリ状態の回避

メモリのページをロック2

オーバーヘッドに結びつくページングやスワッピングはmlock(2), mlock2(2), munlock(2),
mlockall(2), munlockall(2), mlockall_pid(2), munlockall_pid(2)を使うことにより回避する

ことが可能です。これらのシステムコールは物理メモリ内のプロセスの仮想アドレスの全て

または一部をロックおよびアンロックすることを許可します。これらのインターフェースは

IEEE規格1003.1b-1993に準拠しています。

これらの各コールにより、コール時点で常駐していないページはメモリに断層が生じてロッ

クされます。これらのシステムコールを利用するには、CAP_IPC_LOCKケーパビリティを所

有している必要があります。mlockall_pid(2)については、呼び出し元プロセスのユーザーID
がターゲット・プロセスのユーザーIDと一致しない場合、CAP_SYS_NICEケーパビリティも

必要となる可能性があります。ケーパビリティに関する追加の情報は13章と

pam_capability(8)のmanページを参照してください。

メモリをロックするシステム・サービス・コールはプロセスが自分自身のアドレス空間をロ

ックまたはアンロックする方法として提供するのに対し、様々なカーネル・メモリ管理サー

ビスはアプリケーションのアプリ性能を高めるために自動的にアプリケーションのメモリを

方々に移動します。これらの自動的な移動を無効にするため、RedHawkはmlock(2),
mlockall(2), mlockall_pid(2)システムコールで使用される追加のフラグを提供します。カー

ネルのメモリ移動やこの動作を回避するフラグはnoautomigrate(7)のmanページに記載され

ています。

更にrunコマンドは--lockオプションを使って他のプロセスのアドレス空間をロックまたはア

ンロックする機能を提供します。

様々なページをロックするシステムコールを利用するための手順は、対応するmanページの中

で全て説明されています。--lockオプションはrun(1)のmanページの中で説明されています。

RedHawk Linux User’s Guide

2-24

プログラム優先度の設定2

RedHawk Linuxカーネルは静的優先度スケジューリングを提供します — つまり、特定の

POSIXスケジューリング・ポリシーでスケジュールされたプロセスは、実行時の動作に応じ

てオペレーティング・システムにより優先度が変更されることはありません。

POSIXリアルタイム・スケジューリング・ポリシーの1つによりスケジューリングされたプロ

セスは常に静的優先度の状態です(リアルタイム・スケジューリング・ポリシーとは

SCHED_RRおよびSCHED_FIFO：これらは4章で説明されています)。プロセスのスケジュー

リング・ポリシーを変更するには、sched_setscheduler(2)とsched_setparam(2)のシステ

ムコールを利用することが可能です。プロセスの優先度をより高い(より有利な)値に変更す

るためにこれらのシステムコールを利用するには、CAP_SYS_NICEケーパビリティを持って

いなければならないことに注意してください(これらのルーチンを利用するためのケーパビリ

ティ条件に関する全ての情報は、対応するmanページを参照してください)。

特定CPU上で実行中の最高優先度のプロセスは、最高のプロセス・ディスパッチ・レイテン

シーとなります。もし、あるプロセスがCPU上で実行している他のプロセスよりも低い優先

度が割り付けられている場合、このプロセス・ディスパッチ・レイテンシーは高い優先度の

プロセスが実行に費やす時間に影響されます。結果的に優れたプロセス・ディスパッチ・レ

イテンシーを必要とする1つ以上のもプロセスが存在する場合、いくつかのCPUにそれらのプ

ロセスを分散することを推奨します。特定CPUへのプロセスの割り付け方法については、

「CPUへのプロセス割り当て」セクションを参照してください。

プロセスのスケジューリングは4章ですべて説明されています。プロセスの優先度を変更する

ためのsched_setschedulerおよびsched_setparamシステムコールの利用手順についても説

明されています。

遅延割り込み処理の優先度設定2

Linuxは割り込みレベルで別に行われた処理を遅延するために割り込みルーチンで使用される

いくつかのメカニズムをサポートしています。デバイス割り込みを処理するためのその処理

は2つの役割に分けます。最初の役割は割り込みレベルで実行し、割り込み完了処理の最もク

リティカルな側面のみ処理します。2つ目の役割はプログラム・レベルで実行するために遅延

します。割り込みレベルからの非クリティカル処理を排除することにより、本セクション

「割り込みの影響」の最初に説明されているようにシステムはより良い割り込み応答時間を

得ることが可能となります。

割り込みルーチンの2番目の役割はカーネル・デーモンに処理され、デバイス・ドライバで使

用される割り込みを遅延する技法次第となります。システム管理者に許可された遅延した割

り込み処理を扱うカーネル・デーモンの優先度を設定するためのカーネル・チューニング・

パラメータが存在します。リアルタイム・タスクが遅延した割り込みを処理しているCPU上

で実行する時、遅延した割り込みカーネル・デーモンの優先度を設定することが可能とな

り、高優先度のユーザー・プロセスは遅延した割り込みカーネル・デーモンよりも更に有利

な優先度を所有します。これはこのリアルタイム・プロセスのために追加のデターミニステ

ィックな応答時間を可能にします。

割り込み処理の遅延、カーネル・デーモン、カーネル・チューニング・パラメータに関する

詳細な情報については、「デバイス・ドライバ」章を参照してください。

別プロセスの起床2

マルチプロセス・アプリケーションでは、多くの場合に特定のタスクを実行するためにプロ

セスを起こす必要があります。システムの応答性の1つの基準は、1つのプロセスが別のプロ

セスを起こすことができる速度です。他のタスクへの切り替えを実行するために使用できる

最速の方法は、postwait(2)システムコールを使用することです。

リアルタイム性能

2-25

レガシー・コードとの互換性のためにserver_block(2)とserver_wake1(2)の機能がRedHawk
Linuxにて提供されます。

これらの機能を使用する方法は5章の中で説明されています。

キャッシュ・スラッシングの回避2

アプリケーションが異なるCPU上で複数の実行スレッド間で共有されるアドレス空間の一部

を所有する場合、あるスレッドに頻繁に使用される変数(例えば i)と、それとは別のスレッド

に頻繁に使用される変数(例えば j)が、同じキャッシュ・ラインに配置されているメモリ内に

互いに接近して配置されないことを確保することが重要です。もし i と j が同じキャッシ

ュ・ラインに配置されている場合、それぞれのスレッドにより i と j への参照が行われる時

にそのキャッシュ・ラインは2つのCPU間であわただしく動くことになり、キャッシュ性能が

低下します。

逆に1つのスレッドが頻繁に複数の変数(例えば i, j, k)を使う場合、同じキャッシュ・ライン

に i, j, k を配置しようとすることがむしろ望ましいのです。同じキャッシュ・ラインに i, j, k
が配置されている場合、i, j, k のいづれかを参照する時に3つの変数全てが余計な性能低下な

しに利用可能となります。

配列を使用するアプリケーションは更なる制約があり、配列のサイズをシステムのキャッシ

ュ・サイズと比較する方法を理解することが重要となります。例えば、配列が1.2Mbyteのメ

モリを必要とするのにシステムがたった1Mbyteのキャッシュを提供する場合、キャッシュ内

で完全に実行される配列を持つことの利点を得ること無く、配列操作は他のどの変数もキャ

ッシュの利用から完全に除外します。この場合の唯一の解決策は、より大きなキャッシュを

持つシステムを購入するか、より小さな配列を使用できるように配列を使用するアルゴリズ

ムを再設計することです。

今日の殆どのシステム(x86アーキテクチャ)はNUMAシステムであることに注意して下さい。

NUMAシステム上のCPUはグループに編成され、各グループはいくつかの(通常、非キャッシ

ュ)ローカル・メモリが利用可能となります。データがキャッシュ内に無くメモリから読む必

要がある時、メモリ操作が高速かつ最もデターミニスティックな状態となるように同一

NUMAノード・グループのCPU上で大量のデータを共有するどの実行スレッドも実行される

ことを確保することが重要となります。

もう一つのNUMAシステムの重要な特徴は、各NUMAノードは通常ローカルIOバスを持って

いるということです。一般的にシステム・デバイス(例えば、ディスク、CD/DVDドライブ、

ネットワーク・カード他)は特定のNUMAノードに対してはローカルとなり、他のNUMAノー

ドのCPU上で実行しているスレッドに対してはリモートとなります。任意のシステムにとっ

ては、どのNUMAノードをどのIOデバイスと連動させるかを決定するために役に立ちます。

ディスクを集中的に使用するスレッドは、ディスク・コントローラに属するNUMAノード内

のCPU上において最高パフォーマンスで実行されることとなります。ネットワークを集中的

に使用するスレッドは、ネットワーク・コントローラに属するNUMAノード内のCPU上にお

いて最高パフォーマンスで実行されることとなります。

システムを購入または構成する時、どのNUMAノードがハードウェア上のどのデバイスに属

しているかを理解することは重要となります。お手持ちのアプリケーションのリソースの使

用形態を理解することもまた重要となります。例えば、ディスクとネットワークを集中的に

使用するアプリケーションを所有している場合、パフォーマンスを最適化するためにネット

ワーク・コントローラとディスク・コントローラの両方に属するNUMAノードを持つハード

ウェアを選択します。

RedHawk Linux User’s Guide

2-26

物理メモリの予約2

物理メモリは/etc/grub2.cfgファイル内のコマンド・ライン引数の利用することにより予約す

ることが可能です。

このタイプの割り当ては、ローカル・デバイスで必要となるDMAバッファまたは PCI-to-
VMEアダプターのようなものを介してiHawkのメモリにマッピングされた外部ホストのデバ

イスに利用することが可能です。それは動的な仮想メモリ・アロケーションが提供するペー

ジ・アロケーションのランダム性を持たないデータ空間を提供するために使用することが可

能です。これは大きなデータ配列のキャッシュ衝突を一定以上にすることでアプリケーショ

ンの性能を向上させ、連続したプロセスの実行による実行時間の不一致を減らします。

grub.cfgファイル内でのメモリのカスタム・マッピングによって、RAMの予約された区域を

獲得することが可能です。System Vのshmop(2)の機能は物理メモリのこの区域へのアクセス

に使用することが可能です。shmconfig(1), shmbind(2), shmop(2)の各機能はこのメモリ区

域の作成およびアタッチに利用することが可能です。

利用可能な物理RAMの量は以下に示すように/proc/iomemの内容を調べることにより見るこ

とが可能です。

$ cat /proc/iomem

00000000-0009ffff : System RAM

00000000-00000000 : Crash kernel
000a0000-000bffff : Video RAM area
000c0000-000cefff : Video ROM
000d0800-000d3fff : Adapter ROM
000f0000-000fffff : System ROM
00100000-7fe8abff : System RAM

00100000-004f58a5 : Kernel code
004f58a6-00698577 : Kernel data

7fe8ac00-7fe8cbff : ACPI Non-volatile Storage
7fe8cc00-7fe8ebff : ACPI Tables
7fe8ec00-7fffffff : reserved
 :

(このサンプルからI/O情報は削除しています)

“System RAM”と記述された箇所は、割り付け可能な物理メモリを表しています。

物理RAMを予約する方法を説明する/etc/grub2.cfgの例を16進数で以下に示します(10進数で

の例は後に続きます)。grub.cfgに設定されたコマンドは、メモリ・マッピングを作成するた

めに起動時に処理されます。

“memmap=exactmap”エントリは正確なBIOSマップが使用されることを指定します。

残りのエントリは領域を定義するために指定します。そのコマンドの書式は、

memmap=size<op>address

<op>の場所にシステムRAMは‘@’、予約は‘$’、ACPIは‘#’を指定します。RedHawk 7以降にお

いて‘$’は予約語となりますので、'\'(バックスラッシュまたは円記号)を追加して「\$」として

下さい。

以下の例では、丁度1Gのアドレスより下に32MBを予約します。

default=0
timeout=10

リアルタイム性能

2-27

splashimage=(hd0,0)/grub/ccur.xpm.gz
title RedHawk Linux 6.3.3 (Trace=Yes, Debug=No)

root (hd0,0)
kernel /vmlinuz-3.5.7-RedHawk-6.3.3-trace ro root=/dev/sda2 vmalloc=256M \
memmap=exactmap \
memmap=0xa0000@0x0 \
memmap=0x3df00000@0x100000 \
memmap=0x2000000\$0x3e000000 \
memmap=0x3fe8ac00@0x40000000 \
memmap=0x2000#0x7fe8cc00

grubコマンド行は2048byteに制限されることに注意する必要があります。grubコマンド行への
パラメータ追加はこの制限を越えてはいけません。

上記のエントリはmemexact(1)ユーティリティを使って取得し、その後/etc/grub2.cfgコマン
ド行へコピーされます。memexactはコマンド・オプションを処理し、/proc/iomemの内容も
しくはコマンド行で指定されたファイルに準じて適切なメモリ予約コマンドを実行します。

/usr/bin/memexact -x -MS=32M,U=1G
memmap=exactmap memmap=0xa0000@0 memmap=0x3df00000@0x100000 memmap=0xa0000@0
memmap=0x3df00000@0x100000 memmap=0x2000000\$0x3e000000
memmap=0x3fe8ac00@0x40000000 memmap=0x2000#0x7fe8cc00

オプション：

-x 16進数での出力を指定します
-M 複数のエントリを陳列します
-S 予約サイズを指定します
-U 予約の上限を指定します

この領域の予約は、/proc/iomem内の“System RAM”で確認できるメモリの領域、かつカーネ

ルのアドレスを含んでいない限り任意に選ぶことが可能です。“Adapter ROM”、“System
ROM”、“ACP”、“reserved”の各領域は、これらのコマンドを使って再マップしてはいけませ

ん。memexact(1)は/proc/iomemおよびコマンド行オプションで与えられた内容に準じて予

約するために適切な領域を選びます。

CAUTION

これらのエントリの中で発生した既に予約された領域(例. System
RAM等)の重複のようなエラーは、カーネルの起動に致命的なエラー

の原因となる可能性があります。

以下の例は10進数のアドレスを使用します。これは上述の16進数の例と同一の機能で同一の

結果を生じます。

/usr/bin/memexact -MS=32M,U=1G
memmap=exactmap memmap=640K@0 memmap=991M@1M memmap=32M\$992M
memmap=1047083K@1G memmap=8K#2095667K

以下は、記10進数のエントリが追加されたgrub.cfgファイルに相当します。

default=0
timeout=10
splashimage=(hd0,0)/grub/ccur.xpm.gz
title RedHawk Linux 6.3.3 (Trace=Yes, Debug=No)

root (hd0,0)
kernel /vmlinuz-3.5.7-RedHawk-6.3.3-trace ro root=/dev/sda2 vmalloc=256M \

RedHawk Linux User’s Guide

2-28

memmap=exactmap \
memmap=640K@0 \
memmap=991M@1M \
memmap=32M\$992M \
memmap=1047083K@1G \
memmap=8K#2095667K

以下は上述の例が予約を実行する前後のメモリの比較です。「予約後」の“reserved”と記述さ

れた0x3e000000の領域は新たに予約された32MBの領域です。

予約前の /proc/iomem 予約後の /proc/iomem
00000000-0009ffff : System RAM

00000000-00000000 : Crash kernel

000a0000-000bffff : Video RAM area

000c0000-000cefff : Video ROM

000d0800-000d3fff : Adapter ROM

000f0000-000fffff : System ROM

00100000-7fe8abff : System RAM

00100000-004f58a5 : Kernel code

004f58a6-00698577 : Kernel data

7fe8ac00-7fe8cbff : ACPI Non-volatile Storage

7fe8cc00-7fe8ebff : ACPI Tables

7fe8ec00-7fffffff : reserved

 .

 .

00000000-0009ffff : System RAM

00000000-00000000 : Crash kernel

000a0000-000bffff : Video RAM area

000c0000-000cefff : Video ROM

000d0800-000d3fff : Adapter ROM

000f0000-000fffff : System ROM

00100000-3dffffff : System RAM

00100000-004f58a5 : Kernel code

004f58a6-00698577 : Kernel data

3e000000-3fffffff : reserved

40000000-7fe8abff : System RAM

7fe8cc00-7fe8ebff : ACPI Tables

 .

 .

(このサンプルからI/O情報は削除しています)

次の例は、x86_64システム上の4GBを超える2つのシステム・メモリ領域の間でメモリ領域を

予約するためにgrub.cfgの中に設定するコマンドを説明します。予約前の/proc/iomemの出

力を以下に示します。

x86_64システムにおいて“mm”は“memmap”の別名で“ex”は“exactmap”の別名であることに注意

してください。これらの短い別名は予約エリアを設定するのに必要な文字数を減らすために

使用する必要があります。

mm=ex \
mm=0x9fc00@0x0 \
mm=0x400@0x9fc00 \
mm=0x20000$0xe0000 \
mm=0xcfef0000@0x100000 \
mm=0x10000#0xcfff0000 \
mm=0x840000\$0xff7c0000 \
mm=512M@0x100000000 \
mm=512M$4608M \
mm=1G@5G

リアルタイム性能

2-29

以下は上述の例が予約を実行する前後のメモリの比較です。「予約後」の“reserved”と記述さ

れた0x0000000120000000の領域は新たに予約された領域です。

予約前の/proc/iomem 予約後の/proc/iomem
0000000000000000-000000000009fbff : System RAM

000000000009fc00-000000000009ffff : reserved

00000000000a0000-00000000000bffff : Video RAM area

00000000000c0000-00000000000c7fff : Video ROM

00000000000c8000-00000000000cbfff : Adapter ROM

00000000000f0000-00000000000fffff : System ROM

0000000000100000-00000000d7feffff : System RAM

0000000000100000-00000000005c9521 : Kernel code

00000000005c9522-0000000000954137 : Kernel data

00000000d7ff0000-00000000d7ffefff : ACPI Tables

00000000d7fff000-00000000d7ffffff : ACPI Non-volatile Storage

00000000ff7c0000-00000000ffffffff : reserved

0000000100000000-000000017fffffff : System RAM

 .

 .

 .

0000000000000000-000000000009fbff : System RAM

000000000009fc00-000000000009ffff : System RAM

00000000000a0000-00000000000bffff : Video RAM area

00000000000c0000-00000000000c7fff : Video ROM

00000000000c8000-00000000000cbfff : Adapter ROM

00000000000f0000-00000000000fffff : System ROM

0000000000100000-00000000cffeffff : System RAM

0000000000100000-00000000005c9521 : Kernel code

00000000005c9522-0000000000954137 : Kernel data

00000000cfff0000-00000000cfffffff : ACPI Tables

00000000ff7c0000-00000000ffffffff : reserved

0000000100000000-000000011fffffff : System RAM

0000000120000000-000000013fffffff : reserved

0000000140000000-000000017fffffff : System RAM

 .

 .

(このサンプルからI/O情報は削除しています)

shmconfig(1)またはshmbind(2)は予約済み物理メモリにパーティションを作成するために使

用されます。System Vの共有メモリ操作shmop(2)はアクセス領域を増やすアプリケーション

で使用することが可能です。

以下の例は物理アドレス0x3e000000にアクセス制限なしおよび6602のキーを伴った32MBの
System Vメモリ・パーティションを作成します。

/usr/bin/shmconfig -s 0x2000000 -p 0x3e000000 -m 0777 6602

このコマンドは共有メモリ・パーティションの作成を自動化するために/etc/rc.localへ設定し

ても構いません。この例では符号化された6602のキーを使うと同時に、キーとして

/dev/MyDeviceのようなパスを使用して、ftok(3)の機能を使ってアタッチするために使うキー

を得ることをアプリケーションに許可します。

以下のコードの断片は動的に共有メモリ・パーティションを作成するために使用することも

可能です。

.
.
paddr = 0x3e000000 ;
shmkey = ftok(pathname) ;
shmid = shmget (shmkey, sizeof (<shared_region>) ,

SHM_R | SHM_W | IPC_CREAT) ;
shmstat = shmbind (shmid , paddr) ;
pstart = shmat (shmid , NULL , SHM_RND) ;
.
.

RedHawk Linux User’s Guide

2-30

システム上の共有メモリ・セグメントは ipcs(1) (-m オプション)を使って、もしくは

/proc/sysvipc/shmファイルを通して見ることが出来ます。

cat /proc/sysvipc/shm
key shmid perms size cpid lpid nattch uid gid cuid cgid

atime dtime ctime physaddr
6602 0 777 33554432 4349 0 0 0 0 0 0

0 0 1153750799 3e000000

ipcs -m
------ Shared Memory Segments --------

key shmid owner perms bytes nattch status
0x000019ca 0 root 777 33554432 0

これらの機能やユーティリティの利用に関する詳細な情報については、manページまたは3章
を参照してください。

NUMAノードへのバインディング2

Non-Uniform Memory Access (NUMA)のシステム上では、ほかのシステムよりも一部のメモリ

領域へのアクセスに時間が掛かります。NUMAシステム上のメモリはノードに分けられ、ノ

ードはメモリ領域とNUMAノードのメモリ領域と同じ物理バス上に存在する全てのCPUで定

義されます。もしこのタイプのシステム上で実行中のプログラムがNUMA対応でない場合、

十分に実行することが出来ません。

デフォルトで、ページは(プログラムが実行された)ローカルCPUに存在するノードから割り

付けられますが、タスクまたはタスク内の仮想領域は最良のデターミニズムと制御のために

特定のノードからのページ割り付けを指定することが可能です。NUMAに関する情報は10章
を参照してください。

4-WayシステムのI/Oスループット2

NUMAをサポートするクアッド対称型マルチ・プロセッサ・システムにおいて、各プロセッ

サはプロセッサに直結するユニークなメモリ・バンクを持っています。システム内の全ての

メモリはプロセッサ相互接続(例：Intel QPI/UPIおよびAMD HyperTransport™)を介してどの

CPUからもアクセスすることが可能ですが、プロセッサに直結したメモリはそのプロセッサ

上で動作している実行スレッドに最速のアクセス時間を提供します。このレイアウトを図2-7
に図示します。

リアルタイム性能

2-31

図2-7 NUMA I/Oスループット・レイアウト

NUMAシステムでのI/Oデバイスへのアクセスも同様に完全な対象型ではありません。I/O Hub
とPCI Tunnelは、システム内の特定ノードに直結しています。図2-7の中でI/O Hub はNode 0に
接続し、PCI Tunnel はNode 1に接続しています。試験においてプログラム化されたI/Oの時間

は、プログラム化したI/Oを実行しているプログラムがデバイスが存在するI/Oバスへ接続した

ノード上で実行している時、最速かつよりデターミニスティックであることを示しました。

I/O性能に対するこの影響は、ほかのプログラムがI/Oまたは非ローカル・メモリ操作を実行中

であるため、プロセッサ相互接続バスにより競合するときに特に目立ちます。

これは、アプリケーションがデターミニスティックな高速プログラム化I/Oを要求する場合、

そのようなI/Oを実行しているそのプログラムは、デバイスが存在するI/Oバスに最も近いプロ

セッサ上で実行せざるを得ないことを意味します。

I/Oブリッジに結合するノードはシステム構成図を見ることにより、もしくは試験することに

より明らかにすることが可能です。

ハイパースレッディングの理解2

ハイパースレッディングは、最新のIntelプロセッサの機能です。これは1つの物理プロセッサ

でアプリケーション・ソフトウェアの複数スレッドの同時実行を可能にします。これはプロ

セッサの実行リソース一式を共有すると同時に各プロセッサ上に2つの構造形態を持つことに

よって実現します。この構造形態はプログラムまたはスレッドの流れを追跡し、実行リソー

スは(add, multiply, load等の)作業をするプロセッサ上のユニットになります。

RedHawk Linux User’s Guide

2-32

ハイパースレッド付き物理CPUの2つの各々の構造形態は、”論理”CPUとして考えることが可

能です。“Sibling CPU”という言葉は、同一物理CPU上に存在する1対の論理CPUとは別のCPU
を指します。

スレッドがスケジューリングされた時、オペレーティング・システムは1つの物理CPU上の2
つの論理CPUをあたかも別個のプロセッサのように扱います。ps(1)もしくはshield(1)のよう

なコマンドは各論理CPUを識別します。これはマルチプロセッサ対応ソフトウェアが倍の数

の論理CPU上で修正せずに実行することを可能にします。ハイパースレッド技術は2個目の物

理プロセッサを追加することにより得られる性能レベルの度合いを供与しない一方、いくつ

かのベンチマーク・テストは並列アプリケーションが30%ほどの性能増加を体験できることを

示しています。リアルタイム・アプリケーションにとってハイパースレッディングを利用す

る最善の操作方法案は「推奨されるCPU構成」セクションを参照してください。

2つの論理CPUを持つ1つの物理CPUは実行リソースを効果的に利用できるため、ハイパース

レッディングによる性能増加が発生します。非ハイパースレッドCPU上の標準的なプログラ

ムの実行中において、チップ上の実行リソースは多くの場合入力待ちで遊んでいます。2つの

論理CPUが実行リソース一式を共有しているため、2番目の論理CPU上で実行しているスレッ

ドは1つのスレッドだけが実行中で遊んでいる他のリソースを使うことが出来ます。例えば、

1つの論理CPUが終了するためにメモリからフェッチを待って停止している間、そのシブリン

グは命令ストリームを処理し続けることが可能です。プロセッサとメモリの速度が全く等し

くないため、プロセッサはメモリからのデータ転送を待つことに大部分の時間を費やす可能

性があります。従って、特定の並列アプリケーションのためのハイパースレッディングは著

しい性能向上を提供します。他の並列処理の例は、他の加算とロード処理を実行中の浮動小

数点演算を実行する1つの論理プロセッサです。チップ上の異なるプロセッサ実行ユニットを

利用するため、これらの演算は並列に実行されます。

ハイパースレッディングはマルチ・スレッドの作業負荷に対して通常高速実行を提供する一

方、リアルタイム・アプリケーションにとって問題となる可能性があります。これはスレッ

ド実行のデターミニズムに対する影響によるものです。ハイパースレッドCPUは別スレッド

と一体となっているプロセッサの実行ユニットを共有するため、ハイパースレッドCPU上で

スレッドを実行したときに実行ユニット自身が他のリソースレベルで競合します。ハイパー

スレッド上の高優先度のプロセスが命令の実行を使用としたときに実行ユニットは常に利用

可能ではないため、ハイパースレッド上のコード・セグメントの実行に必要な時間は非ハイ

パースレッドCPU上と同様に予測できません。

並列リアルタイム・アプリケーションの設計者は、アプリケーションにとってハイパースレ

ッディングが意味があるのかどうかを判定しなければなりません。タスクをハイパースレッ

ドCPU上で並列実行することが、連続的に実行することと比較してアプリケーションの利益

となるでしょうか？もしそうなのであれば、開発者はハイパースレッド上で実行することに

より重要な高優先度スレッドの実行速度にどれくらいのジッターをもたらすのかを判断する

ために測定することが可能です。

容認できるジッターのレベルはアプリケーションに大いに依存します。もしハイパースレッデ

ィングが原因で容認できないジッター量をリアルタイム・アプリケーションにもたらす場合、

影響したタスクはcpu(1)コマンドによりシブリングCPUをダウン状態(アイドル状態)にした

シールドCPU上で実行されなければなりません。CPUをダウン状態にしたシステムの例は本章

で後述します。特定のプロセッサ間割り込みは、ダウン状態(詳細はcpu(1)のmanページを参照

してください)のCPU上で処理され続けることに注意しなければなりません。もし必要であれ

ば、ハイパースレッディングはシステム全体で無効にすることが可能です。詳細は「システム

構成」セクションを参照してください。

ハイパースレッディング技術はシステムの各プロセッサ内で並列処理を提供することにより

マルチプロセッシングを補いますが、デュアルもしくはマルチプロセッサに置き換わるもの

ではありません。

リアルタイム性能

2-33

システムに利用可能な2つの論理CPUがあっても、同じ量の実行リソースを共有したままで

す。従って、専用の実行リソース一式を所有するもう1つの物理プロセッサの性能の利点は、

より大きな性能レベルを提供することです。これはデターミニスティックな実行環境を獲得

するためにシールドCPUを利用するアプリケーションにとっては特に有効となります。

上述したように各論理CPUは完全な構造状態一式を維持します。この(シブリングCPUによっ

て共有されていない)構造状態は汎用レジスタ、制御レジスタ、高度プログラマブル割り込み

コントローラ(APIC)レジスタ、いくつかのマシン・ステータス・レジスタ(MSR)で構成されま

す。論理プロセッサはキャッシュ、実行ユニット、分岐予測、制御ロジック、バスのような

物理プロセッサ上の殆どのリソースを共有します。各論理プロセッサはそれぞれの割り込み

コントローラもしくはAPICを持っています。ハイパースレッディングが有効であるか無効で

あるかは関係なく、特定の論理CPUに送信する割り込みはその論理CPUだけで処理されま

す。

システム構成2-33

以下の項目はハイパースレッドの可用性がシステム全体に影響を及ぼします。

• ハイパースレッディングをサポートするIntelシステム・アーキテクチャ。

• カーネル構成GUI上の「Symmetric multi-processing support」にある利用可能なSMPカーネ

ル・チューニング機能を通してマルチ処理サポートを有効にする構成にする必要がありま

す。マルチ処理とハイパースレッディングはすべてのRedHawk x86_64定義済みカーネルで

はデフォルトで有効化されています。

• ハイパースレッディングを利用するためにBIOSで有効にする必要があります。必要に応じ

てBIOSの設定に関するハードウェアの資料を参照してください。

ハイパースレッディングは、シブリングCPUをダウン状態にするためのcpu(1)コマンドを使

ってCPU毎に無効にすることが可能です。詳細はcpu(1)のmanページを参照してください。

ハイパースレッディングを有効である場合、top(1)やrun(1)のようなコマンドは、以前に存在

したハイパースレッディングをサポートしていないRedHawk Linux Release 1.3より前のバージ

ョンが動作しているシステムのCPU数の2倍レポートすることに注意してください。システム

全体でハイパースレッディングが無効になっているとき、論理CPUの数は物理CPUの数と等

しくなります。

推奨されるCPU構成2

ハイパースレッディング技術は並列アプリケーションに性能向上の可能性を提供します。し

かし、CPUリソースが1つの物理CPUを論理CPU間で共有されている様式であるため、様々な

アプリケーションの混合はパフォーマンスの結果が異なることとなります。これはアプリケ

ーションにデターミニスティックな実行時間を必要とするリアルタイム要件がある時に特に

当てはまります。従って、最適な性能を判断するために様々なCPU構成でアプリケーション

の性能テストをすることがとても重要になります。例えば、もし1組のシブリングCPU上で並

列に実行可能な2つのタスクが存在する場合、両方のシブリングCPUを使って並列にそれらの

タスクを実行するために必要な時間に対してシブリングCPUの1つをダウン状態にしてそれら

のタスクを連続で実行するために必要な時間を必ず比較してください。ハイパースレッディ

ングによって提供されるユニークな並列処理の優位性をそれら2つのタスクが得られるかどう

かを判断できるでしょう。

RedHawk Linux User’s Guide

2-34

以下は、リアルタイム・アプリケーションのためにハイパースレッドCPUを含むSMPシステ

ムを構成する方法を提案します。これらのサンプルには、様々な性能特性を持つアプリケー

ションにとって最高に作用するかもしれない構成に関するヒントが含まれています。

標準的なシールドCPUモデル2

このモデルは、プログラム実行においてデターミニズムを非常に厳しく要求するアプリケー

ションに利用できるでしょう。シールドCPUは、これらの種類のタスクに最もデターミニス

ティックな環境を提供します(シールドCPUに関する詳細な情報については「シールディング

でリアルタイム性能を向上する方法」セクションを参照してください)。シールドCPUのデタ

ーミニズムを最大限にするために物理CPU上のハイパースレッディングは無効にします。こ

れはcpu(1)コマンドを使ってシールドCPUのシブリング論理CPUをダウン状態にすることで

完了します。

標準的なシールドCPUモデルでは、非シールドCPUはハイパースレッディングは有効の状態

です。一般的にハイパースレッディングはより多くのCPUリソースを利用されることを許可

するため、これらのCPUは非クリティカルな作業負荷に使用されます。

2つの物理CPU(4つの論理CPU(を持つシステム上の標準的なシールドCPUモデルを図2-8に図

示します。この例の中では、CPU 3はダウン状態となりCPU 2は割り込み、プロセス、ハイパ

ースレッディングからシールドされています。高優先度割り込みとその割り込みに応答する

プログラムは、割り込みに対して最高のデターミニスティックな応答をするためCPU 2に割り

付けます。

図2-8 標準的なシールドCPUモデル

この構成を設定するコマンドは、

shield -a 2
cpu -d 3

割込みの分離を使ったシールド2

このモデルは標準的なシールドCPUモデルに非常に似ています。しかし、このケースではす

べての論理CPUは使用されており、1つもダウン状態ではありません。標準的なシールドCPU
モデルのように論理CPUの1つの集合はシールドされています。しかし、シールドCPUのシブ

リングをダウン状態にすることよりむしろ、それらのCPUをシールドしてデターミニスティ

ックな割り込み応答を要求する高優先度割り込みを処理するために専念させます。これはプ

ロセスと割り込みからシブリングCPUをシールドし、更にそのシブリングCPUへ特定の割り

込みのCPUアフィニティを設定することにより完了します。

リアルタイム性能

2-35

割り込みを分離したシールディングを図2-9に図示します。

Figure 2-9 割り込みを分離したシールディング

このアプローチの利点は、(CPU 3上で動作する)割り込みルーチンとシブリングCPU上の高優

先度タスク(CPU 2上で動作する割り込み待ちプログラム)の実行との間で僅かながらの並列処

理を提供することです。割り込みルーチンがCPU 3上で実行している唯一のコードあるため、

この割り込みルーチンは通常L1キャッシュに完全に保持され、そのコードはキャッシュの中

に留まって、割り込みルーチンに対し最適な実行時間を提供します。その割り込みルーチン

はシブリングCPU上の割り込み待ちタスクを起こすためにプロセッサ間割り込みを送信する

必要があるため、小さな代償を払うことにはなります。この余分なオーバーヘッドは2μ秒未

満です。

割り込み分離によるシールディングの利用によるもう一つの潜在的効果は、デバイスのI/Oス

ループットを向上させることです。デバイスの割り込み処理にCPUが専念しているため、こ

の割り込みはI/O操作が完了したときに常に可能な限り迅速に完了します。これは割り込みル

ーチンが即座に次のI/O操作の開始を可能にし、より良いI/Oスループットを提供します。

ハイパースレッドのシールド2

この構成は標準的なシールドCPUモデルとは別のバリエーションです。このケースでは、一

つのシブリングCPUがもう一方のシブリングCPUが通常のタスクの実行を許可されている状

態でシールドされています。シールドCPUはもう一方のシブリングCPU上の動作状況によっ

てデターミニズムに影響を与えます。また一方で、この優位性はアプリケーションがより多

くの物理CPUのCPUパワーを利用することが可能であることです。ハイパースレッドのシー

ルディング構成を図2-10に図示します。

RedHawk Linux User’s Guide

2-36

図2-10 ハイパースレッドのシールディング

このサンプルでは、CPU 3はシールドされ、高優先度の割り込みとその割り込みに応答するプ

ログラムだけの実行を許可しています。CPU 2はシールドされていないために通常の利用が可

能、つまり特定のタスク一式を実行するために構成されています。プリエンプションや割り

込みブロックが無効の時、CPU 3上で実行中の高優先度割り込みやタスクには影響がないた

め、CPU 2上で動作するタスクは直接割り込み応答時間へ影響を与えることはありません。し

かし、チップのリソースレベルではCPU 3上での実行のデターミニズムには影響を与える競合

が存在します。その影響の度合いはアプリケーションにとても依存します。

浮動小数点 / 整数の共有2

この構成はアプリケーションが主に浮動小数点演算を実行するいくつかのプログラムおよび

整数算術演算を実行するいくつかのプログラムを持っているときに利用することが可能で

す。ハイパースレッドCPUの両方のシブリングは特定のタスクを実行するために使用されま

す。浮動小数点を集約したプログラムを1つのシブリングCPUに割り付け、主に整数計算を実

行するプログラムをもう一方のシブリングCPUに割り付けます。この構成の優位点は浮動少

数点演算と整数演算は異なるチップのリソースを利用することです。これはチップレベルで

の利用が可能な並列処理であるため、ハイパースレッド型並列処理を十分に活用することが

可能となります。コンテキスト・スイッチ間で浮動小数点レジスタのSave/Restoreがないた

め、整数演算だけを実行するCPU上のアプリケーションはコンテキスト・スイッチ時間が高

速に見えることに注意すべきです。

データ・キャッシュの共有2

この構成はアプリケーションが生産者/消費者型プリケーションの時に利用することが可能で

す。言い換えると、1つのプロセス(消費者)はもう一方のプロセス(生産者)から渡されたデー

タで動作しています。このケースでは、生産者と消費者の各スレッドはハイパースレッド

CPUのシブリングに割り付ける必要があります。2つのシブリングCPUがデータ・キャッシュ

を共有するため、生産者プロセスによって生産されるデータは消費者プロセスが生産者タス

クから渡されたデータをアクセスしたときにデータ・キャッシュ内に留まっている可能性が

あります。このように2つのシブリングCPUを利用することは生産者と消費者の各タスクが並

列に実行することを可能にし、またそれらの間で渡されるデータは基本的に高速キャッシ

ュ・メモリを介して渡されます。これはハイパースレッド型並列処理を利用するために重要

な機会を提供します。

もう1つのこのモデルの潜在的な利用法は、ハイパースレッドCPU上の1つのシブリングCPU
上のプロセスのためにもう一つのシブリングCPUで実行中のプロセスで使われるデータ・キ

ャッシュの中にデータをプリフェッチすることです。

リアルタイム性能

2-37

単一プロセッサのシールド2

この構成はハイパースレッド・シールディング構成の1つのバリエーションです。唯一の違い

は、SMPシステム内の一つの物理プロセッサよりもむしろ、単一プロセッサにこの技術を適

用していることです。物理メモリには現在2つの論理CPUが含まれているため、単一プロセッ

サは現在シールドCPUを作るために使用することが可能です。このケースでは、CPUの1つを

シールド設定して、一方他のCPUはバックグラウンド処理を実行するために使用します。こ

のタイプのシールドCPUのデターミニズムは、異なる物理CPUでのCPUシールディングの利用

ほど確実ではありませんが、シールドされていないよりは明らかに良くなります。

メモリ不足状態の回避2

所有するシステムが適切な物理メモリを搭載していることを確認してください。Concurrent
Real-Timeのリアルタイム保証は、リアルタイム・アプリケーションが利用するために十分な

RAMが搭載されているシステムが正しく構成されていることを前提とします。メモリが少な

い状況では、システムの完全性をより確実にし、適切なシステムの挙動を維持するためにリ

アルタイムのデッドラインを犠牲にするかもしれません。Linuxはメモリが不足する時、無作

為にメモリを開放するために終了するプロセスを選ぶことで、他のプロセスを起動すること

が可能になります。

メモリの使用状況は /proc/meminfo, free(1), vmstat(8)に含まれるいくつかのツールの利用

で監視することが可能です。

Linuxのデターミニズムに関する既知の問題2

以下は、リアルタイム性能にネガティブな影響を与えることが知られている標準的なLinux
の問題です。システムがリアルタイム・アプリケーションを実行中は、これらの行為は本質

的に一般的な管理用であり実行してはいけません。

• hdparm(1)ユーティリティは、IDEまたはSCSIディスク用の特別なパラメータを有効に

するためのコマンド・ライン・インターフェースです。本ユーティリティは非常に長い

時間割り込みを無効にすることで知られています。

• blkdev_close(2)インターフェースは、RAWブロック・デバイスへ書き込むためにブー

ト・ローダーに使用されます。これは非常に長い時間割り込みを無効にすることで知ら

れています。

• フレームバッファ(fb)コンソールがスクロールすることを避けてください。これは非常に

長い時間割り込みを無効にすることで知られています。

• 仮想コンソールを使用する時、コンソールは切り替えないでください。これは非常に長

い時間割り込みを無効にすることで知られています。

• CDのマウント/アンマウントおよびファイルシステムのアンマウントは避けてください。

これらのアクションは長い待ち時間を引き起こします。

• CDの自動マウントは止めてください。これはポーリングのインターフェースで周期的な

ポーリングが長い待ち時間を引き起こします。

• haldaemonサービスはリアルタイム性能に干渉する事が明らかであり、デフォルトで

OFFになっています。

RedHawk Linux User’s Guide

2-38

一方、これはファイルのコンテキスト・メニューからCDまたはDVDにファイル(例：

ISO)を焼き付けるには実行させる必要があります。ディスクにファイルを焼き付けるに

は、最初にhaldaemonサービスを開始して下さい：

$ service haldaemon start

その後コピー処理が完了したらサービスを停止して下さい：

$ service haldaemon stop

• カーネル・モジュールをアンロードすることは避けてください。この行為はCPUに不必

要なジッターが増す可能性のあるkmoduleデーモンをCPU毎に作成し破棄します。

• ksoftirqdカーネル・デーモンにより定期的にフラッシュされるIPルート・キャッシュ・

テーブルは、利用可能なメモリの量に基づいて動的に大きさを設定します (例：メモリ

4GBのシステムに対して128Kエントリ)。もしネットワークのデターミニズムに問題があ

る場合、特にシングルCPUシステムにおいてはフラッシュに必要な時間が問題となる可

能性があります。過剰なksoftirqd の実行を減らすため、IPルート・キャッシュ・テーブ

ルはGRUBコマンド rhash_entries=n (n はテーブル・エントリの数)を利用して固定サ

イズに設定することが可能です。例：
rhash_entries=4096 (エントリ数を4Kに設定)

• シールドCPU上でタイム・クリティカル・アプリケーションの実行中、Xサーバの開始お

よび停止する時にリアルタイムに問題が発生する可能性があります。システムで使われ

ているグラフィックカードの種類によっては、多くのプロセッサ間割り込みの性能低下

という結果になるかもしれません。もしこのような経験があるのであれば、これらの割

り込みを減らすために付録Fを参照してください。

• mount(1)オプションのnoatimeは、ファイルシステムにアクセスする毎にiノードのアク

セス時間の不必要なアップデートを排除するために/etc/fstab内で定義することを推奨し

ます。

3-1

3
リアルタイム・プロセス間通信

33

本章ではRedHawk LinuxがサポートするPOSIXのリアルタイム・プロセス間通信、および

System Vのメッセージ送受信と共有メモリ機能について説明します。

付録AにはPOSIXとSystem Vのメッセージ・キュー機能の使用方法を説明したプログラム例が

含まれています。

概要3

RedHawk Linuxはプロセスがデータをやり取りすることを許可するいくつかのメカニズムを提

供します。それらのメカニズムにはIEEE規格1003.1b-1993に準拠するメッセージ・キュー、共

有メモリ、セマフォの他にSystem VのInterprocess Communication (IPC)パッケージに含まれる

それらの機能も含まれています。メッセージ・キューと共有メモリは本章の中で解説し、セ

マフォは5章の「プロセス間同期」で解説しています。

メッセージ・キュー は1つ以上の読み取りプロセスにより読まれるメッセージを1つ以上のプ

ロセスが書き込むことが可能です。この機能はメッセージ・キューの作成、オープン、問い

合わせ、破棄、送信、メッセージ・キューからのメッセージ受信、送信メッセージの優先度

指定、メッセージ到達時の非同期通知リクエストを提供します。

POSIXとSystem Vのメッセージング機能はお互い独立して動作します。推奨するメッセージ送

受信メカニズムは、効率性と可搬性の理由によりPOSIXメッセージ・キュー機能です。本章

の「POSIXメッセージ・キュー」と「System Vメッセージ」のセクションでこれらの機能を説

明しています。

共有メモリ は協同するプロセスがメモリの共通エリアを通してデータを共有することが可能

です。1つ以上のプロセスがメモリの一部に接続することが可能で、故にそこに置かれたどん

なデータでも共有することが可能です。

メッセージング同様、POSIXとSystem Vの共有メモリ機能はお互いに独立して動作します。ア

プリケーション内で共有メモリに置いたデータは一時的なものでシステム再起動後に存在す

る必要がないSystem V 共有メモリエリアの使用を推奨します。System V共有メモリ内のデー

タはメモリにのみ保持されます。ディスク・ファイルはそのメモリと関連しておらず、結

果、sync(2)システムコールによるディスク・トラフィックが生じることもありません。ま

た、System V共有メモリは共有メモリ・セグメントを物理メモリ領域にバインドさせること

が可能です。この機能についての情報は「System V共有メモリ」セクションを参照してくだ

さい。

System V共有メモリの使用の代替えとして、/dev/memファイルの一部をマッピングする

mmap(2)システムコールを使用します。mmapシステムコールに関する情報は、9章の「メモ

リ・マッピング」を参照してください。/dev/memファイルに関する情報は、mem(4)のman
ページを参照してください。

POSIX共有メモリのインターフェースは/var/tmpディレクトリ内のディスク・ファイルにマッ

ピングされます。もしこのディレクトリがmemfsファイルシステム上にマウントされている

場合、syncシステムコール中の共有データのフラッシュによる余計なディスク・トラフィッ

クは発生しません。もしこのディレクトリが通常のディスク・パーティション上にマウント

されている場合、マッピングされたディスク・ファイル内の共有データを更新し続けるため

にsyncシステムコール中はディスク・トラフィックが発生します。

RedHawk Linux User’s Guide

3-2

POSIX共有メモリのデータがファイルに保存されたかどうかに関係なく、それらのデータは

システム再起動後は保持されません。POSIX共有メモリ機能は、本章の「POSIX共有メモリ」

セクションで説明しています。

POSIXメッセージ・キュー3

アプリケーションは複数の協同プロセスから構成され、おそらく別個のプロセッサ上で動作

することになります。これらのプロセスは効果的に通信しそれらの動作を調整するためにシ

ステム全体でPOSIXメッセージ・キューを使用します。

POSIXメッセージ・キューの主な用途は、プロセス間でデータ送受信するためです。対照的

に同一プロセス内スレッドは既にアドレス空間全体を共有しているため、同一プロセス内の

協同スレッド間のデータ送受信機能としてはほとんど必要ありません。しかし、1つ以上のプ

ロセス内のスレッド間でデータ送受信するためにアプリケーションがメッセージ・キューを

利用することは避けられません。

メッセージ・キューはmq_open(3)を使って作成およびオープンされます。この機能はコール

した後にオープン・メッセージ・キューを参照するために使用するメッセージ・キュー記述

子(mqd_t)を返します。各メッセージ・キューは/somename の形式の名称によって識別され

ます。2つのプロセスがmq_openに同じ名前を渡すことによって同じキューを操作すること

が可能となります。

メッセージは、mq_send(3)とmq_receive(3)を使ってキューとの受け渡しを行います。プロ

セスがキューの使用を終了した時、mq_close(3)を使ってキューを閉じ、キューが既に必要で

はなない時、mq_unlink(3)を使って削除することが可能です。キューの属性は、

mq_getattr(3)とmq_setattr(3)を使って取得および(場合によっては)修正することが可能で

す。プロセスはmq_notify(3)を使って空のキューへのメッセージ到達の非同期通知をリクエ

ストすることが可能です。

メッセージ・キュー記述子は、オープン・メッセージ・キュー記述の参照先です(open(2)を
参照)。fork(2)実行後、子プロセスは親のメッセージ・キュー記述子のコピーを継承し、それ

らの記述子は親プロセスと一致する記述子と同じオープン・メッセージ・キュー記述を参照

します。一致する記述子は2つのプロセスは、オープン・メッセージ・キュー記述に関連する

フラグ (mq_flags)を共有します。

各メッセージは優先度を持っており、メッセージは常に最高優先度の受信プロセスが先に配

信されます。

メッセージ・キューは仮想ファイルシステム内に作成されます。このファイルシステムは以

下のコマンドを使ってマウントすることが可能です。

$ mkdir /dev/mqueue
$ mount -t mqueue none /dev/mqueue

ファイルシステムがマウントされた後、システム上のメッセージ・キューは通常ファイルの

ために使用されるコマンド(例：ls(1), rm(1))を使って見ることおよび操作することが可能と

なります。

POSIXメッセージ・キューのサポートはカーネル構成パラメータPOSIX_MQUEUEを介して構

成可能です。このオプションはデフォルトで有効となっています。サンプル・プログラムは

付録Aで提供されます。

リアルタイム・プロセス間通信

3-3

メッセージ・キュー・ライブラリ・ルーチンをコールするすべてのアプリケーションはリア

ルタイム・ライブラリに静的または動的のどちらでもリンクしなければなりません。以下の

例は典型的なコマンド・ラインの書式を示します。

gcc [options...] file -lrt ...

System Vメッセージ3

System Vのプロセス間通信(IPC: Iinterprocess Communication)型メッセージは、プロセス(実行

中のプログラム)がバッファに格納されたデータの交換を通して通信することを可能にしま

す。このデータはメッセージと呼ばれる別々の部分の中でプロセス間に送信されます。この

IPC型を利用するプロセスはメッセージの送信および受信が可能です。

プロセスがメッセージを送受信する前にオペレーティング・システムはこれらの操作を処理

するためにソフトウェアのメカニズムを作成する必要があります。プロセスはmsgget(2)シス

テムコールを利用して処理します。こうすることでプロセスはメッセージの所有者/作成者に

なり、それ自体を含む全てのプロセスに対して初期操作の権限を指定します。その後、所有

者/作成者は所有権の放棄またはmsgctl(2)システムコールを使って操作権限を変更することが

可能となります。しかし、作成者は機能が存在する限り依然として作成者のままです。権限

を持つほかのプロセスは様々な他の制御機能を実行するためにmsgctlを使うことが可能で

す。

もし操作の実行に失敗した場合、権限を持っておりメッセージの送受信を行おうとしている

プロセスは実行を停止することが可能です。これは、メッセージの送信をしようとしている

プロセスは指定されたメッセージ・キューに対してメッセージを送信することが可能になる

まで待つことが出来ます。この受信プロセスは影響を及ぼすことはなく(間接的を除く：例え

ば、もし消費者が消滅していなければ、そのキューのスペースは最終的には空になります)、
逆も同じとなります。実行の停止を指示するプロセスはブロッキング・メッセージ操作 を実

行します。実行の停止を許可されないプロセスはノンブロッキング・メッセージ操作 を実行

します。

RedHawk Linux User’s Guide

3-4

ブロッキング・メッセージ操作を実行するプロセスは、3つの条件の1つが発生するまで停止

することが可能です。

• 操作が成功
• プロセスがシグナルを受信
• システムからメッセージ・キューが削除

システムコールはプロセスに利用可能なこれらのメッセージ・ケーパビリティを作ります。

呼び出し元プロセスはシステムコールに引数を渡し、システムコールはその機能が成功また

は失敗のどちらかとなります。もしそのシステムコールが成功した場合、その機能は実行さ

れ適切な情報を返します。そうではない場合、プロセスに-1が返され、それに応じたerrnoが
設定されます。

メッセージの利用3

メッセージが送信または受信される前にユニークな識別されたメッセージ・キューとデータ

構造体を作成する必要があります。そのユニークな識別子はメッセージ・キュー識別子

(msqid)と呼ばれます(これは関連するメッセージ・キューやデータ構造体を確認もしくは参照

するために使用されます)。この識別子は通常のアクセス制限下にあるシステムのあらゆるプ

ロセスよりアクセス可能です。

メッセージ・キューの対応するカーネルデータ構造体は送信されるもしくは受信される各メ

ッセージに関する情報を保持するために使用されます。システム内部で使用されるこの情報

は、以下の各メッセージが含まれます。

• メッセージの種類
• メッセージのテキスト・サイズ
• メッセージのテキスト・アドレス

ユニークな識別されたメッセージ・キューmsqid_dsのために1つの関連するデータ構造体が

存在します。このデータ構造体はメッセージ・キューに関連する以下の情報を含んでいま

す。

• データの権限操作 (構造の権限操作)
• キュー上の現在のバイト数
• キュー上のメッセージの数
• キュー上の最大バイト数
• 最後のメッセージ送信者のプロセス識別番号 (PID)
• 最後のメッセージ受信者のPID
• 最後のメッセージの送信時間
• 最後のメッセージの受信時間
• 最後の変更時間

NOTE

本章で説明するすべてのC言語のヘッダー・ファイルは、

/usr/includeサブディレクトリにあります。

リアルタイム・プロセス間通信

3-5

関連するメッセージ・キュー・データ構造体msqid_dsの定義は図3-1に示すメンバーに含ま

れています。

図3-1 msqid_ds構造体の定義

struct ipc_perm msg_perm;/* structure describing operation permission */

__time_t msg_stime; /* time of last msgsnd command */

__time_t msg_rtime; /* time of last msgrcv command */

__time_t msg_ctime; /* time of last change */

unsigned long int __msg_cbytes; /* current number of bytes on queue */

msgqnum_t msg_qnum; /* number of messages currently on queue */

msglen_t msg_qbytes;/* max number of bytes allowed on queue */

__pid_t msg_lspid; /* pid of last msgsnd() */

__pid_t msg_lrpid; /* pid of last msgrcv() */

C言語のデータ構造体msqid_dsの定義は、実際にはこの構造体は<bits/msq.h> に定義され

ていますが、<sys/msg.h>ヘッダー・ファイルをインクルードすることにより取得する必要

があります。

プロセス間通信許可データ構造体ipc_perm の定義は、図3-2に示すメンバーに含まれていま

す。

図3-2 ipc_perm構造体の定義

__key_t __key; /* Key. */

__uid_t uid; /* Owner's user ID. */

__gid_t gid; /* Owner's group ID. */

__uid_t cuid; /* Creator's user ID. */

__gid_t cgid; /* Creator's group ID. */

unsigned short int mode; /* Read/write permission. */

unsigned short int __seq; /* Sequence number. */

C言語のデータ構造体ipc_permの定義は、実際にはこの構造体は<bits/ipc.h>に定義されて

いますが、<sys/ipc.h>ヘッダー・ファイルをインクルードすることにより取得する必要があ

ります。<sys/ipc.h>は一般的に全てのIPC機能に使用されることに注意してください。

msgget(2)システムコールは2つのタスクの1つを実行します。

• 新しいメッセージ・キュー識別子を作成し、それに対応するメッセージ・キューとデー

タ構造体を作成します

• 既にメッセージ・キューとデータ構造体に対応した既存のメッセージ・キュー識別子を

確認します

両方のタスクはmsggetシステムコールに渡す引数key が必要です。もしkey が既存のメッセ

ージ・キューに使用されていない場合、システム・チューニング・パラメータを超えない条

件で新しい識別子はkey に対応するメッセージ・キューとデータ構造体を作成して返します。

RedHawk Linux User’s Guide

3-6

key の値がゼロ(IPC_PRIVATE)を指定するための条件もあります。IPC_PRIVATEが指定され

たとき、新しい識別子はメッセージ・キュー最大数(MSGMNI)のシステム制限を超えない限

り、常に対応するメッセージ・キューとデータ構造体を作成して返します。ipcs(1)コマンド

は全てゼロでmsqid のためのkey フィールドを表示します。

もしメッセージ・キュー識別子が指定されたkey が存在する場合、既存の識別子の値が返され

ます。もし既存のメッセージ・キュー識別子を返して欲しくない場合、制御コマンド

(IPC_EXCL)をシステムコールに渡すmsgflg 引数に設定することが可能です(本システムコー

ルの詳細は、「msggetシステムコール」を参照してください)。

メッセージ・キューが作成される時、msggetをコールしたプロセスは所有者/作成者になり、

対応するデータ構造体はそれに応じて初期化されます。所有権を変更することは可能です

が、作成されるプロセスは常に作成者のままであることを覚えておいてください。メッセー

ジ・キュー作成者もまたそれのために初期操作権限を決定します。

一旦ユニークなメッセージ・キュー識別子が作成された、もしくは既存の識別子が見つかっ

たら、msgop(2)(メッセージ操作)とmsgctl(2)(メッセージ制御)を使用することが可能です。

前述のようにメッセージ操作はメッセージの送信と受信で構成されます。msgsndとmsgrcv
のシステムコールは各々の操作のために提供されます(これらのシステムコールの詳細は

「msgsndおよびmsgrcvシステムコール」を参照してください)。

msgctlシステムコールは以下の方法によりメッセージ機能を制御することを許可します。

• メッセージ・キュー識別子に対応するデータ構造体の取得 (IPC_STAT)
• メッセージ・キュー権限の変更操作 (IPC_SET)
• 特定メッセージ・キューのメッセージ・キューサイズ(msg_qbytes)の変更(IPC_SET)
• 対応するメッセージ・キューとデータ構造体と共にオペレーティング・システムから特

定メッセージ・キュー識別子の削除 (IPC_RMID)

msgctlシステムコールの詳細は「msgctlシステムコール」セクションを参照してください。

System Vメッセージ・キューを利用したサンプル・プログラムに関しては、付録Aを参照して

ください。更なるサンプル・プログラムは、各System Vシステムコールを深く掘り下げた使

い方の説明をインターネットで見つけることが可能です。これらはシステムコールを説明す

る本章のセクションの中で記載されています。

リアルタイム・プロセス間通信

3-7

msggetシステムコール3

msgget(2)は新しいメッセージ・キューを作成または既存のメッセージ・キューを取得しま

す。

本セクションではmsggetシステムコールを説明します。より詳細な情報はmsgget(2)のman
ページを参照してください。この呼び出しの使用を説明しているプログラムは、

README.msgget.txt 内に提供された多数のコメントと共に

/usr/share/doc/ccur/examples/msgget.cで見つけることが可能です。

概要

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);

上記の全てのインクルードファイルは、オペレーティング・システムの/usr/includeサブディ

レクトリにあります。

key_t はヘッダー・ファイル<bits/types.h>の中で整数型にするためにtypedefによって定

義されています(このヘッダー・ファイルは<sys/types.h>内部に含まれています)。正常終了

した場合にこの機能から返される整数はユニークなメッセージ・キュー識別子msqid です

(msqid は本章の「メッセージの利用」セクション内で説明されています)。失敗した場合、

外部変数errnoに失敗の理由を知らせる値が設定され、-1が返されます。

メッセージ・キューとデータ構造体に対応する新しいmsqid は以下の条件に1つでも該当する

場合に作成されます。

• key がIPC_PRIVATE
• メッセージ・キューとデータ構造体に対応するmsqid が存在しないkey、かつmsgflgと

IPC_CREATの論理積がゼロではない

msgflg 値の組み合わせ：

• 制御コマンド (フラグ)
• 操作パーミッション

制御コマンドはあらかじめ定義された定数です。以下の制御コマンドはmsggetシステムコー

ルに適用され、<sys/ipc.h>ヘッダー・ファイル内部に含まれる<bits/ipc.h>ヘッダー・ファ

イル内に定義されています。

IPC_CREAT 新しいセグメントを作成するために使用されます。もし使用されな

い場合、msggetはkey に対応するメッセージ・キューの検出、ア

クセス許可の確認、セグメントに破棄マークがないことを確認しま

す。

IPC_EXCL IPC_CREATと一緒の使用は、指定されたkey に対応するメッセー

ジ・キュー識別子が既に存在している場合、このシステムコールは

エラーを引き起こします。これは新しい(ユニークな)識別子を受け

取らなかった時に受け取ったと考えてしまうことからプロセスを守

るために必要です。

操作パーミッションは、対応するメッセージ・キュー上で実行することを許可されたプロセ

スの操作を決定します。「読み取り」許可はメッセージを受信するため、

RedHawk Linux User’s Guide

3-8

またはmsgctlのIPC_STAT操作によってキューのステータスを決定するために必要です。“書

き込み”許可はメッセージを送信するために必要です。

表3-1は有効な操作パーミッション・コードの(8進数で示す)数値を示します。

表3-1 メッセージ・キューの操作パーミッション・コード

操作パーミッション 8進数値
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

00400
00200
00040
00020
00004
00002

特有の値は、必要とする操作パーミッションのために8進数値を追加もしくはビット単位の論

理和によって生成されます。これが、もし「Read by User」と「Read/Write by Others」を要求

された場合、コードの値は00406(00400＋00006)となります。

msgflg 値は、フラグ名称と8進数の操作パーミッション値を一緒に使用して簡単に設定するこ

とが可能です。
使用例：

msqid = msgget (key, (IPC_CREAT | 0400));
msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

システムコールを常に企てられます。MSGMNIの制限を超えると常に失敗を引き起こしま

す。MSGMNIの制限値は、その時々で使用されている可能性のあるシステム全体のユニーク

なメッセージ・キューの数で決定します。この制限値は<linux/msg.h>の中にある固定された

定義値です。

メッセージ・キュー制限値のリストは以下のオプションを使ってipcs(1)コマンドで取得する

ことができます。さらに詳細はmanページを参照してください。

ipcs -q -l

特定の関連したデータ構造体の初期化だけでなく特定のエラー条件に関してmsgget(2)のman
ページを参照してください。

リアルタイム・プロセス間通信

3-9

msgctlシステムコール3

msgctl(2)はメッセージ・キュー上の制御操作を実行するために使用されます。

本セクションではmsgctl(2)システムコールを説明します。さらに詳細な情報はmsgctl(2)の
manページを参照してください。この呼び出しの使用を説明しているプログラムは、

README.msgctl.txt内に提供された多くのコメントと共に

/usr/share/doc/ccur/examples/msgctl.cで見つけることが可能です。

概要

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (int msqid, int cmd, struct msqid_ds *buf);

上記の全てのインクルードファイルは、オペレーティング・システムの/usr/includeサブディ

レクトリにあります。

msgctlシステムコールは正常終了で0、それ以外で-1の整数値を返します。

msqid 変数はmsggetシステムコールを使って作成された有効な負ではない整数値でなければ

なりません。

cmd 引数は以下の値のいずれかとなります。

IPC_STAT 指定されたメッセージ・キュー識別子に対応するデータ構造体、ポ

インタbuf によって指し示されるユーザー・メモリ空間のデータ構

造体の場所を含むステータス情報を返します。「Read」許可が必

要です。

IPC_SET 有効なユーザーIDとグループID、操作パーミッション、メッセー

ジ・キューのバイト数を含むポインタbuf によって指し示されるユ

ーザー・メモリ空間のデータ構造体を書き込みます。

IPC_RMID 指定されたメッセージ・キューと共にそれに対応するデータ構造体

を削除します。

NOTE

msgctl(2)サービスはIPC_INFO, MSG_STAT, MSG_INFOコマンドもサ

ポートします。しかし、これらのコマンドはipcs(1)ユーティリティ

で使用するためだけに意図されているので、これらのコマンドについ

ての説明はありません。

RedHawk Linux User’s Guide

3-10

IPC_SETまたはIPC_RMID制御コマンドを実行するため、プロセスは以下の条件を1つ以上満

たしていなければなりません。

• 有効なOWNERのユーザーIDを所有
• 有効なCREATORのユーザーIDを所有
• スーパー・ユーザー
• CAP_SYS_ADMINケーパビリティを所有

さらにMSGMNB(<linux/msg.h>で定義)の値を超えてmsg_qbytesのサイズを増やす

IPC_SET制御コマンドを実行する時、プロセスはCAP_SYS_RESOURCEケーパビリティを所有

していなければなりません。

メッセージ･キューは、-q msgid (メッセージ・キュー識別子)または-Q msgkey (対応するメッ

セージ・キューのキー)オプション指定によるipcrm(8)コマンドの利用で削除される可能性も

あることに注意してください。このコマンドを使用するため、ユーザーは同じ有効なユーザ

ーIDもしくはIPC_RMID 制御コマンドの実行に必要なケーパビリティを持っている必要があ

ります。このコマンドの使用に関して更なる情報はipcrm(8)のmanページを参照してくださ

い。

msgsndおよびmsgrcvシステムコール3

msgsndおよびmsgrcvのメッセージ操作システムコールは、メッセージの送受信するために

使用されます。

本セクションではmsgsndとmsgrcvシステムコールを説明します。より詳細な情報はmsgop
(2)のmanページを参照してください。この呼び出しの使用を説明しているプログラムは、

README.msgop.txt 内に提供された多数のコメントと共に

/usr/share/doc/ccur/examples/msgop.cで見つけることが可能です。

概要

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (int msqid, void *msgp, size_t msgsz, int msgflg);

int msgrcv (int msqid, void *msgp, size_t msgsz, long msgtyp, int
msgflg);

上記の全てのインクルードファイルは、オペレーティング・システムの/usr/includeサブディ

レクトリにあります。

メッセージの送信3

msgsndシステムコールは正常終了で0、それ以外で-1の整数値を返します。

msqid 変数はmsggetシステムコールを使って作成された有効な負ではない整数値でなければ

なりません。

リアルタイム・プロセス間通信

3-11

msgp 引数はメッセージの形式および送信するメッセージを含むユーザー・メモリ空間内の構

造体のポインタです。

msgsz 引数はmsgp 引数によって指し示されるデータ構造体の文字配列の長さを指定します。

これはメッセージの長さになります。配列の最大サイズはの中で定義されるMSGMAXによっ

て決定されます。

msgflg 引数は、IPC_NOWAITフラグが設定されていない((msgflg & IPC_NOWAIT)= = 0)場合は

メッセージ操作の実行はブロックされ、指定されたメッセージ・キュー上に割り当てられた

合計バイト数が使用されている場合(msg_qbytes)は操作はブロックされます。IPC_NOWAIT
フラグがセットされている場合、システムコールは失敗し-1を返します。

メッセージの受信3

msgrcvシステムコールが成功した時は受信したバイト数を返し、失敗した時は-1を返しま

す。

msqid 引数は有効な負ではない整数値でなければなりません。つまり、msqid 引数はmsgget
システムコールを使って作成された整数値でなければなりません。

msgp 引数はメッセージの形式やメッセージ・テキストを受信するユーザー空間内の構造体へ

のポインタです。

msgsz 引数は受信するメッセージの長さを指定します。もしこの値がメッセージの配列より

も小さい場合、必要であればエラーを返すことが可能です。(下のmsgflg 引数を参照してくだ

さい)

msgtyp 引数は指定された特定の形式のメッセージ・キュー上の最初のメッセージを選ぶため

に使用されます。

• msgtyp がゼロの場合、キューの最初のメッセージを受信
• msgtyp がゼロよりも大きくmsgflg にMSG_EXCEPTが設定さていない場合、同じ型式の

最初のメッセージを受信
• msgtyp がゼロよりも大きくmsgflg にMSG_EXCEPTが設定さている場合、msgflg ではな

いキューの最初のメッセージを受信
• msgtyp がゼロよりも小さい場合、msgtyp の絶対値以下で最も小さいメッセージの型式を

受信

msgflg 引数は、IPC_NOWAITフラグが設定されていない((msgflg & IPC_NOWAIT)= = 0)場合は

メッセージ操作の実行はブロックされ、指定されたメッセージ・キュー上に割り当てられた

合計バイト数が使用されている場合(msg_qbytes)は操作はブロックされます。IPC_NOWAIT
フラグがセットされている場合、システムコールは失敗し-1を返します。そして、前述したと

おり、MSG_EXCEPTフラグがmsgflg 引数に設定されてmsgtyp 引数がゼロより大きい場合、

msgtyp 引数とは異なるメッセージの型式のキューの最初のメッセージを受信します。

IPC_NOWAITフラグが設定された場合、キュー上に必要とする型式のメッセージがない時に

システムコールは即座に失敗します。msgflg はメッセージが受信するサイズよりも長い場合

にシステムコールが失敗するように指定します。これはmsgflg 引数にMSG_NOERRORを設定

しない((msgflg & MSG_NOERROR)) == 0)ことによってなされます。もしMSG_NOERRORフラ

グを設定した場合、メッセージはmsgrcvのmsgsz 引数で指定された長さに切り捨てられま

す。

RedHawk Linux User’s Guide

3-12

POSIX共有メモリ3

POSIX共有メモリ・インターフェースは、協同プロセスがデータを共有することおよび共有

メモリ・オブジェクトの利用を通してより効率的に通信することを可能にします。共有メモ
リ・オブジェクト はファイルシステムから独立してストレージの名前つき領域として定義さ

れ、関連メモリを共有するために1つ以上のプロセスのアドレス空間にマッピングすることが

可能です。

以下にインターフェースを簡単に記述します。

shm_open 共有メモリ・オブジェクトの作成および共有メモリ・オブジェクト

とファイル記述子間の接続を確立

shm_unlink 共有メモリ・オブジェクトの名前を削除

shm_openルーチンを利用する手順は「shm_openルーチンの利用」の中で紹介されていま

す。shm_unlinkルーチンを利用する手順は「shm_unlinkルーチンの利用」の中で紹介されて

います。

データ共有のために協同プロセスがこれらのインターフェースを使用するためには、1つのプ

ロセスは以下のステップを完了します。紹介するステップの手順は標準的なもので、利用可

能な唯一の手順ではないことに注意してください。

STEP 1: shm_openライブラリ・ルーチンの呼び出し、ユニークな名前の指

定、読み書きする共有メモリ・オブジェクトをオープンするための

O_CREATとO_RDWRビットの設定により共有メモリ・オブジェク

トの作成およびそのオブジェクトとファイル記述子間の接続を確立

します。

STEP 2: ftruncate(2)システムコールの呼び出し、STEP 1で取得したファイ

ル記述子の指定により共有メモリ・オブジェクトのサイズを設定し

ます。このシステムコールは書き込み用にメモリ・オブジェクトが

オープンされている必要があります。ftruncate(2)に関する更なる

情報は対応するmanページを参照してください。

STEP 3: mmap(2)システムコールの呼び出し、およびSTEP 1で取得したフ

ァイル記述子の指定により、プロセスの仮想アドレス空間の一部を

共有メモリ・オブジェクトにマッピングします。(本システムコー

ルの解説は「メモリ・マッピング」章を参照してください)

共有メモリ・オブジェクトを使用するため、他の協同プロセスは以下のステップを完了しま

す。紹介するステップの手順は標準的なもので、利用可能な唯一の手順ではないことに注意

してください。

STEP 1: 最初のプロセスによって作成された共有メモリ・オブジェクトと

shm_openライブラリ・ルーチンの呼び出し、オブジェクトの作成

に使用した同じ名前の指定によりファイル記述子間の接続を確立し

ます。

STEP 2: もし共有メモリ・オブジェクトのサイズがわからない場合、

fstat(2)システムコールの呼び出し、STEP 1で取得したファイル記

述子とstat構造体(<sys/stat.h>で定義)へのポインタの指定によ

り共有メモリ・オブジェクトのサイズを取得します。

リアルタイム・プロセス間通信

3-13

オブジェクトのサイズはstat構造体のst_size領域の中に返され

ます。オブジェクトに対応するアクセス許可はst_modes領域の中

に返されます。fstat(2)に関する更なる情報は対応するシステム・

マニュアルのページを参照してください。

STEP 3: mmapの呼び出し、およびSTEP 1で取得したファイル記述子によ

り、プロセスの仮想アドレス空間の一部を共有メモリ・オブジェク

トにマッピングします(本システムコールの解説は「メモリ・マッ

ピング」章を参照してください)。

shm_openルーチンの利用3

shm_open(3) ルーチンは、呼び出し元プロセスのPOSIX共有メモリ・オブジェクトの作成、

およびオブジェクトとファイル記述子間接続の確立が可能です。プロセスは続いて

ftruncate(2), fstat(2), mmap(2)を呼び出して共有メモリ・オブジェクトを参照するために

shm_openが返したファイル記述子を使います。プロセスが共有メモリ・オブジェクトを作

成した後、他のプロセスは共有メモリ・オブジェクトとshm_openの呼び出し、同じ名前の

指定によるファイル記述子間の接続を確立することが可能になります。

共有メモリ・オブジェクトが作成された後、共有メモリ・オブジェクト内の全データは

munmap(2), exec(2), exit(2)の呼び出し、および1つのプロセスがshm_unlink(3)を呼び出し

て共有メモリ・オブジェクトの名前を削除することにより全てのプロセスがアドレス空間と

共有メモリ・オブジェクト間のマッピングを削除するまで残ります。お使いのシステムを再

起動した後は、共有メモリ・オブジェクトもその名前も有効ではありません。

概要

#include <sys/types.h>
#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

引数は以下のように定義されます：

name 共有メモリ・オブジェクトの名前を指定するNULLで終わる文字列

のポインタ。この文字列は最大255文字に制限される可能性がある

ことに注意してください。これに先頭のスラッシュ(/)文字を含め

ることが可能ですが、途中にスラッシュ文字を含めてはいけませ

ん。この名前はファイルシステムの一部ではないことに注意してく

ださい：先頭のスラッシュも現在の作業ディレクトリも名前の解釈

に影響を及ぼしません(/shared_obj とshared_objは同一の名前

として解釈します)。もしPOSIXインターフェースをサポートする

あらゆるシステムに移植できるコードを書きたいと考えているので

あれば、name はスラッシュ文字で始めることを推奨します。

oflag 以下のビットを1つ以上設定した整数値。

O_RDONLYとO_RDWRは相互排他的なビットであり、どちらか一

方が設定されている必要があることに注意してください。

RedHawk Linux User’s Guide

3-14

O_RDONLY 共有メモリ・オブジェクトを読み取り専用で

オープンします。

O_RDWR 共有メモリ・オブジェクトを読み書き用にオ

ープンします。共有メモリ・オブジェクトを

作成するプロセスはftruncate(2)の呼び出しに

よってそのサイズを設定できるようにするた

めに書き込み用でオープンしなければならな

いことに注意してください。

O_CREAT 存在しない場合、name で指定された共有メ

モリ・オブジェクトを作成します。メモリ・

オブジェクトのユーザーIDは呼び出したプロ

セスの有効なユーザーIDに設定され、このグ

ループIDは呼び出したプロセスの有効なグル

ープIDに設定し、mode 引数により指定され

た許可ビットが設定されます。

name で指定された共有メモリ・オブジェク

トが存在する場合、O_EXCLを目的として記

述されている以外は、設定されたO_CREATは
効力がありません。

O_EXCL もしO_CREATが設定されname で指定された

共有メモリ・オブジェクトが存在する場合、

shm_openは失敗します。O_CREATが指定さ

れない場合は、このビットは無視されます。

O_TRUNC もしオブジェクトが存在し、読み書き用にオ

ープンされた場合、name で指定された共有

メモリ・オブジェクトの長さはゼロに切り詰

められます。所有者と共有メモリ・オブジェ

クトのモードは変更されません。

mode 次の例外と共にname で指定された共有メモリ・オブジェクトの許

可ビットが設定された整数値：プロセスのファイル・モード作成マ

スクに設定されたビットは共有メモリ・オブジェクトのモード(更
なる情報はumask(2)とchmod(2)のmanページを参照してくださ

い)の中でクリアされます。もしmode に許可ビット以外のビットが

設定されている場合、それらは無視されます。共有メモリ・オブジ

ェクトを作成している時のみ、プロセスはmode 引数を指定しま

す。

もし呼び出しが成功した場合、shm_openはサイズがゼロの共有メモリ・オブジェクトを作

成し、呼び出し元プロセスに対してオープンしていないファイル記述子を返します。

FD_CLOEXECファイル記述子フラグは新しいファイル記述子のために設定され、このフラグ

は共有メモリ・オブジェクトを識別するファイル記述子がexec(2)システムコール(更なる情

報はfcntl(2) のシステム・マニュアルのページを参照してください)の実行でクローズされる

ことを示します。

戻り値-1はエラーが発生したことを示し、errnoはエラーを示すために設定されます。発生す

る可能性のあるエラーのタイプのリストについてはshm_open(3)のmanページを参照してく

ださい。

リアルタイム・プロセス間通信

3-15

shm_unlinkルーチンの利用3

shm_unlink(3)ルーチンは呼び出し元プロセスが共有メモリ・オブジェクトの名前を削除する

ことを許可します。もし1つ以上のプロセスが呼び出した時点で共有メモリ・オブジェクトに

マッピングされたアドレス空間の一部を所有している場合、shm_unlinkが返す前に名前は削

除されますが、共有メモリ・オブジェクトの中のデータは最後のプロセスがマッピングした

オブジェクトを削除するまで削除されません。もしプロセスがmunmap(2), exec(2), exit(2)を
呼び出した場合、マッピングは削除されます。

概要

#include <sys/types.h>
#include <sys/mman.h>

int shm_unlink(const char *name);

引数は以下のように定義されます：

name 削除する共有メモリ・オブジェクト名を指定するNULLで終わる文

字列のポインタ。この文字列は最大255文字に制限される可能性が

あることに注意してください。これに先頭のスラッシュ(/)文字を

含めることが可能ですが、途中にスラッシュ文字を含めてはいけま

せん。この名前はファイルシステムの一部ではないことに注意して

ください：先頭のスラッシュも現在の作業ディレクトリも名前の解

釈に影響を及ぼしません(/shared_objとshared_objは同一の名前

として解釈します)。もしPOSIXインターフェースをサポートする

あらゆるシステムに移植できるコードを書きたいと考えているので

あれば、name はスラッシュ文字で始めることを推奨します。

戻り値0はshm_unlinkの呼び出しが成功したことを示します。戻り値-1はエラーが発生した

ことを示します。errnoはエラーを示すために設定されます。発生する可能性のあるエラー

のタイプのリストについてはshm_ unlink(3)のmanページを参照してください。もしエラーが

発生した場合、shm_unlinkの呼び出しは名前付き共有メモリ・オブジェクトを変更しませ

ん。

System V共有メモリ3

共有メモリは2つ以上のプロセスがメモリ、つまりその中に格納されているデータを共有する

ことを可能にします。これは共通の仮想メモリ・アドレス空間へのアクセスの設定を許可す

ることによって行われます。この共有は領域ベースで存在し、それはハードウェア依存のメ

モリ管理となります。

プロセスは最初にshmget(2)システムコールを使って共有メモリ領域を作成します。作成に関

し、プロセスは共有メモリ領域のために全体的な操作許可を設定して、サイズをバイトで設

定し、共有メモリ領域を参照専用(読み取り専用)で結合するように指定することが可能で

す。

もしメモリ領域が参照専用として指定されていない場合、適切な操作許可を持つ他の全ての

プロセスはメモリ領域の読み取り、または書き込みが可能です。

システム上の共有メモリ領域は/proc/sysvipc/shmファイルおよび-mオプションを使用して

ipcs(1)を介して見ることができます。

RedHawk Linux User’s Guide

3-16

共有メモリの操作、shmat(2)(共有メモリの結合)とshmdt(2)(共有メモリの分離)は、共有メ

モリ領域上で実行することが可能です。もしプロセスがパーミッションを所有している場

合、shmatはプロセスが共有メモリ領域に結合することを許可します。その後、許可されて

読み取りまたは書き込みが可能になります。shmdtはプロセスが共有メモリ領域から分離す

ることを許可します。その結果、共有メモリ領域への読み書きの機能を失います。

共有メモリ領域の最初の所有者/作成者は、shmctl(2)システムコールを使って他のプロセスへ

所有権を放棄することが可能です。しかし、機能が削除される、もしくはシステムが最初期

かされるまで作成されたプロセスは作成者のままとなります。パーミッションを持つ他のプ

ロセスは、shmctlシステムコールを使って共有メモリ領域上の他の機能を実行することが可

能です。

プロセスはshmbind(2)システムコールを使ってI/Oメモリ領域へ共有メモリ領域をバインドす

ることが可能です。shmbindシステムコールの詳細は「共有メモリ領域をI/O空間へバイン

ド」セクションを参照してください。

協同プログラムによって共有メモリの利用を容易にするため、shmdefine(1)と呼ばれるユー

ティリティが提供されます。このユーティリティの利用手順は「shmdefineユーティリティ」

で説明されています。共有メモリ領域の作成と物理メモリの一部へのバインドを援助するた

め、shmconfig(1) と呼ばれるユーティリティも提供されます。このユーティリティの利用手

順は「shmconfigコマンド」で説明されています。

共有メモリの利用3

プロセス間のメモリ共有は仮想領域ベース上に存在します。常にオペレーティング・システ

ム内に存在する個々の共有メモリ領域のコピーが1つだけ存在します。

メモリの共有が稼働される前にユニークに識別された共有メモリ領域とデータ構造体が作成

される必要があります。作成されたユニークな識別子は共有メモリ識別子(shmid)と呼ばれ、

これは対応するデータ構造体を特定する、または参照するために使用されます。通常のアク

セス制限を条件として、この識別子はシステム内のどのプロセスにも利用可能です。

各共有メモリ領域用に以下がデータ構造体に含まれます。

• 操作パーミッション
• 領域サイズ
• セグメント記述子 (内部システムのためだけに使用)
• 最後に操作を実行したPID
• 作成者のPID
• 現在結合しているプロセスの数
• 最後に結合した時間
• 最後に切り離した時間
• 最後に変更した時間

リアルタイム・プロセス間通信

3-17

対応する共有メモリ領域データ構造体shmid_dsの定義は、図3-3に示すメンバー含みます。

図3-3 shmid_ds 構造体の定義

struct shmid_ds {

struct ipc_perm shm_perm; /* operation perms */

int shm_segsz; /* size of segment (bytes) */

time_t shm_atime; /* last attach time */

time_t shm_dtime; /* last detach time */

time_t shm_ctime; /* last change time */

unsigned short shm_cpid; /* pid of creator */

unsigned short shm_lpid; /* pid of last operator */

short shm_nattch; /* no. of current attaches */

};

共有メモリ領域のデータ構造体shmid_ds用のC言語データ構造体の定義は、<sys/shm.h>ヘ
ッダー・ファイルの中にあります。

この構造体のshm_permメンバーはテンプレートしてipc_permを使うことに注意してくださ

い。IPC機能のためにipc_permデータ構造体は全て同じで、これは<sys/ipc.h>ヘッダー・

ファイルの中にあります。

shmget(2)システムコールは2つの仕事を実行：

• 新しい共有メモリ識別子を取得し、対応する共有メモリ領域データ構造体を作成します
• 対応する共有メモリ領域データ構造体を持っている既存の共有メモリ識別子を返します

実行されるタスクは、shmgetシステムコールに渡すkey 引数の値によって決定されます。

key は選択した整数、もしくはftokサブルーチンの使用により生成した整数にすることが可能

です。ftokサブルーチンは提供されたパス名と識別子をベースとするキーを生成します。ftok
を使用することで、ユニークなキーを取得することが可能になり、パス名に関連するファイ

ルへのアクセス制限でキーへのユーザーのアクセス制御が可能となります。もし協同プロセ

スだけが使用可能なキーを確保したい場合、ftokを使用することを推奨します。このサブルー

チンは以下のように指定されます。

key_t ftok(path_name, id)

path_name 引数は呼び出し元プロセスが利用可能である既存のファイルのパス名のポインタ

を指定します。id 引数は協同プロセス・グループを独自に特定する文字を指定します。ftok
は指定されたpath_name とid に基づくキーを返します。ftokの使用に関する追加情報は

ftok(3)のmanページの中で提供されます。

もしkey が既に既存の共有メモリ識別子に使用されておらずshmflg にIPC_CREATフラグ設定

されている場合、新しい識別子はシステム・チューニング・パラメータを超えない条件で作

成された共有メモリ領域データ構造体と一緒に返されます。

RedHawk Linux User’s Guide

3-18

プライベート・キー(IPC_PRIVATE)として知られている値がゼロのkey を指定するための条件

も存在し、プライベート・キーを指定された時、新しいshmid はシステム・チューニング・

パラメータを超えない限り、常に作成された共有メモリ領域データ構造体と一緒に返されま

す。ipcs(1)コマンドはshmid のためのkey フィールドは全てゼロで表示します。

もし指定されたkey のshmid が存在する場合、既存のshmid の値が返されます。もし既存の

shmidを返す必要が無い場合、制御コマンド(IPC_EXCL) はシステムコールに渡されるshmflg
引数の中に指定(設定)することが可能です。

新しい共有メモリ領域が作成された時shmgetをコールしたプロセスは所有者/作成者となり、

それに応じて対応するデータ構造体は初期化されます。所有権は変更される可能性がありま

すが、作成されたプロセスは常に作成者のままであることを覚えておいてください(「shmctl
システムコール」を参照してください)。共有メモリ領域の作成者はそれのために最初の操作

パーミッションも決定します。

一旦識別されたユニークな共有メモリ領域データ構造体が作成されると、shmbind, shmctl,
共有メモリ操作(shmop)が利用可能となります。

shmbindシステムコールは、I/Oメモリの一部に共有メモリ領域をバインドすることが可能で

す。システムコールの詳細は「共有メモリ領域をI/O空間へバインド」セクションを参照して

ください。

shmctl(2)システムコールは以下の方法で共有メモリ機能を制御することを許可します。

• 共有メモリ領域に関わるデータ構造体の取得(IPC_STAT)
• 共有メモリ領域用操作パーミッションの変更(IPC_SET)
• 対応する共有メモリ領域データ構造体と共にオペレーティング・システムより特定の共

有メモリ領域を削除(IPC_RMID)
• メモリ上の共有メモリ領域のロック(SHM_LOCK)
• 共有メモリ領域のアンロック(SHM_UNLOCK)

shmctlシステムコールの詳細は「shmctlシステムコール」セクションを参照してください。

共有メモリ領域操作(shmop)は共有メモリ領域の結合と分離で構成されます。shmatと
shmdtはそれらの操作の各々のために提供されます(shmatとshmdtシステムコールの詳細は

「shmatおよびshmdtシステムコール」セクションを参照してください)。

shmdefine(1)とshmconfig(1)ユーティリティは共有メモリ領域を作成することが可能なこと

に注意することは重要です。これらのユーティリティに関する情報は「共有メモリ・ユーテ

ィリティ」セクションを参照してください。

リアルタイム・プロセス間通信

3-19

shmgetシステムコール3

shmget(2)は新しい共有メモリ領域を作成または既存の共有メモリ領域を特定します。

本セクションではshmgetシステムコールを説明します。より詳細な情報はshmget (2)のman
ページを参照してください。この呼び出しの使用を説明しているプログラムは、

README.shmget.txt内に提供された多数のコメントと共に

/usr/share/doc/ccur/examples/shmget.cで見つけることが可能です。

概要

#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key_t key, size_t size, int shmflg);

上記の全てのインクルードファイルは、オペレーティング・システムの/usr/includeサブディ

レクトリにあります。

key_t はヘッダー・ファイル<bits/sys/types.h>の中で整数型にするためにtypedefによっ

て定義されています(このヘッダー・ファイルは<sys/types.h>内部に含まれています)。正常

終了した場合にこのシステムコールから返される整数は、key の値に対応する共有メモリ領域

識別子(shmid)です(shmid は本章の「共有メモリの利用」セクション内で説明されていま

す)。失敗した場合、外部変数errnoに失敗の理由を知らせる値が設定され、-1 が返されま

す。

共有メモリ・データ構造体に対応する新しいshmid は以下の条件に1つでも該当する場合に作

成されます。

• key が IPC_PRIVATE
• 共有メモリ・データ構造体に対応するshmid が存在しないkey、かつshmflgとIPC_CREAT

の論理積がゼロではない

shmflg 値の組み合わせ：

• 制御コマンド(フラグ)
• 操作パーミッション

制御コマンドはあらかじめ定義された定数です。以下の制御コマンドはshmgetシステムコー

ルに適用され、<sys/ipc.h>ヘッダー・ファイル内部に含まれる<bits/ipc.h>ヘッダー・ファ

イル内に定義されています。

IPC_CREAT 新しいセグメントを作成するために使用されます。もし使用されな

い場合、shmgetはkey に対応するセグメントの検出、アクセス許

可の確認、セグメントに破棄マークがないことを確認します。

IPC_EXCL IPC_CREATと一緒の使用は、指定されたkey に対応する共有メモ

リ識別子が既に存在している場合、このシステムコールはエラーを

引き起こします。これは新しい(ユニークな)識別子を受け取らなか

った時に受け取ったと考えてしまうことからプロセスを守るために

必要です。

RedHawk Linux User’s Guide

3-20

パーミッション操作はユーザー、グループ、その他のために読み取り/書き込み属性を定義し

ます。
表3-2は有効な操作パーミッション・コードの(8進数で示す)数値を示します。

表3-2 共有メモリ操作パーミッション・コード

操作パーミッション 8進数値
Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

00400
00200
00040
00020
00004
00002

特有の値は、必要とする操作パーミッションのために8進数値を追加もしくはビット単位の論

理和によって生成されます。これが、もし「Read by User」と「Read/Write by Others」を要求

された場合、コードの値は00406 (00400＋00006)となります。<sys/shm.h>の中にある定数

SHM_RとSHM_Wは所有者のために読み書きパーミッションを定義するために使用すること

が可能です。

shmflg 値は、フラグ名称と8進数の操作パーミッション値を一緒に使用して簡単に設定するこ

とが可能です。使用例：

shmid = shmget (key, size, (IPC_CREAT | 0400));
shmid = shmget (key, size, (IPC_CREAT | IPC_EXCL | 0400));

以下の値は<sys/shm.h>の中で定義されています。これらの値を超えると常に失敗の原因と

なります。

SHMMNI いつでも利用可能なユニークな共有メモリ領域(shmids)の最大数
SHMMIN 最小共有メモリ領域サイズ
SHMMAX 最大共有メモリ領域サイズ
SHMALL 最大共有メモリ・ページ数

共有メモリ制限値のリストは以下のオプションの使用によりipcs(1)コマンドで取得すること

が可能です。詳細はmanページを参照してください。

ipcs -m -l

特定の関連するデータ構造体の初期化および特定のエラー条件についてはshmget(2)のmanペ
ージを参照してください。

リアルタイム・プロセス間通信

3-21

shmctlシステムコール3

shmctl(2)は共有メモリ領域の制御操作を実行するために使用されます。

本セクションではshmctlシステムコールを説明します。さらに詳細な情報はshmctl(2)のman
ページを参照してください。この呼び出しの使用を説明しているプログラムは、

README.shmctl.txt内に提供された多くのコメントと共に

/usr/share/doc/ccur/examples/shmctl.cで見つけることが可能です。

概要

#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

上記の全てのインクルードファイルは、オペレーティング・システムの/usr/includeサブディ

レクトリにあります。

shmctlシステムコールは正常終了で0、それ以外で-1の整数値を返します。

shmid 変数はshmgetシステムコールを使って作成された有効な負ではない整数値でなければ

なりません。

cmd 引数は以下の値のいずれかとなります。

IPC_STAT 指定されたshmid に対応するデータ構造体、ポインタbuf によって

指し示されるユーザー・メモリ空間のデータ構造体の場所を含むス

テータス情報を返します。「Read」許可が必要です。

IPC_SET 指定されたにshmid 対応する有効なユーザーIDとグループID、パー

ミッション操作を設定します。

IPC_RMID 指定されたshmid と共にそれに対応するデータ構造体を削除しま

す。

SHM_LOCK 共有メモリ領域のスワップを防ぎます。ユーザーはロックが有効に

なった後、存在することを要するどのページもフォールトする必要

があります。プロセスはこの操作を実行するためにスーパー・ユー

ザーもしくはCAP_IPC_LOCK権限を持っている必要があります。

SHM_UNLOCK メモリから共有メモリ領域をアンロックします。プロセスはこの操

作を実行するためにスーパー・ユーザーもしくはCAP_IPC_LOCK
権限を持っている必要があります。

NOTE

msgctl(2)サービスはIPC_INFO, SHM_STAT, SHM_INFOコマンドもサ

ポートします。しかし、これらのコマンドはipcs(1)ユーティリティ

で使用するためだけに意図されているので、これらのコマンドについ

ての説明はありません。

RedHawk Linux User’s Guide

3-22

IPC_SETまたはIPC_RMID制御コマンドを実行するため、プロセスは以下の条件を1つ以上満

たしていなければなりません。

• 有効なOWNERのユーザーIDを所有
• 有効なCREATORのユーザーIDを所有
• スーパー・ユーザー
• CAP_SYS_ADMINケーパビリティを所有

共有メモリ領域は、-m shmid(共有メモリ領域識別子)または-M shmkey(対応する領域のキー)オ
プション指定によるipcrm(8)コマンドの利用で削除される可能性もあることに注意してくだ

さい。このコマンドを使用するため、プロセスはIPC_RMID 制御コマンドの実行に必要とな

るのと同じ権限を持っている必要があります。このコマンドの使用に関して更なる情報は

ipcrm(8)のmanページを参照してください。

共有メモリ領域をI/O空間へバインド

RedHawk Linuxは共有メモリ領域をI/O空間の一部にバインドすることが可能です。そうする

ための手順は以下となります。

1. 共有メモリ領域を作成(shmget(2)).

2. PCI BARスキャン・ルーチンを使用してI/O領域の物理アドレスを取得

3. 領域をI/Oメモリにバインド(shmbind(2)).

4. 領域をユーザーの仮想アドレス空間に結合(shmat(2)).

コマンド・レベルで、shmconfig(1)ユーティリティは共有メモリ領域を作成して、それを物

理メモリへバインドするために使用することが可能です。詳細は「共有メモリ・ユーティリ

ティ」セクションを参照してください。

shmatとshmdtのシステムコールを使用することにより、共有メモリ領域とユーザーの仮想

アドレス空間との結合および分離が可能となります。これらのシステムコールの使用手順は

「shmatおよびshmdtシステムコール」の中で説明されています。

shmgetの利用3

shmget(2)システムコールは共有メモリ領域を作成するために最初に呼び出されます。呼び出

しの正常終了によって、size バイトの共有メモリ領域が作成され、領域の識別子が返されま

す。

I/O空間にバインドした時、領域のサイズはPCI BARスキャン・ルーチンを使用して取得する

ことが可能です。(bar_scan_open(3)を参照してください)

shmgetの使用に関する全ての情報は「shmgetシステムコール」の中で提供されます。

リアルタイム・プロセス間通信

3-23

shmbindの利用3

共有メモリ領域を作成した後、shmbind(2)システムコールを使ってI/O空間の一部にそれをバ

インドすることが可能です。この呼び出しは、ルートまたはCAP_SYS_RAWIOの権限を持っ

ている必要があることに注意してください。

shmbindは最初のプロセスが領域へ結合する前に呼び出される必要があります。その後、

shmat()を介して領域へ結合するため、呼び出し元プロセスの仮想アドレス空間を物理アドレ

ス空間の一部にマッピングを効果的に作成します。

I/O空間の一部は、その開始アドレスおよび抑制された共有メモリ領域のサイズによって定義

されます。開始アドレスはページ・バウンダリ(境界線)に揃える必要があります。共有メモリ

領域のサイズはshmgetの呼び出しに使用するsize 引数により確立されます。もし1024バイト

の共有メモリ領域を作成し、例えば、開始位置0x2000000 (16進数表示)で物理メモリの一部へ

バインドしたい場合、物理メモリの境界部分はメモリ位置0x2000000から0x2000BFFを含むこ

とになります。

デバイス用の物理アドレスはシステム内のハードウェア変更が原因で変わる可能性があるこ

とに注意してください。確実にデバイスを参照するために物理アドレスをPCI BAR スキャ

ン・ルーチンを使って取得する必要があります。bar_scan_open(3)のmanページを参照して

ください。

shmbindを呼び出すために必要とされる仕様は以下のとおりです。

int shmbind(int shmid, unsigned long paddr)

引数は以下のように定義されます：

shmid 物理メモリの一部へバインドしたい共有メモリ領域の識別子

paddr 指定した共有メモリ領域をバインドしたいメモリの開始物理アドレ

ス

shmatおよびshmdtシステムコール3

共有メモリ操作のシステムコールshmatとshmdtは、呼び出し元プロセスのアドレス空間へ

共有メモリ領域の結合および分離をするために使用されます。

本セクションはshmatとshmdtのシステムコールを説明します。更なる詳細な情報は

shmop(2)のmanページを参照してください。これらの呼び出しの使用を説明しているプログ

ラムは、README.shmop.txt内に提供された多くのコメントと共に

/usr/share/doc/ccur/examples/shmop.cで見つけることが可能です。

概要

#include <sys/types.h>
#include <sys/shm.h>

void *shmat (int shmid, const void *shmaddr, int shmflg);
int shmdt (const void *shmaddr);

上記の全てのインクルードファイルは、オペレーティング・システムの/usr/includeサブディ

レクトリにあります。

RedHawk Linux User’s Guide

3-24

共有メモリ領域の結合3

shmatシステムコールはshmid で指定された呼び出し元プロセスのアドレス空間に共有メモリ

領域を結合します。これは文字列のポインタ値を返します。正常終了でその値はプロセスが

共有メモリ領域に結合されているメモリのアドレスになり、失敗時は値が-1となります。

shmid 引数は有効な負ではない整数値でなければなりません。これは前述のshmgetシステム

コールを使って作成されている必要があります。

shmaddr 引数をshmatシステムコールへ渡す際にゼロもしくはユーザー指定とすることが可

能です。もしそれがゼロの場合、オペレーティング・システムは共有メモリ領域が結合され

るアドレスを選びます。もしそれがユーザー指定の場合、そのアドレスはプログラムのアド

レス空間内の有効なページ境界アドレスである必要があります。以下に典型的なアドレスの

範囲を例示します。

0xc00c0000
0xc00e0000
0xc0100000
0xc0120000

オペレーティング・システムがアドレスを選ぶことを許可することは移植性を向上させま

す。

shmflg 引数はshmatシステムコールへSHM_RND(切り捨て)やSHM_RDONLY(読み取り専用)
フラグを渡すために使用されます。

共有メモリ領域の分離3

shmdtシステムコールは呼び出し元プロセスからshmaddr により指定されたアドレスにある

共有メモリ領域を分離します。これは正常終了で0、それ以外で-1の整数値を返します。

リアルタイム・プロセス間通信

3-25

共有メモリ・ユーティリティ3

RedHawk Linuxは共有メモリ領域の利用を容易にする2つのユーティリティを提供します。

shmdefine(1)ユーティリティは協同プロセスが使用する1つ以上の共有メモリ領域を作成する

ことが可能です。shmconfig(1)コマンドは共有メモリ領域を作成し、物理メモリの一部へバ

インドすることが可能です。これらのユーティリティはこの後のセクションで説明します。

shmdefineユーティリティ3

shmdefineユーティリティは一連の協同プロセスが共有メモリの利用を容易にするために設

計されました。例え1つ以上の共有メモリ領域を協同する多数のプログラムがあったとして

も、1度だけユーティリティを呼び出すことが必要です。shmdefineはソース・オブジェク

ト・ファイルへリンクする必要のあるオブジェクト・ファイルを生成するため、リンクする

以前に呼び出す必要があります。

RedHawk Linuxシステム上で実行するプログラム用にshmdefineは現在GNU C, Fortran, Adaコ
ンパイラ(gcc, g77 GNAT)で動作します。

このユーティリティの使用に関する詳細は、Quick Reference for shmdefine (文書番号0898010)と
shmdefine(1)のmanページを参照してください。

shmconfigコマンド3

shmconfig(1)コマンドは特定のキーに対応する共有メモリ領域を作成し、特定I/Oメモリの一

部へ任意にバインドすることを支援します。

コマンドの構文：

/usr/bin/shmconfig -i DEVSTR
/usr/bin/shmconfig -b BARSTR [-s SIZE] [-g GROUP] [-m MODE] [-u USER]
{key | -t FNAME}
/usr/bin/shmconfig -s SIZE [-p ADDR] [-g GROUP] [-m MODE] [-u USER]
{key | -t FNAME}

共有メモリ領域へ割り当てるNUMAメモリ・ポリシーに関する情報については、10章または

shmconfig(1)のmanページを参照してください。

オプションは表3-3で説明しています。

RedHawk Linux User’s Guide

3-26

表3-3 shmconfig(1) コマンドのオプション

Option Description
--info=DEVSTR, -i DEVSTR 以下で構成されるDEVSTR にマッチしている各デバ

イス上の各メモリ領域に関する情報を出力

vendor_id:device_id

--bindを使用すると役に立ちます。 DEVSTR 上の情

報に関しては--bindを参照してください。

--bind=BARSTR, -b BARSTR 共有領域へバインドするためにメモリ内のI/O領域を

特定します。BARSTR は以下で構成されます。

vendor_id:device_id:bar_no[:dev_no]

vendor_id と device_id はハードウェア・デバイスを

特定し、通常2つの16進数の値をコロンで区切って表

します(例 8086:100f)。ベンダーのマニュアル、

/usr/share/hwdata/pci.ids、lspci –nsより取得する

ことが可能です。これらのIDを指定する時、接頭語

“0x” を必要とします(例 0x8086:0x100f)。後述の「見

本」を参照してください。

bar_no はバインドするメモリ領域を特定します。こ

の値を取得するために-i オプションを使用します(出
力は“Region bar_no: Memory at ...”と表示されます)。
メモリ領域だけをバインすることが可能です。

dev_no は任意、ベンダーIDとデバイスIDがマッチし

ている複数のボード間を識別するためだけに必要で

す。この値を取得するために-iオプションを使用しま

す(出力は“Logical device: dev_no:”と表示されます)。

このオプションを使用するためにユーザーは

CAP_SYS_RAWIO権限を持っている必要がありま

す。
--size=SIZE, -s SIZE バイトで領域のサイズを指定します。--bindは必須で

はなく、デフォルトは全てのメモリ領域です。
--physical=ADDR, -p ADDR 領域をバインドする物理I/Oメモリの一部の開始アド

レスとしてADDR を指定します。このオプションは

廃止されましたので、--bindを使用してください。こ

のオプションを使用するためにユーザーは

CAP_SYS_RAWIO権限を持っている必要がありま

す。
--user=USER, -u USER 共有メモリ領域所有者のログイン名称を指定しま

す。
--group=GROUP, -g GROUP 領域へのグループ・アクセスを適用するグループ名

称を指定します。
--mode=MODE, -m MODE 共有メモリ領域へのアクセスを管理するパーミッシ

ョンのセットとしてmode を指定します。パーミッシ

ョンを指定するために8進数を使用する必要がありま

す。
--help, -h 利用可能なオプションと使用方法について説明しま

す。
--version, -v コマンドのバージョンを印字します。

リアルタイム・プロセス間通信

3-27

/procと/sysファイルシステムはこのコマンドを使用するためにマウントされている必要があ

ります。

-s引数により指定された領域のサイズは、そこに配置されるデータのサイズと一致している

必要があることに注意することは重要です。もしshmdefineが使用されている場合、領域の

サイズは共有メモリの一部であると宣言されている変数のサイズと一致している必要があり

ます。より大きなサイズの指定でも機能します(shmdefineに関する情報は、「shmdefineユー

ティリティ」を参照してください)。

ユーザーとグループに関連する領域を識別し、アクセスを制御するパーミッションを設定す

るために-u, -g, -mオプションを指定することを推奨します。もし指定されていない場合、領

域のデフォルトのユーザーIDおよびグループIDはそれらの所有者で、デフォルトのモードは

0644です。

key 引数は共有メモリ領域用にユーザーが選択した識別子を表します。この識別子は整数もし

くは既存ファイルを参照する標準的なパス名称とすることが可能です。パス名称が提供され

る時、ftok(key,0)はshmget(2)コールのためにキーとなるパラメータとして使用されま

す。

--tmpfs=FNAME / -t FNAME はキーの代わりにtmpfsファイルシステムのファイル名称を指定

するために使用することが可能です。-u, -g, -mオプションはこの領域のファイル属性を設定

もしくは変更するために使用することが可能です。

shmconfigが実行される時、内部のデータ構造体と共有メモリ領域は指定されたキーに対し

て作成され、もし-pオプションが使用される場合、共有メモリ領域はI/Oメモリの連続する領

域にバインドされます。

shmconfigで作成された共有メモリ領域へのアクセスするため、プロセスは領域の識別子を

取得するために最初にshmget(2)を呼び出す必要があります。この識別子は共有メモリ領域を

操作する他のシステムコールで必要になります。shmgetの仕様は以下のとおりです。

int shmget(key, size, 0)

key の値はshmconfigで指定されたkey の値によって決定されます。もしkey の値が整数だっ

た場合、その整数はshmgetの呼び出しでkey に指定される必要があります。もしkey の値が

パス名称だった場合、shmgetの呼び出しでkey に指定したパス名称に基づく整数値を取得す

るために最初にftokサブルーチンを呼び出す必要があります。パス名称からキーへ変更すると

きにshmconfigはid がゼロのftokを呼び出すため、ftokの呼び出しにおけるid 引数の値はゼ

ロである必要があることに注意することが重要です。size の値はshmconfigの-s引数で指定

したバイト数と等しくする必要があります。共有メモリ領域が既に作成されたため、ゼロの

値はflag 引数として指定されます。

shmgetに関するすべての情報は「shmgetシステムコール」を参照してください。ftokの使用

方法については、「共有メモリの利用」とftok(3)のmanページを参照してください。グローバ

ル・リソースとして処理するためにマッピングされたメモリの領域を作成する時、

shmconfigを呼び出すために/etc/init.dディレクトリ内のshmconfigスクリプトへ行を追加す

ることにより有用であると感じるかもしれません。そうすることで、非協同プロセスがそれ

を使用する機会を得る前にIPCキーを予約することが可能となり、共同プロセスが領域の使用

が必要となる前に共有メモリ領域と物理メモリ間のバインドを確立することが可能となりま

す。以下の例のような行を追加してください。

/usr/bin/shmconfig -p 0xf00000 -s 0x10000 -u root -g sys -m 0666
key

RedHawk Linux User’s Guide

3-28

実施例

この見本では、RCIM上の物理メモリ領域をlspci(8)使って確認し、共有メモリ領域へバイン

ドします。lspciを使用するためにはルートである必要があることに注意してください。もし

ルート権限を持っていない場合、/usr/share/hwdata/pci.idsを見てデバイス名称(RCIM)を探

すことが可能で、IDの値はベンダー/デバイスの記述の左側に列挙されます。2つ以上のデバイ

スIDが同一デバイスとして列挙されている時、どれを使用するかを決めるために列挙された

各device_id でshmconfig –iを実行します。

1. RCIMボードのbus:slot.func 識別子を見つけます：

lspci -v | grep -i rcim
0d:06.0 System peripheral: Concurrent Real-Time RCIM II
Realtime Clock ...

2. vendor_id:device_id 番号を取得するためにRCIM識別子を使用します：

lspci -ns 0d:06.0
0d:06.0 Class 0880: 1542:9260 (rev 01)

3. このデバイスのメモリ領域を見つけます。lspciはvendor_id:device_id の値を接頭語” 0x”

なしの16進数形式(1542:9260) で出力しますが、shmconfigはベース識別子

(0x1542:0x9260)を必要とすることに注意してください。

shmconfig -i 0x1542:0x9260
Region 0: Memory at f8d04000 (non-prefetchable) [size=256]

/proc/bus/pci0/bus13/dev6/fn0/bar0
Region 1: I/O ports at 7c00 [size=256]

/proc/bus/pci0/bus13/dev6/fn0/bar1
Region 2: Memory at f8d00000 (non-prefetchable) [size=16384]

/proc/bus/pci0/bus13/dev6/fn0/bar2

4. RCIMメモリ領域#2へバインドします：

shmconfig -b 0x1542:0x9260:2 -m 0644 -u me -g mygroup 42

5. システム上のIPC共有メモリ領域を確認します。physaddrはバインドした物理アドレス

を表し、上述のステップ3のshmconfig –iコマンドにより出力されたアドレスと一致す

ることに注意してください。

cat /proc/sysvipc/shm
key shmid perms size cpid lpid nattch uid

gid cuid cgid atime dtime ctime physaddr

42 0 644 16384 1734 0 0 5388

100 0 0 0 0 1087227538 f8d00000

4-1

4
プロセス・スケジューリング

424

本章ではRedHawk Linuxシステム上におけるプロセス・スケジューリングの概要を提供しま

す。どのようにプロセス・スケジューラが次に実行するプロセスを決定するのかを説明し、

POSIXスケジューリング・ポリシーと優先度を説明します。

概要4

RedHawk Linux OSの中で、スケジュール可能な存在は常にプロセスです。スケジューリング

優先度とスケジューリング・ポリシーはプロセスの属性です。システム・スケジューラはプ

ロセスが実行される時に決定します。それは構成パラメータ、プロセスの性質、ユーザー要

求に基づいて優先度を保持し、CPUへプロセスを割り当てるためにこれらの優先度と同様に

CPUアフィニティを使用します。

スケジューラは4つの異なるスケジューリング・ポリシー、1つは非クリティカルなプロセス

用(SCHED_OTHER)、1つはバックグランドでCPUに負荷をかけるプロセス用

(SCHED_RATCH)、リアルタイム・アプリケーション用に2つの固定優先度(SCHED_FIFOと

SCHED_RR)と動的優先度(SCHED_DEADLINE)を提供します。これらのポリシーは、4-3ペー

ジの「スケジューリング・ポリシー」セクションで詳細が説明されています。

デフォルトでは、スケジューラはタイムシェアリング・ポリシーのSCHED_OTHERを使いま

す。SCHED_OTHERポリシーの中のプロセスに対し、双方向プロセスには優れた応答時間、

CPU集中型プロセスには優れたスループットを提供しようとするため、スケジューラは実行

可能なプロセスの優先度を動的に操作します。

固定優先度スケジューリングはプロセス毎を基準に静的優先度を設定することが可能です。

スケジューラは固定優先度スケジューリング・ポリシーを使用するプロセスの優先度を決し

て変更しません。例え他のプロセスが実行可能であるとしても、最も高いリアルタイム固定

優先度プロセスは常に実行可能なCPUを直ぐに確保します。従って、設定されているプロセ

ス優先度に応じてプロセスが動作する正確な順番をアプリケーションは指定することが可能

です。

リアルタイム性能を必要としないシステム環境では、デフォルトのスケジューラの設定は十

分に機能し、固定優先度プロセスは必要とされません。しかし、リアルタイム・アプリケー

ションもしくは厳格なタイミングな制約を持つアプリケーションのために固定優先度プロセ

スはクリティカルなアプリケーションの要求が満たされることを保証する唯一の方法です。

特定のプログラムが非常にデターミニスティックな応答時間を要求する時、固定優先度スケ

ジューリング・ポリシーを使用する必要があり、最もデターミニスティックな応答が必要な

タスクは最も適した優先度を割り付ける必要があります。

IEEE規格1003.1bに基づくシステムコール一式は、プロセスのスケジューリング・ポリシーお

よび優先度へのダイレクトなアクセスを提供します。このシステムコール一式に含まれてい

るのは、プロセスがスケジューリング・ポリシーおよび優先度を取得もしくは設定すること

を許可するシステムコールで、特定のスケジューリング・ポリシーに関連する優先度の最小

値・最大値を取得し、ラウンドロビン(SCHED_RR)・スケジューリング・ポリシーに基づいて

スケジュールされたプロセスのタイム・クォンタムを取得。

RedHawk Linux User’s Guide

4-2

run(1)コマンドの使用により、コマンド・レベルでプロセスのスケジューリング・ポリシーと

優先度を変更することが可能となります。システムコールとrunコマンドは効果的な使用のた

めの手順とヒントと共に本章で後述されています。

プロセス・スケジューラの管理方法4

図4-1にスケジューラの操作方法を図示します。

図4-1 スケジューラ

プロセスが作成される時、ポリシーの範囲内でスケジューリング・ポリシーと優先度を含む

スケジューリング・パラメータを継承します。デフォルトの構成では、プロセスは

SCHED_OTHERポリシーでスケジュールされたタイムシェアリング・プロセスとして開始し

ます。プロセスが固定優先度ポリシーで正しくスケジュールされるためには、ユーザー要求

がシステムコールもしくはrun(1)コマンドを介して行われる必要があります。

プロセスの優先度を設定する時、プロセスは“User Priority(ユーザー優先度)”を設定します。こ

れはユーザーが現在の優先度を取り出すときに呼び出すsched_getparam(2)によって報告さ

れる優先度でもあります。移動可能なアプリケーションは特定のスケジューリング・ポリシ

ー用の有効な優先度の埴を判断するためにsched_get_priority_min()と
sched_get_priority_max()のインターフェースを使用する必要があります。ユーザー優先度

の値(sched_priority)は各プロセスに割り当てられます。SCHED_OTHERプロセスは0のユ

ーザー優先度が割り当てられるだけです。SCHED_FIFOとSCHED_RRプロセスは1から99の範

囲内のユーザー優先度を持っています。

スケジューラはポリシー固有優先度(Policy-Specific Priorities)からグローバル優先度(Global
Priorities)へスケジューリングを変更します。グローバル優先度はカーネル内部で使用される

スケジューリング・ポリシーの値です。スケジューラは見込まれる各グローバル優先度の値

に対して実行可能なプロセスの一覧を保持します。SCHED_OTHERスケジューリング・ポリ

シーに対応する40個のグローバル・スケジューリング優先度で、固定優先度スケジューリン

グ・ポリシー(SCHED_RRとSCHED_FIFO)に対応する99個のグローバル・スケジューリング優

先度。スケジューラは空ではない最も高いグローバル優先度のリストを探して、現在のCPU
上で実行するためにそのリストの先頭のプロセスを選びます。

プロセス・スケジューリング

4-3

スケジューリング・ポリシーは、リスト内のプロセスがブロックされるもしくは実行可能と

なる時、リスト内でユーザー優先度とプロセスの相対位置が等しいプロセスのリストへ挿入

される各プロセスについて決定します。

固定優先度プロセスが特定CPUですぐに実行可能である間は、タイムシェアリング・プロセ

スがそのCPU上で実行することはありません。

一度スケジューラがCPUへプロセスを割り付けたら、プロセスはそのタイム・クォンタム使

い切る、スリープする、高優先度プロセスによりブロックもしくはプリエンプトされるまで

実行されます。

ps(1)とtop(1)により表示される優先度は内部で計算された値でユーザーに設定された優先度

を間接的に反映するだけであることに注意してください。

スケジューリング・ポリシー4

Linuxはプロセスをスケジュールする方法を制御するスケジューリング・ポリシーを5種類定

義します：

SCHED_DEADLINE 周期的なソフト・リアルタイム・タスク向けのポリシー
SCHED_FIFO ファーストイン・ファーストアウト(FIFO)・スケジューリング・ポリシ

ー
SCHED_RR ラウンドロビン(RR)・スケジューリング・ポリシー
SCHED_OTHER デフォルトのタイムシェアリング・スケジューリング・ポリシー
SCHED_BATCH 対話の少ないジョブを長時間実行
SCHED_IDLE CPUがアイドルである時に実行

デッドライン・スケジューリング(SCHED_DEADLINE) 4

SCHED_DEADLINEはRedHawkカーネルでサポートされますが、それよりもConcurrentはシー

ルドを利用するリアルタイム・アプローチの使用を強く推奨します。

NOTE

SCHED_DEALINEとSCHED_RRスケジューリング・クラスの両方が

正しく機能するにはローカル・タイマー次第ですので、これらはロー

カル・タイマー・シールドとは互換性がありません。どちらかのスケ

ジューリング・クラスが設定されたプロセスをローカル・タイマーが

シールドされたCPUにバインドする場合、そのプロセスは期待通りに

はスケジュールされません。

ファーストイン・ファーストアウト・スケジューリング(SCHED_FIFO) 4

SCHED_FIFOは0より高いユーザー優先度でのみ使用することが可能です。これは

SCHED_FIFOプロセスが実行可能となった時、現在実行中のどのようなSCHED_OTHERプロ

セスであっても常に即座にプリエンプトすることを意味します。SCHED_FIFOはタイム・ス

ライシングのない単純なスケジューリングのアルゴリズムです。SCHED_FIFO優先度でスケ

ジュールされたプロセスに対し、次のルールが適用されます：高優先度の他のプロセスにプ

リエンプトされたSCHED_FIFOプロセスはその優先度リストの先頭に留まり、全ての高優先

度プロセスが再びブロックされたら直ぐに実行を再開します。

RedHawk Linux User’s Guide

4-4

SCHED_FIFOプロセスが実行可能となった時、その優先度リストの最後尾に挿入されます。

もし実行可能であった場合、sched_setscheduler(2)もしくはsched_setparam(2)の呼び出

しはリストの最後尾にあるPIDに一致するSCHED_FIFOプロセスを配置します。

sched_yield(2)を呼び出すプロセスはその優先度リストの最後尾へ配置されます。その他の

イベントはユーザー優先度が等しい実行可能なプロセス待ちリストの中でSCHED_FIFO優先

度でスケジュールされたプロセスは移動しません。SCHED_FIFOプロセスは、I/O要求により

ブロック、高優先度プロセスによるプリエンプト、sched_yieldを呼び出すまで実行されま

す。

ラウンドロビン・スケジューリング(SCHED_RR) 4

SCHED_RRはSCHED_FIFOの単純な拡張機能です。各プロセスはタイム・クォンタムを最大

限使って実行することが許可されていることを除いては、上述のSCHED_FIFO全てが

SCHED_RRに適用されます。もしSCHED_RRプロセスが周期時間分もしくはタイム・クォン

タムより長く実行している場合、その優先度リストの最後尾へ配置されます。高優先度プロ

セスにプリエンプトされ、その後実行プロセスとして実行を再開するSCHED_RRプロセス

は、割り当てられたそのラウンドロビンのタイム・クォンタムを使い切らずに終了します。

タイム・クォンタムの長さはsched_rr_get_interval(2)で取り出すことが可能です。タイム・

クォンタムの長さはSCHED_RRスケジューリング・ポリシーでスケジューリングされたプロ

セスに対応するナイス値に影響されます。高いナイス値は大きなタイム・クォンタムを割り

当てられます。

NOTE

SCHED_DEALINEとSCHED_RRスケジューリング・クラスの両方が

正しく機能するにはローカル・タイマー次第ですので、これらはロー

カル・タイマー・シールドとは互換性がありません。どちらかのスケ

ジューリング・クラスが設定されたプロセスをローカル・タイマーが

シールドされたCPUにバインドする場合、そのプロセスは期待通りに

はスケジュールされません。

タイムシェアリング・スケジューリング(SCHED_OTHER) 4

SCHED_OTHERはユーザー優先度0でのみ使用することが可能です。SCHED_OTHERは特別な

リアルタイム・メカニズムのユーザー優先度を必要としない全てのプロセスを対象とする一

般的なタイムシェアリングのスケジューラ・ポリシーです。実行されるプロセスは、リスト

の中だけで決定される動的な優先度に基づくユーザー優先度0のリストから選ばれます。動的

な優先度はナイス・レベル(nice(2)もしくはsetpriority(2)システムコールにより設定されま

す)に基づいており、実行可能な各プロセスのタイム・クォンタムのために増やされますが、

スケジューラにより実行を拒否されます。これは全てのSCHED_OTHERプロセス間で公平な

進行を保証します。例えば、I/O操作の実行によりプロセス自身が自主的にブロックする回数

といったようなその他の要因も考慮します。

バッチ・スケジューリング(SCHED_BATCH) 4

SCHED_BATCHは静的優先度0でのみ使用することが可能です。このポリシーは自身の(ナイ

ス値に基づく)動的優先度に応じてプロセスをスケジュールするSCHED_OTHERに類似してい

ます。違いはSCHED_BATCHはプロセスがCPUに負荷をかけるものとスケジューラが常に仮

定することです。

プロセス・スケジューリング

4-5

その結果、スケジューラは起動する動作に対して小さなスケジューリング・ペナルティを適

用するので、このプロセスはスケジューリングの決定において少し冷遇されます。

SCHED_BATCHはナイス値を下げたくない場合以外は非対話型の負荷、および(負荷のあるタ

スク間で)相互に余計なプリエンプションを引き起こすことがないデターミニスティックなス

ケジューリング・ポリシーが必要な負荷に対して便利です。

低優先度スケジューリング(SCHED_IDLE) 4

SCHED_IDLEは静的優先度が0でのみ使用することが可能です(プロセスのナイス値はこのポ

リシーには影響なし)。

本ポリシーは非常に低優先度(SCHED_OTHERもしくはSCHED_BATCHポリシーでナイス値が

+19以下)で実行中のジョブが対象です。

性能向上のための手続き4

優先度設定方法4

次の部分的なコードは現在のプロセスを60の固定優先度でSCHED_RR固定優先度スケジュー

リング・ポリシーに配置します。POSIXスケジューリング・ルーチンに関する情報は本章の

「プロセス・スケジューリング・インターフェース」セクションを参照してください。

#include <sched.h>
...
struct sched_param sparms;

sparms.sched_priority = 60;
if (sched_setscheduler(0, SCHED_RR, &sparms) < 0)
{

perror("sched_setsched");
exit(1);

}

割り込みルーチン4

固定優先度スケジューリング・ポリシーの1つにスケジュールされたプロセスは、ソフトIRQ
やタスクレットに関連する処理よりも高い優先度に割り付けられます。これらの割り込みル

ーチンは与えられたCPU上で実行した割り込みルーチンの代わりに作業を実行します。実際

の割り込みルーチンはハードウェア割り込みレベルで実行され、(固定優先度スケジューリン

グ・ポリシーの1つにスケジュールされたプロセスを含む)CPU上の全ての機能にプリエンプト

します。Linuxのデバイス・ドライバ作成者は、デバイスが割り込みをハンドルされたと確信

させるためにデバイスとのやり取りに要求される仕事量を最小限で実行することを奨励しま

す。デバイス・ドライバはデバイス割り込みルーチンに関連する作業の残りを処理するため

の割り込みメカニズムの1つを起動することが出来ます。固定優先度プロセスはそれらの割り

込みルーチンより上の優先度で実行されているため、この割り込み構造は固定優先度プロセ

スが割り込みルーチンから見込まれる最小限のジッター量を得ることが可能となります。

RedHawk Linux User’s Guide

4-6

デバイス・ドライバの割り込みルーチンに関する詳細な情報については「デバイス・ドライ

バ」章を参照してください。

SCHED_FIFO vs SCHED_RR4

2つの固定優先度スケジューリング・ポリシーはその性質がとても似ており、殆どの条件下で

同一の作法で動作します。SCHED_RRがプロセスで使えるタイム・クォンタムを所有してい

る間にタイム・クォンタムを使い切った時、もし固定優先度スケジューリング・ポリシーの1
つの中に優先度の等しい実行可能な状態のプロセスが存在する場合、プロセスはCPUを放棄

するだけであることを覚えることが重要です。もし優先度の等しい実行可能な状態のプロセ

スが無い場合、スケジューラは当初のSCHED_RRプロセスがそのCPU上で実行可能な最高優

先度プロセスで有り続け、同一プロセスが実行のために再度選択されることが確定します。

これは、全く同じスケジューリング優先度にて固定優先度スケジューリング・ポリシーの1つ
にスケジュールされた実行中のプロセスが複数存在する場合、SCHED_FIFOとSCHED_RRで
スケジュールされたプロセス間の違いが唯一時間だけであることを意味します。

この場合、SCHED_RRはプロセスに割り当てられたタイム・クォンタムに従いCPUを共有す

ることをそれらのプロセスに許可します。プロセスのタイム・クォンタムはnice(2)システム

コールにより影響を受けることに注意してください。より高いナイス値を持つプロセスは大

きなタイム・クォンタムが割り当てられます。プロセスのタイム・クォンタムはrun(1)コマン

ドを介して変更することも可能です(詳細は本章の「runコマンド」を参照してください)。

CPUをロックする固定優先度プロセス4

SCHED_FIFOとSCHED_RRのスケジューリング・ポリシーでスケジュールされたプロセスの

非ブロック無限ループはすべての低優先度プロセスを無期限にブロックします。このシナリ

オが完全に他のプロセスのCPUを奪うため、予防策としてこれを避ける必要があります。

ソフトウェア開発中、プログラマーはテスト中のアプリケーションよりも高いユーザー優先

度にスケジュールされたシェルをコンソール上で利用可能な状態を保つことにより、このよ

うな無限ループを中断することができます。これは予想通りにブロックしないもしくは終了

しないテスト中のリアルタイム・アプリケーションの緊急停止を可能にします。

SCHED_FIFOおよびSCHED_RRプロセスは絶えず他のプロセスをプリエンプトすることが可

能であるため、ルート・プロセスもしくはCAP_SYS_NICEケーパビリティを持つプロセスだ

けはそれらのポリシーを有効にすることが許可されます。

メモリのロック4

ページングとスワッピングは大抵の場合、アプリケーション・プログラムに予測不可能な量

のシステム・オーバーヘッド時間を付加します。ページングとスワッピングが原因の性能ロ

スを排除するため、物理メモリ内のプロセスの仮想アドレス空間全てもしくは一部をロック

およびアンロックするためにmlock(2), mlock2(2), munlock(2), mlockall(2), munlockall(2)各
システムコールおよびRedHawk Linuxのmlockall_pid(2) , munlockall_pid(2)システムコール

を使用します。

RedHawkはカーネル・デーモンがメモリ移動するのを防ぐシステムコールmlock(2),
mlockall(2), mlockall_pid(2)に渡すことが可能な追加のフラグも提供します。

プロセス・スケジューリング

4-7

これらのフラグやそれを回避することを意図するカーネルの動作はnoautomigrate(7)に記載

されています。詳細についてはmanページを参照して下さい。

CPUアフィニティとシールド・プロセッサ4

システム内の各プロセスはCPUアフィニティ・マスクを持っています。CPUアフィニティ・

マスクはどのCPU上でプロセスの実行を許可するかを決定します。CPUがプロセスからシー

ルドされている時、そのCPUでは、シールドされたCPUだけを含むCPUセットとなるCPUアフ

ィニティが明示的に設定されたプロセスだけを実行します。これらのテクニックの利用は、

プロセスの実行をどこでどのように制御するかが更に加わります。詳細な情報については

「リアルタイム性能」章を参照してください。

プロセス・スケジューリング・インターフェース4

IEEE規格1003.1bに基づくシステムコール一式はプロセスのスケジューリング・ポリシーおよ

び優先度への直接アクセスを提供します。run(1)コマンドの使用によりコマンド・レベルでプ

ロセスのスケジューリング・ポリシーおよび優先度を変更しても構いません。システムコー

ルについては後述します。runコマンドについては4-13ページに詳述されています。

POSIXスケジューリング・ルーチン4

後に続くセクションでPOSIXのスケジューリング・システムコールの使用手順を説明しま

す。これらのシステムコールを以下で簡単に説明します。

スケジューリング・ポリシー：

sched_setscheduler プロセスのスケジューリング・ポリシーと優先度を設

定
sched_getscheduler プロセスのスケジューリング・ポリシーを取得

スケジューリング優先度：

sched_setparam プロセスのスケジューリング優先度を変更
sched_getparam プロセスのスケジューリング優先度を取得

CPUの放棄：

sched_yield CPUの放棄

最低/最高優先度：

sched_get_priority_min スケジューリング・ポリシーに対応する最低優先度を取

得
sched_get_priority_max スケジューリング・ポリシーに対応する最高優先度を取

得

ラウンドロビン・ポリシー：

RedHawk Linux User’s Guide

4-8

sched_rr_get_interval SCHED_RRスケジューリング・ポリシースケジュールさ

れたプロセスに対応するタイム・クォンタムを取得

sched_setschedulerルーチン4

sched_setscheduler(2)システムコールはスケジューリング・ポリシーと関連するパラメータ

をプロセスへ設定することが可能です。

sched_setschedulerは、(1)プロセスのスケジューリング・ポリシーをSCHED_FIFOもしくは

CHED_RRへ変更する、もしくは、(2)SCHED_FIFOもしくはCHED_RRにスケジューリングさ

れたプロセスの優先度を変更するために呼び出して使用すること、以下の条件の1つを満たす

必要があることに注意することが重要です：

• 呼び出し元プロセスはルート権限を所有している必要がある
• 呼び出し元プロセスの有効ユーザーID(uid)はターゲット・プロセス(スケジューリング・

ポリシーと優先度が設定されているプロセス)の有効ユーザーIDと一致している必要があ

る、もしくは呼び出し元プロセスはユーパーユーザーもしくはCAP_SYS_NICEケーパビ

リティを所有している必要がある

概要

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct
sched_param *p);

struct sched_param {

...
int sched_priority;
...

};

引数は以下のように定義されます：

pid スケジューリング・ポリシーと優先度が設定さているプロセスのプロセス識

別番号(PID)。現在のプロセスを指定するにはpid の値をゼロに設定します。

policy <sched.h>ファイル内に定義されているスケジューリング・ポリシー。policy
の値は以下の1つである必要があります：

SCHED_FIFO ファーストイン・ファーストアウト(FIFO)・スケジュ

ーリング・ポリシー
SCHED_RR ラウンドロビン(RR)・スケジューリング・ポリシー
SCHED_OTHER デフォルトのタイムシェアリング・スケジューリン

グ・ポリシー
SCHED_BATCH 対話の少ないジョブを長時間実行
SCHED_IDLE CPUがアイドルである時に実行

p pid で識別されるプロセスのスケジューリング優先度を指定する構造体への

ポインタ。優先度は、指定されたポリシーに対応するスケジューラ・クラス

に定義される優先度の範囲内にある整数値です。次のシステムコールの1つを

呼び出すことにより対応するポリシーの優先度の範囲を判断することが可能

です：sched_get_priority_minもしくはsched_get_priority_max(これらの

システムコールの説明については4-11ページを参照してください)。

プロセス・スケジューリング

4-9

もし指定したプロセスのスケジューリング・ポリシーと優先度の正常に設定された場合、

sched_setschedulerシステムコールはプロセスの以前のスケジューリング・ポリシーを返し

ます。戻り値-1はエラーが発生したことを示し、errnoはエラーを知らせるため設定されま

す。発生する可能性のあるエラーの種類の一覧はsched_setscheduler(2)のmanページを参照

してください。もしエラーが発生した場合、プロセスのスケジューリング・ポリシーと優先

度は変更されません。

プロセスのスケジューリング・ポリシーを変更した時、その新しいタイム・クォンタムもポ

リシーと優先度に関連するスケジューラに定義されているデフォルトのタイム・クォンタム

へ変更される事に注意することが重要です。run(1)コマンドの使用によりコマンド・レベルで

SCHED_RRスケジューリング・ポリシーにスケジュールされたプロセスのタイム・クォンタ

ムを変更することが可能です(このコマンドの情報については4-13ページを参照してくださ

い)。

sched_getschedulerルーチン4

sched_getscheduler(2)システムコールは指定したプロセスのスケジューリング・ポリシー

を取得することが可能です。スケジューリング・ポリシーは次のように<sched.h>ファイル

内に定義されています：

SCHED_FIFO ファーストイン・ファーストアウト(FIFO)・スケジューリング・ポリシー
SCHED_RR ラウンドロビン(RR)・スケジューリング・ポリシー
SCHED_OTHER デフォルトのタイムシェアリング・スケジューリング・ポリシー
SCHED_BATCH 対話の少ないジョブを長時間実行
SCHED_IDLE CPUがアイドルである時に実行

概要

#include <sched.h>

int sched_getscheduler(pid_t pid);

引数は以下のように定義されます：

pid スケジューリング・ポリシーを取得したいプロセスのプロセス識別番号

(PID)。現在のプロセスを指定するにはpid の値をゼロに設定します。

もし呼び出しが成功した場合、sched_getschedulerは指定されたプロセスのスケジューリン

グ・ポリシーを返します。戻り値-1はエラーが発生したことを示し、errnoはエラーを知らせ

るため設定されます。発生する可能性のあるエラーの種類の一覧はsched_getscheduler(2)
のmanページを参照してください。

sched_setparamルーチン4

sched_setparam(2)システムコールは指定されたプロセスのスケジューリング・ポリシーと

関連するスケジューリング・パラメータを設定することが可能です。

sched_setparamは、SCHED_FIFOもしくはSCHED_RRにスケジュールされたプロセスのス

ケジューリング優先度を変更するために呼び出して使用すること、以下の条件の1つを満たす

必要があることに注意することが重要です：

• 呼び出し元プロセスはルート権限を所有している必要がある

RedHawk Linux User’s Guide

4-10

• 呼び出し元プロセスの有効ユーザーID(uid)はターゲット・プロセス(スケジューリング・

ポリシーと優先度が設定されているプロセス)の有効ユーザーIDと一致している必要があ

る、もしくは呼び出し元プロセスはユーパーユーザーもしくはCAP_SYS_NICEケーパビ

リティを所有している必要がある

概要

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *p);

struct sched_param {

...
int sched_priority;
...

};

引数は以下のように定義されます：

pid スケジューリング優先度を変更するプロセスのプロセス識別番号(PID)。現在

のプロセスを指定するにはpid の値をゼロに設定します。

p pid で識別されるプロセスのスケジューリング優先度を指定する構造体への

ポインタ。優先度は、プロセスの現在のスケジューリング・ポリシーに対応

する優先度の範囲内にある整数値です。高い数値はより有利な優先度とスケ

ジューリングを表します。

sched_getscheduler(2)システムコールの呼び出しによりプロセスのスケジューリング・ポ

リシーを取得することが可能です(このシステムコールの説明は4-9ページを参照してくださ

い)。sched_get_priority_min(2)およびsched_get_priority_max(2)システムコールを呼び出

すことにより対応するポリシーの優先度の範囲を判断することが可能です。(これらのシステ

ムコールの説明は4-11ページを参照してください)

戻り値0は指定したプロセスのスケジューリング優先度の変更が成功したことを表します。戻

り値-1はエラーが発生したことを示し、errnoはエラーを知らせるため設定されます。発生す

る可能性のあるエラーの種類の一覧はsched_setparam(2)のmanページを参照してください。

もしエラーが発生した場合、プロセスのスケジューリング優先度は変更されません。

sched_getparamルーチン4

sched_getparam(2)システムコールは指定したプロセスのスケジューリング・パラメータを

取得します。

概要

#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *p);

struct sched_param {

...
int sched_priority;

プロセス・スケジューリング

4-11

...
};

引数は以下のように定義されます：

pid スケジューリング優先度を取得したいプロセスのプロセス識別番号(PID)。現

在のプロセスを指定するにはpid の値をゼロに設定します。

p pid で識別されるプロセスのスケジューリング優先度を返す構造体へのポイ

ンタ。

戻り値0はsched_getparamの呼び出しが成功したことを表します。指定したプロセスのスケ

ジューリング優先度は、p が示す構造体の中に返されます。発生する可能性のあるエラーの

種類の一覧は、sched_getparam(2)のmanページを参照してください。

sched_yieldルーチン4

sched_yield(2)システムコールは、呼び出し元プロセスが再び実行可能な状態の最高優先度

プロセスになるまでCPUを放棄することを許可します。sched_yieldの呼び出しは、呼び出し

元プロセスと優先度が等しいプロセスが実行可能な状態である場合にのみ有効であることに

注意してください。このシステムコールは、呼び出し元プロセスよりも低い優先度のプロセ

スの実行を許可するために使用することは出来ません。

概要

#include <sched.h>

int sched_yield(void);

戻り値0はsched_yieldの呼び出しが成功したことを表します。戻り値-1はエラーが発生した

ことを示します。errnoはエラーを知らせるため設定されます。

sched_get_priority_minルーチン4

sched_get_priority_min(2)システムコールは指定したスケジューリング・ポリシーに対応す

る最も低い優先度を取得することが可能です。

概要

#include <sched.h>

int sched_get_priority_min(int policy);

引数は以下のように定義されます：

policy ファイル内に定義されるスケジューリング・ポリシー。policy の値は以下の1
つである必要があります。

SCHED_FIFO ファーストイン・ファーストアウト(FIFO)・スケジュ

ーリング・ポリシー
SCHED_RR ラウンドロビン(RR)・スケジューリング・ポリシー
SCHED_OTHER デフォルトのタイムシェアリング・スケジューリン

グ・ポリシー

RedHawk Linux User’s Guide

4-12

SCHED_BATCH 対話の少ないジョブを長時間実行
SCHED_IDLE CPUがアイドルである時に実行

数字的に高い優先度値を持つプロセスは数字的に低い優先度値を持つプロセスよりも前にス

ケジュールされます。sched_get_priority_minより返される値は、sched_get_priority_max
より返される値よりも小さくなります。

RedHawk Linuxは、ユーザー優先度値の範囲がSCHED_FIFOとSCHED_RRに対しては1から

99、そしてSCHED_OTHERに対しては優先度0が許可されます。

もし呼び出しに成功した場合、sched_get_priority_minは指定したスケジューリング・ポリ

シーに対応する最も低い優先度を返します。戻り値-1はエラーが発生したことを示し、errno
はエラーを知らせるため設定されます。発生する可能性のあるエラーの一覧を取得するには

sched_get_priority_min(2)のmanページを参照してください。

sched_get_priority_maxルーチン4

sched_get_priority_max(2)システムコールは指定したスケジューリング・ポリシーに対応す

る最も高い優先度を取得することが可能です。

概要

#include <sched.h>

int sched_get_priority_max(int policy);

引数は以下のように定義されます：

policy ファイル内に定義されるスケジューリング・ポリシー。policy の値は以下の1
つである必要があります。

SCHED_FIFO ファーストイン・ファーストアウト(FIFO)・スケジュ

ーリング・ポリシー
SCHED_RR ラウンドロビン(RR)・スケジューリング・ポリシー
SCHED_OTHER デフォルトのタイムシェアリング・スケジューリン

グ・ポリシー
SCHED_BATCH 対話の少ないジョブを長時間実行
SCHED_IDLE CPUがアイドルである時に実行

数字的に高い優先度値を持つプロセスは数字的に低い優先度値を持つプロセスよりも前にス

ケジュールされます。sched_get_priority_maxより返される値は、sched_get_priority_min
より返される値よりも大きくなります。

RedHawk Linuxは、ユーザー優先度値の範囲がSCHED_FIFOとSCHED_RRに対しては1から

99、そしてSCHED_OTHERに対しては優先度0が許可されます。

もし呼び出しに成功した場合、sched_get_priority_maxは指定したスケジューリング・ポリ

シーに対応する最も高い優先度を返します。戻り値-1はエラーが発生したことを示し、errno
はエラーを知らせるため設定されます。発生する可能性のあるエラーの一覧を取得するには

sched_get_priority_max(2)のmanページを参照してください。

プロセス・スケジューリング

4-13

sched_rr_get_intervalルーチン4

sched_rr_get_interval(2)システムコールはSCHED_RRスケジューリング・ポリシーでスケジ

ュールされたプロセスのタイム・クォンタムを取得することが可能です。タイム・クォンタ

ムとはカーネルがプロセスにCPUを割り当てる一定の時間です。CPUが割り当てられたプロ

セスがそのタイム・クォンタム分を実行しているとき、スケジューリングの決定が行われま

す。もし同じ優先度の他のプロセスが実行可能な状態の場合、そのプロセスがスケジュール

されます。もしそうでない場合は、他のプロセスが実行され続けます。

概要

include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *tp);

struct timespec {

time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

引数は以下のように定義されます：

pid タイム・クォンタムを取得したいプロセスのプロセス識別番号(PID)。現在の

プロセスを指定するにはpid の値をゼロに設定します。

tp pid で識別されるプロセスのラウンドロビン・タイム・クォンタムが返され

るtimespec 構造体へのポインタ。識別されたプロセスはSCHED_RRスケジュ

ーリング・ポリシーで実行している必要があります。

戻り値0はsched_rr_get_intervalの呼び出しが成功したことを表します。指定したプロセス

のタイム・クォンタムはtp が示す構造体の中に返されます。戻り値-1はエラーが発生したこ

とを示し、errnoはエラーを知らせるため設定されます。発生する可能性のあるエラーの一

覧はsched_rr_get_interval(2)のmanページを参照してください。

runコマンド4

run(1)コマンドは、プロセス・スケジューラ属性とCPUアフィニティを制御するために使用す

ることが可能です。このコマンドの構文は、

run [OPTIONS] {COMMAND [ARGS] | PROCESS/THREAD_SPECIFIER}

runコマンドは、オプションのリストが記述された環境で指定のコマンドを実行し、コマンド

の終了値を伴って終了します。もし指定子(SPECIFIER)が与えられた場合、runは指定子のプ

ロセス/スレッド一式の環境を変更します。指定子は以下で定義します。コマンドは同じコマ

ンド・ラインの実施で指定子を組み合わせることはできません。

runコマンドは指定したPOSIXスケジューリング・ポリシーおよび指定した優先度でプログラ

ムを実行することが可能です。(POSIXスケジューリング・ポリシーの説明は4-3ページを参照

してください)SCHED_RRポリシーでスケジュールされたプログラムのタイム・クォンタムも

やはり設定することが可能です。

RedHawk Linux User’s Guide

4-14

プログラムのスケジューリング・ポリシーと優先度を設定するため、シェルからrunコマンド

を呼び出し、--policy=policy もしくは–s policy オプションおよび--priority=priority もしくは

-P priority オプションの両方を指定します。policy の有効なキーワードは、

SCHED_FIFO or fifo ファーストイン・ファーストアウト・スケジューリング
SCHED_RR or rr ラウンドロビン・スケジューリング
SCHED_OTHER or other タイムシェアリング・スケジューリング
SCHED_BATCH or batch 対話の少ないジョブを長時間実行
SCHED_IDLE or idle CPUがアイドルである時に実行

priority の値は、指定するスケジューリング・ポリシー(もし-sオプションが使用されていない

場合は現在のスケジューリング・ポリシー)が有効な整数値である必要があります。より高い

数値は、より有利なスケジューリング優先度を表します。

SCHED_RRスケジューリング・ポリシーにスケジュールされたプログラムのタイム・クォン

タムを設定するため、--quantum=quantum もしくは-q quantum オプションも指定します。

quantum は、-20から19までをナイス値として指定(スライス時間は-20が最も長く19が最も短

い)、もしくはナイス値に対応するミリ秒の値として指定します。--quantum=listオプション

はナイス値と対応するミリ秒の値を表示します。

スケジューリング・ポリシーを設定する時にSCHED_RESET_ON_FORK属性を適用するに

は、--resetonforkもしくは–rオプションを使用します。スケジューリング・ポリシーが

SCHED_FIFO もしくはSCHED_RRのどちらかでこのオプションを--policyオプションと共に

使用される時、指定されたプロセスもしくはコマンドによって続いて作成される子プロセス

は、親プロセスのリアルタイム・スケジューリング・ポリシーは継承しませんが、その代わ

りに子プロセスはSCHED_OTHERスケジューリング・ポリシーが割り当てられます。また、--
resetonforkオプションが使用される時、親プロセスのスケジューリング・ポリシーに関係な

く、もし親プロセスのナイス値が0以下であっても子プロセスは0のナイス値が割り当てられ

ます。--resetonforkオプションは--policyオプションと一緒に使用される時にのみ有効です。

--bias=list もしくは-b list オプションを使用することでCPUアフィニティを設定することが

可能です。list は論理CPU番号のカンマ区切りリストもしくは範囲です(例：“0, 2-4, 6”)。アク

ティブな全てのプロセッサもしくはブート・プロセッサをそれぞれ指定するため、list は文字

列で“active”もしくは“boot”と指定することも可能です。CAP_SYS_NICEケーパビリティは更

にCPUをアフィニティへ追加するためには必要となります。

--negateもしくは-NオプションはCPUバイアス・リストを無効な状態にします。--negateオプ

ションが指定される時、バイアス・リスト・オプションも指定される必要があります。指定

されるバイアスはバイアス・リスト内に指定されたものを除くシステム上の全てのCPUを含

みます。

--copies=count もしくは-c count オプションは、コマンドの同一コピーを指定した回数実行

することが可能です。

その他のオプションで、情報の表示やバックグラウンドでのコマンド実行に利用することが

可能です。NUMAメモリ・ポリシーを設定するためのオプションは10章に記述されていま

す。詳細な情報についてはrun(1)のmanページを参照してください。

PROCESS/THREAD_SPECIFIER

このパラメータは対象となるプロセスまたはスレッドを指定するために使用します。以下の1
つだけを指定することが出来ます。複数のコンマ区切りの値は全てのlist で指定することが可

能で範囲は必要に応じて許可されます。

--all, -a 既存のプロセスとスレッドを全て指定します。

プロセス・スケジューリング

4-15

--pid=list, -p list 変更する既存のPIDのリストを指定します。全てのスケジューラ操

作は、全てのサブスレッドを含むリストアップされた全てのプロセ

ス・セットに限定します。

--tid=list, -t lis 変更する既存のTIDのリストを指定します。全てのスケジューラ操

作は、リストアップされたプロセスのスレッドと不特定ではないシ

ブリング・スレッドだけに限定します。-l list はPowerMAXとの互

換性のために使用することが可能です。

--group=list, -g list 変更するプロセス・グループのリストを指定し、リストアップされ

たプロセス・グループ内の既存のプロセス全てが変更されます。

--user=list, -u list 変更するユーザーのリストを指定し、リストアップされたユーザー

が所有する既存のプロセス全てが変更されます。リスト内の各ユー

ザーは有効なユーザーIDの数値もしくはログインIDの文字のどち

らかになります。

--name=list, -n list 変更する既存のプロセス名称のリストを指定します。

実施例

1. 次のコマンドは、make(1)を既定優先度の既定SCHED_OTHERスケジューリング・ポリ

シーでCPU 0-3のいずれかのバックグラウンドにて実行します。

run --bias=0-3 make &

2. 次のコマンドは、date(1)を優先度10のSCHED_RR(ラウンドロビン)スケジューリング・

ポリシーにて実行します。

run -s SCHED_RR -P 10 date

3. 次のコマンドは、プロセスIDが987のスケジューリング優先度をレベル32へ変更しま

す。

run --priority=32 -p 987

4. 次のコマンドは、プロセス・グループが1456の全てのプロセスをCPU 3へ移動します。

run -b 3 -g 1456

5. 次のコマンドは、名称が“pilot” の全てのプロセスを優先度21のSCHED_FIFOスケジュー

リング・ポリシーで実行するために設定します。

run -s fifo -P 21 -n pilot

更なる情報はrun(1)のmanページを参照してください。

RedHawk Linux User’s Guide

4-16

5-1

5
プロセス間同期

535

本章ではRedHawk Linuxがプロセス間同期のニーズに対応するために提供するツールについて

説明します。ここで説明する全てのインターフェースは、共有リソースへのアクセスを同期

する協同プロセスのための手段を提供します。

マルチ・プロセッサ・システム内の複数のプログラムによる共有データへのアクセスを同期

させるために最も効果的なメカニズムは、スピン・ロックを使用することです。しかし、ス

ピン・ロック保持中のプリエンプションから保護するために使用している再スケジューリン

グ変数もなしにユーザー・レベルからスピン・ロックを使用することは安全ではありませ

ん。

もし移植性が効率性よりも大きな問題である場合、POSIXカウンティング・セマフォとミュ

ーテックスは共有データへの同期アクセスにとって次善の選択です。プロセスがセマフォの

値の交換を通じて通信することを許可するSystem V セマフォも提供されます。多くのアプリ

ケーションが複数のセマフォの利用を必要とするため、この機能はセマフォの集合もしくは

配列を作ることが可能となります。

同期する協同プロセスの共有メモリ内データへのアクセスに関する問題は、Concurrent Real-
Timeがこれらの問題に対する解決策を提供するために開発したツールも加えて説明します。

NOTE

再スケジューリング変数はARM64アーキテクチャではサポートされ

ていません。本章で説明する高速ブロック/ウェイクアップ・サービ

ス(postwait()とserver_block()/server_wake())およびビジーウェイ

ト相互排他は再スケジューリング変数を使用するため、これもサポー

トされません。

プロセス間同期の理解5

マルチプロセスのリアルタイム・アプリケーションは、同じリソース一式―例えば、I/Oバッ

ファ、ハードウェア・デバイス・ユニット、クリティカル・セクション・コード―へのアク

セスの調整を協同プロセスに許可する同期メカニズムを必要とします

RedHawk Linuxは数々のプロセス間同期ツールを提供します。それには、再スケジューリング

に対するプロセスの脆弱性の制御、ビジーウェイト相互排他メカニズムプロセスのアクセス

を含むクリティカル・セクションへのプロセスのアクセスの整列、クリティカル・セクショ

ンに対する相互排他のためのセマフォ、プロセス間双方向通信の調整のためのツールが含ま

れます。

共有メモリの利用を通して仮想メモリ空間の一部を共有する2つ以上のプロセスからなるアプ

リケーション・プログラムは、効率的に共有メモリへのアクセスを調整できる必要がありま

す。同期の2つの基本的な方法(相互排他と条件同期)は、共有メモリへのプロセスのアクセス

を調整するために使用されます。相互排他メカニズムは共有リソースへの協同プロセスのア

クセスを順番に並べます。

RedHawk Linux User’s Guide

5-2

条件同期メカニズムはアプリケーションが定義する条件が満足するまでプロセスの進行を延

ばします。

相互排除メカニズムは協同プロセスがクリティカル・セクションで同時に実行することがで

きるのは1つだけであることを保証します。3種類のメカニズムは通常は相互排他を提供する

ために使用されます―ビジーウェイト、スリーピー・ウェイト、プロセスがロックされたク

リティカル・セクションへ入ろうとする時に2つの組み合わせを必要とします。スピン・ロッ
クとして知られるビジーウェイト・メカニズムは、テスト＆セット操作をサポートしたハー

ドウェアを使用してロックを取得するロッキング手法を使用します。もしプロセスが現在ロ

ックされた状態でビジーウェイト・ロックを取得しようとする場合、ロックしているプロセ

スは、テスト＆セット操作をプロセスが現在保有しているロックがクリアされテスト＆セッ

ト操作が成功するまでリトライし続けます。対照的にセマフォのようなスリーピーウェイ

ト・メカニズムは、もしそれが現在ロックされた状態でロックを取得しようとするのであれ

ばプロセスをスリープ状態にします。

ビジーウェイト・メカニズムは、ロックを取得する試みの殆どが成功する時に非常に効果的

です。これは単純なテスト＆セット操作がビジーウェイト・ロックを取得するために必要と

される全てであるからです。ビジーウェイト・メカニズムは、ロックが保持される時間が短

い時にリソースを保護するために適しています。それには次の2つの理由があります：1) ロッ

クの保持時間が短い時、ロック中のプロセスがアンロック状態でロックを取得するので、ロ

ック・メカニズムのオーバーヘッドも最小限となる可能性があり、2) ロックの保持時間が短

い時、ロックを取得する遅れも短くなることが予想されます。ビジーウェイト・メカニズム

はロックからアンロック状態となるの待っている間にCPUリソースを消費しようとするた

め、ロック取得の遅れが短時間で保たれるビジーウェイト相互排他を使用する場合は重要と

なります。一般的なルールとして、もしロックを保持する時間が2つのコンテキスト・スイッ

チの実行に要する時間よりも全て少ない場合、ビジーウェイト・メカニズムは適切です。ビ

ジーウェイト相互排他を実行するためのツールは、「ビジーウェイト相互排他」セクション

で説明しています。

クリティカル・セクションは大抵は非常に短時間です。同期のコストを比較的小さく保つた

め、クリティカル・セクションの入口/出口で実行される同期処理をカーネルへ入れることは

出来ません。クリティカル・セクションの入場および退場に関連する実行オーバーヘッドが

クリティカル・セクション自体の長さよりも長くなることは好ましくありません。

効果的な相互排他ツールとしてスピン・ロックを使用するため、あるプロセスが他のプロセ

スがロックをリリースするのを待つためにスピンする予想時間は、短時間だけでなく予測可

能である必要があります。ロック中プロセスのページ・フォルト、シグナル、プリエンプシ

ョンのような予測不可能なイベントは、クリティカル・セクション内の本当の経過時間が期

待される実行時間を著しく超える原因となります。せいぜい、これらのクリティカル・セク

ション内部の予測不可能な遅れは、他のCPUの遅れが予想されるよりも長くなる原因となる

可能性があり、最悪の場合、それらはデッドロックを引き起こす可能性があります。メモリ

内のページ・ロックはクリティカル・セクションへ入る時間に影響を与えないためにプログ

ラムの初期化中に完了させることが可能です。再スケジューリング制御のメカニズムは、低

オーバーヘッドのシグナル制御とプロセス・プリエンプションの手法を提供します。再スケ

ジューリング制御のためのツールは「再スケジューリング制御」で説明されています。

セマフォは相互排他を提供するためのもう1つのメカニズムです。既にロックされているセマ

フォをロックしようとするプロセスはブロックされるもしくはスリープ状態となるため、セ

マフォはスリーピー・ウェイト型の相互排他となります。POSIXのカウンティング・セマフ

ォは移植可能な共有リソースへのアクセス制御の手段を提供します。カウンティング・セマ

フォは整数値とそれに対して定義される操作の制限セットを持つオブジェクトです。カウン

ティング・セマフォは、ロックとアンロック操作で最速性能を得るために実装される単純な

インターフェースを提供します。POSIXのカウンティング・セマフォは、「POSIXカウンティ

ング・セマフォ」セクションの中で説明されています。

プロセス間同期

5-3

System Vのセマフォは、多くの追加機能(例えば、セマフォ上でいくつくらい待ちがあるのか

を調べる機能、もしくは一連のセマフォを操作する機能)を許可する複雑なデータ型です。

System Vのセマフォは「System Vセマフォ」セクションで説明されています。

ミューテックスはプログラム内の複数のスレッドが同時ではありませんが同じリソースを共

有することを可能にします。ミューテックスを作成し、リソースを必要とするどのスレッド

もリソースを使用している間は他のスレッドからミューテックスをロックする必要があり、

もう必要とされない時にそれをアンロックします。POSIXのミューテックスは、特にリアル

タイム・アプリケーションにとって便利でミューテックス単位に個々に設定可能な2つの機能

(ロウバスト・ミューテックスと優先度継承ミューテックス)を持っています。ロウバスト性

(堅牢性)はもしアプリケーションのスレッドの1つがミューテックス保持中に死んだ場合、回

復する機会をアプリケーションに与えます。優先度継承ミューテックスを使用するアプリケ

ーションは、時々引き上げられるミューテックスの所有者の優先度を検出することが可能で

す。これらは「POSIXミューテックスの基礎」セクションで説明されています。

再スケジューリング制御5

再スケジューリング変数はARM64アーキテクチャではサポートされていないことに注意して

下さい。

マルチプロセス、リアルタイム・アプリケーションは頻繁に短い時間CPUの再スケジューリ

ングを伸ばすことを望みます。効果的にビジーウェイト相互排他を使うため、スピン・ロッ

クの保持時間は小さくかつ予測可能である必要があります。

CPU再スケジューリングとシグナル処理は予測不可能である主要な原因です。プロセスはス

ピン・ロックを得るときは再スケジューリングに自分自身が影響を受けないようにし、ロッ

クを開放する時は再び被害を受けやすくなります。システムコールは呼び出し元の優先度を

システムの中で最高に引き上げることは可能ですが、それをするときのオーバーヘッドは法

外となります。

再スケジューリング変数は再スケジューリングとシグナル処理のための制御を提供します。

アプリケーション内の変数を登録し、アプリケーションから直接それを操作します。再スケ

ジューリング無効、クォンタム終了、プリエンプション、特定タイプのシグナルである間は

保持されます。

システムコールと一連のマクロは再スケジューリング変数の使用を提供します。次のセクシ

ョンで変数、システムコール、マクロを記述し、それらの使用方法について説明します。

ここに記述される基礎的なものは低オーバーヘッドのCPU再スケジューリング制御とシグナ

ル配信を提供します。

再スケジューリング変数の理解5

再スケジューリング変数は、再スケジューリングに対するシングル・プロセスの脆弱性を制

御する<sys/rescntl.h>の中で定義されるデータ構造体：

struct resched_var {
pid_t rv_pid;
...
volatile int rv_nlocks;
...

};

RedHawk Linux User’s Guide

5-4

これはカーネルではなくアプリケーションによりプロセス単位もしくはスレッド単位に割り

付けられます。resched_cntl(2)システムコールは変数を登録し、カーネルは再スケジューリ

ングを決定する前に変数を調べます。

resched_cntlシステムコールの使用は「resched_cntlシステムコールの利用」で説明されてい

ます。再スケジューリング制御マクロ一式はアプリケーションから変数の操作を可能にしま

す。それらのマクロの使用は「再スケジューリング制御マクロの利用」で説明されていま

す。

各スレッドはそれぞれの再スケジューリング変数を登録する必要があります。再スケジュー

リング変数は、再スケジューリング変数のロケーションを登録するプロセスもしくはスレッ

ドに対してのみ有効です。現在の実装においては、再スケジューリング変数はシングル・ス

レッドのプロセスでのみ使用することを推奨します。再スケジューリング変数を使用するマ

ルチ・スレッド・プログラムでのフォークは回避する必要があります。

resched_cntlシステムコールの利用5

resched_cntlシステムコールは様々な再スケジューリング制御操作を実行することが可能で

す。それらには再スケジューリング変数の登録と初期化、ロケーションの取得、延長可能な

再スケジューリング時間長の制限設定が含まれています。

概要

#include <sys/rescntl.h>

int resched_cntl(cmd, arg)

int cmd;
char *arg;

gcc [options] file -lccur_rt ...

引数は以下のように定義されます：

cmd 実行される操作

arg cmd の値に依存する引数の値へのポインタ

cmd は以下のいずれかとなります。各コマンドに関連するarg の値が表示されています。

RESCHED_SET_VARIABLE

このコマンドは呼び出し元の再スケジューリング変数を登録します。再スケ

ジューリング変数は、MAP_SHAREDにてマップされた共有メモリの領域も

しくはファイル内のページを除くプロセスのプライベート・ページの中にあ

る必要があります。

同一プロセスの2つのスレッドはそれらの再スケジューリング変数として同

じアドレスを登録してはいけません。もしarg がNULLでない場合、それが

指すstruct resched_varは初期化され、物理メモリ内へロックされま

す。もしarg がNULLの場合、呼び出し元は既存の変数から分離し、適当な

ページがアンロックされます。

プロセス間同期

5-5

fork(2)の後、子プロセスはその親プロセスから再スケジューリング変数を継

承します。子プロセスの再スケジューリング変数のrv_pidフィールドは子

プロセスIDに更新されます。

もし子プロセスが再スケジューリング変数を継承した後に1つ以上の子プロ

セスをフォークした場合、それらの子プロセスはrv_pidフィールドが更新

された再スケジューリング変数を継承します。

fork, vfork(2), clone(2)を呼び出したその時にもし再スケジューリング変数

が親プロセスの中でロックされた場合、再スケジューリング変数は停止しま

す。

このコマンドの使用はルート権限もしくはCAP_IPC_LOCKと
CAP_SYS_RAWIOケーパビリティを必要とします。

RESCHED_SET_LIMIT

このコマンドはデバッグ・ツールです。もしarg がNULLでない場合、呼び

出し元が望む再スケジューリング延長の最大時間長を指定するstruct
timevalを指定します。もしCPUのローカル・タイマーが有効である場合、

この制限を超える時にSIGABRTシグナルが呼び出し元へ送信されます。も

しarg がNULLの場合、以前のどのような制限も無視されます。

RESCHED_GET_VARIABLE

このコマンドは再スケジューリング変数のロケーションを返します。arg は
再スケジューリング変数のポインタを指定する必要があります。もし呼び出

し元が再スケジューリング変数を持っていない場合はarg が参照するポイン

タにはNULLが設定され、そうでなければ再スケジューリング変数のロケー

ションが設定されます。

RESCHED_SERVE

このコマンドはペンディング中のシグナルとコンテキスト・スイッチを提供

するためにresched_unlockで使用されます。アプリケーションはこのコマ

ンドを直接使用する必要はありません。arg は0です。

再スケジューリング制御マクロの利用5

一連の再スケジューリング制御マクロは再スケジューリング変数のロックとアンロックおよ

び有効な再スケジューリングのロック数を決定することが可能です。これらのマクロを以下

で簡単に説明します：

resched_lock 呼び出し元プロセスが保持する再スケジューリングのロック数を増

やします

resched_unlock 呼び出し元プロセスが保持する再スケジューリングのロック数を減

らします

resched_nlocks 有効な現在の再スケジューリングのロック数を返します

resched_lock5

概要

#include <sys/rescntl.h>

RedHawk Linux User’s Guide

5-6

void resched_lock(r);

struct resched_var *r;

引数は以下のように定義されます：

r 呼び出し元プロセスの再スケジューリング変数へのポインタ

resched_lockは値を返しません。これは呼び出し元プロセスが保持する再スケジューリング

のロック数を増やします。プロセスがカーネルに入らない限り、クォンタム終了、プリエン

プション、いくつかのシグナル配信は全ての再スケジューリングのロックが開放されるまで

延長されます。

しかし、もしプロセスが例外(例：ページ・フォルト)を発生もしくはシステムコールを行う場

合、シグナルを受信する、さもなければ再スケジューリングのロック数に関係なくコンテキ

スト・スイッチを保持する可能性があります。次のシグナルはエラー状態を表し、再スケジ

ューリングのロックに影響されません：SIGILL, SIGTRAP, SIGFPE, SIGKILL, SIGBUS,
SIGSEGV, SIGABRT, SIGSYS, SIGPIPE, SIGXCPU, SIGXFSZ

再スケジューリング変数がロックされている間にシステムコールを行うことは可能ですが、

推奨できません。また一方、呼び出し元プロセスが再スケジューリング変数がロックされて

いる間スリープする状態となるシステムコールを行うのは有効ではありません。

resched_unlock5

概要

#include <sys/rescntl.h>

void resched_unlock(r);

struct resched_var *r;

引数は以下のように定義されます：

r 呼び出し元プロセスの再スケジューリング変数へのポインタ

resched_unlockは値を返しません。もしデクリメントやコンテキスト・スイッチの後に未処

理のロックが存在しない、もしくはシグナルが保留中の場合、それらは即座に提供されま

す。

NOTE

rv_nlocksフィールドはロックがアクティブであると判断させるた

めに正の整数である必要があります。従って、もしこのフィールドが

ゼロもしくは負の値であった場合、アンロックであると判断されま

す。

resched_nlocks5

概要

#include <sys/rescntl.h>

int resched_nlocks(r);

struct resched_var *r;

引数は以下のように定義されます：

プロセス間同期

5-7

r 呼び出し元プロセスの再スケジューリング変数へのポインタ

resched_nlocksは有効な現在の再スケジューリングのロック数を返します。

これらのマクロの使用に関する更なる情報は、resched_cntl(2)のmanページを参照してくだ

さい。

再スケジューリング制御ツールの適用5

以下のCプログラムの断片は、前のセクションで説明したツールを使って再スケジューリング

を制御するための手順を説明しています。このプログラムの断片はグローバル変数として再

スケジューリング変数(rv)を定義し、resched_cntlを呼び出して変数の登録と初期化を行

い、そしてresched_lockとresched_unlockをそれぞれ呼び出して再スケジューリング変数

をロックおよびアンロックします。

static struct resched_var rv;

int main (int argc, char *argv[])
{

resched_cntl (RESCHED_SET_VARIABLE, (char *)&rv);

resched_lock (&rv);

/* nonpreemptible code */
...

resched_unlock (&rv);
return 0;

}

ビジーウェイト相互排他5

再スケジューリング変数はARM64アーキテクチャではサポートされていないため、ビジーウ

ェイト相互排他もまたARM64アーキテクチャではサポートされていないことに注意して下さ

い。

ビジーウェイト相互排他は、共有リソースの同期変数を関連付けることにより達成します。

プロセスもしくはスレッドがリソースへのアクセス増加を望む時、同期変数をロックしま

す。リソースの使用が終了する時、同期変数をアンロックします。最初のプロセスもしくは

スレッドがリソースをロックしている間にもし他のプロセスもしくはスレッドがリソースへ

のアクセスを増やそうとした時、そのプロセスもしくはスレッドはロックの状態を繰り返し

検査することにより遅らせる必要があります。この同期の形式は、ユーザー・モードから直

接アクセス可能である同期変数およびロックとアンロック操作が非常に低オーバーヘッドで

あることを要求します。

RedHawk Linuxは2種類の低オーバーヘッドのビジーウェイト相互排他変数(spin_mutex と
nopreempt_spin_mutex)を提供します。nopreempt_spin_mutexはミューテックスを保持

している間、スレッドもしくはプロセスを非プリエンプト状態にするために再スケジューリ

ング変数を自動的に使用しますが、spin_mutexはそうではありません。

RedHawk Linux User’s Guide

5-8

後に続くセクションでは、変数とインターフェースを定義し、それらの使用手順を説明しま

す。

spin_mutex変数の理解5

ビジーウェイト相互排他変数はスピン・ロックとして知られるデータ構造体です。spin_mutex
変数は以下のように<spin.h>の中で定義されています。

typedef struct spin_mutex {
volatile int count;

} spin_mutex_t;

スピン・ロックは2つの状態(ロックとアンロック)を持っています。初期化される時、スピ

ン・ロックはアンロック状態にあります。

もし共有リソースへのアクセスを調整するためにスピン・ロックを使用したいと考えている

場合、アプリケーション・プログラムの中にそれらを割り当てて同期したいプロセスまたは

スレッドが共有するメモリの中にそれらを配置する必要があります。「spin_mutexインターフ

ェースの利用」で説明されているインターフェースを使うことによりそれらを操作すること

が可能です。

spin_mutexインターフェースの利用5

このビジーウェイト相互排他インターフェース一式は、スピン・ロックの初期化、ロック、

アンロックおよび特定のスピン・ロックがロックされているかどうかを判断することが可能

です。以下で簡単に説明します：

spin_init スピン・ロックをアンロック状態に初期化します
spin_lock スピン・ロックがロックされるまでスピンします
spin_trylock 指定されたスピン・ロックのロックを試みます
spin_islock 指定されたスピン・ロックがロックされているかを確認します
spin_unlock 指定されたスピン・ロックをアンロックします

これらのインターフェースのいずれも無条件にスピン・ロックをロックすることが可能なも

のはないことに注意することが重要です。提供されるツールを使用することによりこの機能

を構築することが可能です。

CAUTION

スピン・ロック上の操作は再起的ではありませんが、もし既にロック

されたスピン・ロックを再ロック使用とする場合、プロセスまたはス

レッドはデッドロックとなる可能性があります。

これらを使用する前にspin_initの呼び出しによりスピン・ロックを初期化する必要がありま

す。各スピン・ロックに対して1度だけspin_initを呼び出します。もし指定するスピン・ロッ

クがロックされている場合、spin_initは効果的にアンロックしますが、これは値を返しませ

ん。spin_initインターフェースは以下のように指定されます：

プロセス間同期

5-9

#include <spin.h>

void spin_init(spin_mutex_t *m);

引数は以下のように定義されます：

m スピン・ロックの開始アドレス

spin_lockはスピン・ロックがロックされるまでスピンします。これは値を返しません。この

インターフェースは以下のように指定されます：

#include <spin.h>
void spin_lock(spin_mutex_t *m);

もし呼び出し元プロセスまたはスレッドがスピン・ロックのロックに成功した場合、

spin_trylockはtrue を返し、もし成功しなかった場合はfalse を返します。spin_trylockは呼

び出し元プロセスまたはスレッドをブロックしません。このインターフェースは以下のよう

に指定されます：

#include <spin.h>
int spin_trylock(spin_mutex_t *m);

もし指定されたスピン・ロックがロックされている場合、spin_islockはtrueを返します。も

しアンロックされている場合はfalseを返します。これはスピン・ロックをロックしません。

このインターフェースは以下のように指定されます：

#include <spin.h>
int spin_islock(spin_mutex_t *m);

spin_unlockはスピン・ロックをアンロックします。これは値を返しません。このインターフ

ェースは以下のように指定されます：

#include <spin.h>
void spin_unlock(spin_mutex_t *m);

spin_lock, spin_trylock, spin_unlockはNightTrace RTで監視するためにトレース・イベント

を記録することが可能です。アプリケーションは<spin.h>より前にSPIN_TRACEを定義する

ことにより、これらのトレース・イベントを有効にすることが可能です。例：

#define SPIN_TRACE
#include <spin.h>

もし-lpthreadがリンクされる場合、アプリケーションは-lntraceもしく-lntrace_thrもリンク

される必要があります。

これらのインターフェースの使用に関する更なる情報は、spin_init(3)のmanページを参照し

てください。

spin_mutexツールの適用5

ビジーウェイト相互排他のためのspin_mutexツールの使用手順は、以下のコードの断片で説明

します。最初の部分は、スピン・ロックを取得するために再スケジューリング制御と一緒に

これらのツールを使用する方法を示し、次頁はスピン・ロックを開放する方法を示します。

これらのコードの断片にシステムコールもプロシージャコールも含まれていないことに注意

してください。

_m 引数はスピン・ロックを指し、引数は呼び出し元プロセスもしくはスレッドの再スケジュ

ーリング変数を指します。これはスピン・ロックが共有メモリ内にあることを前提としてい

ます。

RedHawk Linux User’s Guide

5-10

ページングやスワッピングに関連するオーバーヘッドを回避するため、クリティカル・セク

ション内部で参照されるページは物理メモリにロックすることを推奨します。(mlock(2) お
よびshmctl(2)システムコールを参照してください)

#define spin_acquire(_m,_r) \
{ \

resched_lock(_r); \
while (!spin_trylock(_m)) { \

resched_unlock(_r); \
while (spin_islock(_m)); \
resched_lock(_r); \

} \
}

#define spin_release(_m,_r) \
{ \

spin_unlock(_m); \
resched_unlock(_r); \

}

前頁の断片では、spin_trylockとspin_islockのインターフェースの使用に注意してくださ

い。もしスピン・ロックをロックしようとしているプロセスもしくはスレッドがロックされ

ているスピン・ロックを見つけた場合、spin_islockの呼び出しによりロックが開放されるま

で待ちます。このシーケンスは直接spin_trylockでポーリングするよりも効率的です。

spin_trylockインターフェースはテスト＆セットの原始的なスピン・ロックを実行するため

の特別な命令を含みます。これらの命令はspin_islockによる単純なメモリ読み取りの実行よ

りも効果は小さくなります。

再スケジューリング制御インターフェースの使用もまた注意してください。デッドロックを

回避するため、プロセスもしくはスレッドはスピン・ロックのロックの前に再スケジューリ

ングを無効にし、スピン・ロックのアンロック後にそれを再度有効にします。プロセスもし

くはスレッドはspin_islockの呼び出しの直前で再スケジューリングを再度有効にするので、

再スケジューリングが必要以上に長くなることはありません。

nopreempt_spin_mutex変数の理解5

nopreempt_spin_mutexは、共有リソースへの同期アクセスを複数のスレッドもしくはプロセス

に許可するビジーウェイト・ミューテックスです。再スケジューリング変数はミューテック

スがロックされている間に非プリエンプトなスレッドもしくはプロセスにするために使用さ

れます。スレッドもしくはプロセスは複数のミューテックスのロックを安全に重ねることが

可能です。nopreempt_spin_mutexは、以下のように<nopreempt_spin.h>の中で定義されてい

ます：

typedef struct nopreempt_spin_mutex {
spin_mutex_t spr_mux;

} nopreempt_spin_mutex_t;

スピン・ロックは2つの状態(ロックとアンロック)を持っています。初期化される時、スピ

ン・ロックはアンロック状態にあります。

もし共有リソースへのアクセスを調整するために非プリエンプト・スピン・ロックを使用し

たいと考えている場合、アプリケーション・プログラムの中にそれらを割り当てて同期した

いプロセスまたはスレッドが共有するメモリの中にそれらを配置する必要があります。

「nopreempt_spin_mutexインターフェースの利用」で説明されているインターフェースを使う

ことによりそれらを操作することが可能です。

プロセス間同期

5-11

nopreempt_spin_mutexインターフェースの利用5

このビジーウェイト相互排他インターフェース一式は非プリエンプト・スピン・ロックのロ

ック、アンロックが可能です。再スケジューリング変数はロックされたミューテックスを保

持する間に非プリエンプトなスレッドもしくはプロセスにするために使用されます。以下で

簡単に説明します：

nopreempt_spin_init スピン・ロックをアンロック状態に初期化します
nopreempt_spin_init_thread プリエンプションがブロックさることを保証します
nopreempt_spin_lock スピン・ロックがロックされるまでスピンします
nopreempt_spin_trylock 指定されたスピン・ロックのロックを試みます
nopreempt_spin_islock 指定されたスピン・ロックがロックされているかを確認

します
nopreempt_spin_unlock 指定されたスピン・ロックをアンロックします

これらを使用する前にnopreempt_spin_initの呼び出しによりスピン・ロックを初期化する必

要があります。各スピン・ロックに対して1度だけこのインターフェースを呼び出します。も

し指定するスピン・ロックがロックされている場合、nopreempt_spin_initは効果的にアンロ

ックしますが、これは値を返しません。このインターフェースは以下のように指定されま

す：

#include <nopreempt_spin.h>
void nopreempt_spin_init(nopreempt_spin_mutex_t *m);

引数は以下のように定義されます：

m スピン・ロックの開始アドレス

nopreempt_spin_lockとnopreempt_spin_trylockが呼び出された時、

nopreempt_spin_init_threadはプリエンプションがブロックされることを保証します。

nopreempt_spin_mutexがマルチ・スレッド・プロセスで使用される時、プロセスは-lpthreadが
リンクされる必要があり、各スレッドはnopreempt_spin_init_threadを少なくても1回は呼

び出す必要があります。もしプロセスがマルチ・スレッド化されていない場合、このルーチ

ンを少なくても1回は呼び出す必要があります。このルーチンは、プロセスもしくはスレッド

が何個ミューテックスを使用しているかに関係なく1回は呼び出される必要があります。もし

プリエンプションのブロックが保証される場合ゼロが返りますが、そうではない場合errnoが
設定されて-1が返ります。このインターフェースは以下のように指定されます：

#include <nopreempt_spin.h>
int nopreempt_spin_init_thread(void)

nopreempt_spin_lockはスピン・ロックがロックされるまでスピンします。これは値を返し

ません。このインターフェースは以下のように指定されます：

#include <nopreempt_spin.h>
void nopreempt_spin_lock(nopreempt_spin_mutex_t *m);

もし呼び出し元プロセスもしくはスレッドがスピン・ロックのロックに成功した場合、

nopreempt_spin_trylockはtrueを返しますが、もし成功しなかった場合はfalseを返します。

nopreempt_spin_trylockは呼び出し元プロセスもしくはスレッドをブロックしません。この

インターフェースは以下のように指定されます：

#include <nopreempt_spin.h>
int nopreempt_spin_trylock(nopreempt_spin_mutex_t *m);

RedHawk Linux User’s Guide

5-12

もし指定されたスピン・ロックがロックされている場合、nopreempt_spin_islockはtrueを
返します。もしアンロックされている場合はfalse を返します。このインターフェースは以下

のように指定されます：

#include <nopreempt_spin.h>
int nopreempt_spin_islock(nopreempt_spin_mutex_t *m);

nopreempt_spin_unlockはスピン・ロックをアンロックします。これは値を返しません。こ

のインターフェースは以下のように指定されます：

#include <nopreempt_spin.h>
void nopreempt_spin_unlock(nopreempt_spin_mutex_t *m);

nopreempt_spin_lock, nopreempt_spin_trylock, nopreempt_spin_unlockはNightTrace RT
で監視するためにトレース・イベントを記録することが可能であることに注意して下さい。

アプリケーションは<nopreempt_spin.h>より前にSPIN_TRACEを定義することにより、これ

らのトレース・イベントを有効にすることが可能です。例：

#define SPIN_TRACE
#include <nopreempt_spin.h>

もし-lpthreadがリンクされる場合、アプリケーションは-lntraceもしく-lntrace_thrもリンク

される必要があります。

これらのインターフェースの使用に関する更なる情報は、nopreempt_spin_init(3)のmanペー

ジを参照してください。

POSIXカウンティング・セマフォ5

概要5-12

カウンティング・セマフォはロックとアンロック操作のための最速性能を達成するために実

装可能な単純なインターフェースを提供します。カウンティング・セマフォは整数値とそれ

に対して定義される操作の制限セットを持つオブジェクトです。これらの操作と対応する

POSIXインターフェースは以下を含みます：

• セマフォをゼロもしく正の値に設定する初期化操作— sem_initもしくはsem_open

• セマフォの値をデクリメントするロック操作— sem_waitもしくはsem_timedwait。結

果の値が負の場合、操作を実行しているタスクはブロックします

• セマフォの値をインクリメントするアンロック操作— sem_post。もし結果の値がゼロ

以下の場合、セマフォ上でブロックされているタスクの1つが起こされます。もし結果の

値がゼロを超える場合、セマフォ上でブロックされたタスクはありません。

• 値が正の場合のみセマフォの値をデクリメントする条件付きロック操作—sem_trywait。

もし値がゼロもしくは負の場合、操作は失敗します。

• セマフォの値のスナップショットを提供するクエリ操作—sem_getvalue

プロセス間同期

5-13

ロック、アンロック、条件付きロック操作は強力です(一連の操作が同時に実行され、それら

が全て同時に完了できる場合のみ)。

カウンティング・セマフォは複数の協同プロセスで使用できるあらゆるリソースへのアクセ

スを制御するために使用することが可能です。カウンティング・セマフォは名前付きでも名

前なしでも可能です。

スレッドはsem_init(3)ルーチンの呼び出しを通して名前なしセマフォを作成し初期化しま

す。このセマフォは呼び出しで指定される値に初期化します。アプリケーション内の全スレ

ッドは、sem_initルーチンの呼び出しで作成された名前なしセマフォにアクセスします。

スレッドはsem_openルーチンの呼び出しおよびユニークな名前(分かりやすいNULLで終了

する文字列)の指定することにより名前付きセマフォを作成します。セマフォは、セマフォを

作成するためのsem_open呼び出しで供給される値に初期化されます。sem_openルーチン

はプロセスの仮想アドレス空間にセマフォを含めますので、名前付きセマフォのためにプロ

セスが空間を割り当てることはありません。他のプロセスはsem_openの呼び出しおよび同

じ名前の指定により名前付きセマフォへアクセスすることが可能です。

名前なしもしくは名前付きのセマフォを初期化する時、その値は利用可能なリソースの数に

設定する必要があります。相互排他を提供するためにカウンティング・セマフォを使うに

は、セマフォの値は1 に設定する必要があります。

クリティカルなリソースへのアクセスを望む協同タスクは、そのリソースを保護するセマフ

ォをロックする必要があります。タスクがセマフォをロックする時、それはシステム内の他

の協同タスクから干渉されることなくリソースが使用可能であることを知っています。リソ

ースを保護するセマフォを取得した後にリソースがアクセスされるようにアプリケーション

が書かれている必要があります。

セマフォの値が正である限りリソースは利用可能で、リソースの1つはそれを取得しようとし

ている次のタスクに割り当てられます。セマフォの値がゼロの時、利用可能なリソースは1つ
もなく、リソースを取得しようとしているタスクは利用可能となる1になるまで待つ必要があ

ります。もしセマフォの値が負である場合、リソースの1つを取得するためにブロックされて

いるもしくは待機しているタスクが1つ以上存在する可能性があります。タスクがリソースの

使用を完了する時、それはセマフォをアンロックし、リソースを他のタスクが使用可能であ

ることを知らせます。

所有権の概念はカウンティング・セマフォには当てはまりません。あるタスクがセマフォを

ロックすることが可能で、他のタスクはそれをアンロックすることが可能です。

セマフォのアンロック操作は安全な非同期シグナルで、これはタスクがデッドロックを引き

起こすことなくシグナル・ハンドリング・ルーチンからセマフォをアンロックすることが可

能です。

所有権の欠如は優先度の継承を不可能にします。何故ならタスクがセマフォをロックする時

にタスクはセマフォの所有者にはならないため、タスクは同じセマフォをロックしようとす

るのをブロックする高優先度タスクの優先度を一時的に継承することが出来ません。その結

果、無限の優先度逆転が生じる可能性があります

インターフェース5

以降のセクションでPOSIXカウンティング・セマフォ・インターフェースの使用手順を説明

します。これらのインターフェースを以下で簡単に説明します：

sem_init 名前なしカウンティング・セマフォを初期化します
sem_destroy 名前なしカウンティング・セマフォを削除します

RedHawk Linux User’s Guide

5-14

sem_open 名前付きカウンティング・セマフォの作成、初期化、接続の確立を

行います
sem_close 名前付きカウンティング・セマフォへのアクセスを放棄します
sem_unlink 名前付きカウンティング・セマフォの名前を削除します
sem_wait カウンティング・セマフォをロックします
sem_trywait カウンティング・セマフォがアンロックである場合ロックします
sem_timedwait カウンティング・セマフォをタイムアウト付きでロックします
sem_post カウンティング・セマフォをアンロックします
sem_getvalue カウンティング・セマフォをの値を取得します

これらのインターフェースを使用るするため、Pスレッド・ライブラリをアプリケーションに

リンクする必要があることに注意してください。以下のサンプルは動的に共有ライブラリと

リンクする時に実施するコマンド・ラインを示します。ネイティブPOSIXライブラリ(NPTL)
はデフォルトで使用されます。

gcc [options] file.c -lpthread

同じアプリケーションを以下のコマンド・ラインで静的にリンクさせることが可能です。こ

れはLinuxスレッド・ライブラリを使用します。

gcc [options] -static file.c -lpthread

プロセス共有セマフォのサポートがLinuxスレッド・ライブラリにはないことに注意してくだ

さい。

sem_initルーチン5

sem_init(3)ライブラリ・ルーチンは、セマフォによって保護されている利用可能なリソース

の数にセマフォの値を設定することにより、呼び出し元プロセスが名前なしカウンティン

グ・セマフォを初期化することが可能です。相互排他のためにカウンティング・セマフォを

使用するには、プロセスは値を1に設定します。

NPTLライブラリを使用して動的にリンクされたプログラムは、pshared パラメータがゼロで

はない値に設定される時にプロセス間でセマフォを共有することが可能です。もしpshared に
ゼロが設定された場合、セマフォは同じプロセス内のスレッド間だけで共有します。

Linuxスレッド・ライブラリを使用して静的にリンクされたプログラムは、同じプロセス内の

スレッド間で共有するカウンティング・セマフォを所有することのみ可能です(pshared は0を
設定する必要があります)。プロセス内の1つのスレッドがセマフォを作成、初期化した後、同

一プロセスの他の協同スレッドはこのセマフォを操作することが可能です。fork(2)システム

コールにより作成される子プロセスは、親プロセスが既に初期化したセマフォへのアクセス

を継承しません。exec(3)もしくはexit(2)システムコールを呼び出した後、プロセスもまたセ

マフォへのアクセスを失います。

sem_wait, sem_timedwait, sem_trywait, sem_post, sem_getvalueライブラリ・ルーチンは

セマフォを操作するために使用されます。名前なしカウンティング・セマフォは

sem_destroyルーチンの呼び出しにより削除されます。これらのルーチンはこの後のセクシ

ョンで説明します。

プロセス間同期

5-15

CAUTION

IEEE 1003.1b-1993 規格は、複数のプロセスが同一セマフォに対して

sem_initを呼び出した時に発生することを示していません。現在、

RedHawk Linuxの実装は、単に最初のsem_init呼び出しの後に行われ

るsem_initの呼び出しで指定される値にセマフォを再初期化します。

アプリケーション・コードがPOSIXインターフェース(将来の

Concurrent Real-Timeのシステムを含む)をサポートするどのようなシ

ステムにも移植することが出来ることを確実にするため、sem_initを
使う協同プロセスはシングル・プロセスが特定のセマフォの初期化が

1度だけ行われることを守る必要があります。

もしsem_initの呼び出しの前に既に初期化され、この同じセマフォを

待機中のスレッドが複数存在している後にsem_initが呼び出された場

合、これらのスレッドはsem_waitの呼び出しから返ることは決して

なく、明示的に終了させることが必要となります。

概要

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

引数は以下のように定義されます：

sem 初期化する名前なしカウンティング・セマフォを表すsem_t 構造体へのポイ

ンタ

pshared セマフォを他のプロセスが共有するかどうかを示す整数値。もしpshared にゼ

ロ以外の値が設定されている場合、セマフォはプロセス間で共有されます。

もしpshared にゼロが設定されている場合、セマフォは同一プロセス内のスレ

ッド間でのみ共有されます。Linuxスレッド・ライブラリを使って静的にリン

クされたプログラムは、プロセス間で共有するセマフォを使用することは出

来ず、pshared にゼロを設定する必要があり、もしゼロが設定されていない場

合はsem_initは-1を返し、errnoにENOSYSが設定されます。

value ゼロもしくは、セマフォの値を現在利用可能なリソースの数へ初期化する正

の整数値。この数はSEM_VALUE_MAXの値を超えることができません(この

値を確認するには<semaphore.h>を参照してください)。

戻り値0はsem_initの呼び出しが成功したことを示します。戻り値-1はエラーが発生したこと

を示し、errnoはエラーを知らせるため設定されます。発生する可能性のあるエラーの種類

の一覧はsem_init(3)のmanページを参照してください。

sem_destroyルーチン5

CAUTION

名前なしカウンティング・セマフォは、どのプロセスもセマフォを操

作する必要がなくなり、現在セマフォをブロックするプロセスが存在

しなくなるまで削除してはいけません。

概要

RedHawk Linux User’s Guide

5-16

#include <semaphore.h>

int sem_destroy(sem_t *sem);

引数は以下のように定義されます：

sem 削除する名前なしカウンティング・セマフォへのポインタ。sem_init(3)の呼

び出しで作成されたカウンティング・セマフォだけをsem_destroyの呼び出

しで削除することが可能です。

戻り値0はsem_destroyの呼び出しが成功したことを示します。戻り値-1はエラーが発生した

ことを示し、errnoはエラーを知らせるため設定されます。発生する可能性のあるエラーの

種類の一覧はsem_destroy(3)のmanページを参照してください。

sem_openルーチン5

sem_open(3)ライブラリ・ルーチンは、呼び出し元プロセスが名前付きカウンティング・セ

マフォの作成、初期化、接続を確立することが可能です。プロセスが名前付きカウンティン

グ・セマフォを作成する時、ユニークな名前をセマフォへ関連付けます。これもやはりセマ

フォに保護されている利用可能なリソースの数にセマフォの値を設定します。相互排他のた

めに名前付きカウンティング・セマフォを使用するには、プロセスは値を1に設定します。

名前付きセマフォを作成した後、他のプロセスはsem_openの呼び出しおよび同じ名前の指

定によりそのセマフォへの接続を確立することが可能となります。正常に完了すると

sem_openルーチンは名前付きカウンティング・セマフォのアドレスを返します。プロセス

はその後、sem_wait, sem_trywaitとsem_postの呼び出しでセマフォを参照するためにその

アドレスを使用します。プロセスはsem_closeルーチンもしくはexec(2), _exit(2)システムコ

ールを呼び出すまで名前付きセマフォを操作し続ける可能性があります。execもしくはexit
の呼び出しで名前付きセマフォはsem_closeの呼び出しであるかのように終了します。

fork(2)システムコールにより作成される子プロセスは親プロセスが確立した名前付きセマフ

ォへのアクセスを継承します。

もしシングル・プロセスがsem_openを同じ名前を指定して複数呼び出しを行う場合、(1)プ
ロセス自身がsem_closeの呼び出しを通してセマフォを閉じていない、もしくは、(2)いくつ

かのプロセスがsem_unlinkの呼び出しを通して名前を削除していない限り同じアドレスが

各々の呼び出し元に返されます。

もし複数のプロセスがsem_openを同じ名前を指定して複数呼び出しを行う場合、いくつか

のプロセスがsem_unlinkの呼び出しを通して名前を削除していない限り、同じセマフォ・オ

ブジェクトのアドレスが各々の呼び出し元に返されます(各呼び出しにおいて必ずしも同じア

ドレスが返さるわけではないことに注意してください)。もしプロセスがsem_unlinkの呼び出

しを通して名前を削除した場合、セマフォ・オブジェクトの新しいインスタンスのアドレス

が返されます。

概要

#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag[, mode_t mode, unsigned int
value]);

引数は以下のように定義されます：

プロセス間同期

5-17

name セマフォの名前を指定するNULLで終了する文字列。接頭語“sem”はname の
前に付加され、セマフォは/dev/shmにデータファイルとして作成されます。

先頭のスラッシュ(/)文字は可能(移植性のあるアプリケーションのために推奨)
ですがスラッシュを途中に埋め込めません。先頭のスラッシュ文字も現在の

作業ディレクトリも名前の解釈に影響を与えません。例えば、/mysemと

mysemは両方とも/dev/shm/sem.mysemとして解釈されます。接頭語4文字

を含むこの文字列は/usr/include/limits.hで定義されるNAME_MAX未満で構

成されている事に注意が必要です。

oflag 呼び出し元プロセスが名前付きカウンティング・セマフォもしくは既存の名

前付きカウンティング・セマフォへの接続の確率かどうかを示す整数値。以

下のビットが設定することが可能です：

O_CREAT name で指定されるカウンティング・セマフォが存在し

ない場合、作成されます。セマフォのユーザーIDは呼び

出し元プロセスの有効なユーザーIDに設定され、そのグ

ループIDは呼び出し元プロセスの有効なグループIDに設

定され、そのパーミッション・ビットはmode 引数で指

定されたとおりに設定されます。セマフォの初期値は

value 引数で指定されたとおりに設定されます。このビ

ットを設定する時、mode とvalue 引数の両方を指定す

る必要があることに注意してください。

もしname で指定されるカウンティング・セマフォが存

在する場合、O_EXCLに記述されている事以外は設定さ

れたO_CREATは効力を持ちません。

O_EXCL もしO_CREATが設定され、name で指定されたカウンテ

ィング・セマフォが存在する場合、sem_openは失敗し

ます。もしO_CREATが設定されていない場合、このビ

ットは無視されます。

もしO_CREATとO_EXCL以外のフラグ・ビットがoflag
引数に設定されている場合、sem_openルーチンはエラ

ーを返すことに注意してください。

mode 次の例外を含むname で指定されるカウンティング・セマフォのパーミッショ

ン・ビットを設定する整数値：プロセスのファイル・モード作成マスクに設

定されたビットはカウンティング・セマフォのモードでクリアされます(更な

る情報についてはumask(2)とchmod(2)のmanページを参照してください)。
パーミッション・ビット以外のビットがmode に設定されている場合、それら

は無視されます。プロセスは名前付きカウンティング・セマフォを作成する

ときのみmode 引数を指定します。

value ゼロもしくは現在利用可能なリソースの数にセマフォの値を初期化する正の

整数値。この数は<limits.h>で定義されるSEM_VALUE_MAXの値を超えるこ

とは出来ません。プロセスは名前付きカウンティング・セマフォを作成する

ときのみvalue 引数を指定します。

もし呼び出しが成功した場合、sem_openは名前付きカウンティング・セマフォのアドレス

を返します。SEM_FAILEDの戻り値はエラーが発生したことを示し、errnoはエラーを示す

ために設定されます。発生する可能性のあるエラーのタイプのリストについては

sem_open(3)のmanページを参照してください。

RedHawk Linux User’s Guide

5-18

sem_closeルーチン5

sem_close(3)ライブラリ・ルーチンは呼び出し元プロセスが名前付きカウンティング・セマ

フォへのアクセスを放棄することが可能です。sem_closeルーチンはセマフォを利用するプ

ロセスに割り当てられたシステム・リソースを開放します。その後、セマフォを操作しよう

とするプロセスがSIGSEGVシグナルの配信を招く結果となる可能性があります。

セマフォに関連するカウントはプロセスのsem_close呼び出しに影響を受けません。

概要

#include <semaphore.h>

int sem_close(sem_t *sem);

引数は以下のように定義されます：

sem アクセスを開放する名前付きカウンティング・セマフォへのポインタ。

sem_open(3)の呼び出しを通して確立したカウンティング・セマフォとの接

続のみを指定することが可能です。

戻り値0はsem_closeの呼び出しが成功したことを示します。戻り値-1はエラーが発生したこ

とを示し、errnoはエラーを示すために設定されます。発生する可能性のあるエラーのタイ

プのリストについてはsem_close(3)のmanページを参照してください。

sem_unlinkルーチン5

sem_unlink(3)ライブラリ・ルーチンは呼び出し元プロセスがカウンティング・セマフォの名

前を削除することが可能です。その後同じ名前を使用してセマフォへの接続を確立しようと

するプロセスはセマフォの異なるインスタンスに対し接続を確立します。呼び出し時点でセ

マフォを参照しているプロセスは、sem_close(3), exec(2), exit(2)システムコールを呼び出す

までセマフォを使用し続けることが可能です。

概要

#include <semaphore.h>

int sem_unlink(const char *name);

引数は以下のように定義されます：

name セマフォの名前を指定するNULLで終了する文字列。接頭語“sem”はname の
前に付加され、セマフォは/dev/shmにデータファイルとして作成されます。

先頭のスラッシュ(/)文字は可能(移植性のあるアプリケーションのために推奨)
ですがスラッシュを途中に埋め込めません。先頭のスラッシュ文字も現在の

作業ディレクトリも名前の解釈に影響を与えません。例えば、/mysemと

mysemは両方とも/dev/shm/sem.mysemとして解釈されます。接頭語4文字

を含むこの文字列は/usr/include/limits.hで定義されるNAME_MAX未満で構

成されている事に注意が必要です。

プロセス間同期

5-19

戻り値0はsem_unlinkの呼び出しが成功したことを示します。戻り値-1はエラーが発生したこ

とを示し、errnoはエラーを示すために設定されます。発生する可能性のあるエラーのタイ

プのリストについてはsem_unlink(3)のmanページを参照してください。

sem_waitルーチン5

sem_wait(3)ライブラリ・ルーチンは呼び出し元プロセスが名前なしカウンティング・セマフ

ォをロックすることが可能です。もしセマフォの値がゼロである場合、セマフォは既にロッ

クされています。この場合、プロセスはシグナルもしくはセマフォがアンロックされるまで

ブロックします。もしセマフォの値がゼロより大きい場合、プロセスはセマフォをロックし

続けます。いずれにせよ、セマフォの値は減少します。

概要

#include <semaphore.h>

int sem_wait(sem_t *sem);

引数は以下のように定義されます：

sem ロックする名前なしカウンティング・セマフォへのポインタ

戻り値0はプロセスが指定したセマフォのロックに成功したことを示します。戻り値-1はエラ

ーが発生したことを示し、errnoはエラーを示すために設定されます。発生する可能性のあ

るエラーのタイプのリストについてはsem_wait(3)のmanページを参照してください。

sem_timedwaitルーチン5

sem_timedwait(3)ライブラリ・ルーチンは呼び出し元プロセスが名前なしカウンティング・

セマフォをロックすることが可能ですが、もしsem_postを介してアンロックする他のプロセ

スもしくはスレッドを待つことなしにセマフォがロックできない場合、指定されたタイムア

ウトの期限が切れた時に待機は終了します。

概要

#include <semaphore.h>
#include <time.h>

int sem_timedwait(sem_t *sem, const struct timespec *ts);

引数は以下のように定義されます：

sem ロックする名前なしカウンティング・セマフォへのポインタ

ts 待機が終了する単一時間を秒とナノ秒で指定した<time.h>に定義されている

timespec 構造体へのポインタ
例：

ts.tv_sec = (NULL)+2
ts.tv_nsec = 0

2秒のタイムアウトを設定。POSIX時間構造体に関する詳細な情報について

は、6章の「POSIX時間構造体の理解」を参照してください。

戻り値0はプロセスが指定したセマフォのロックに成功したことを示します。戻り値-1はエラ

ーが発生したことを示し、errnoはエラーを示すために設定されます。

RedHawk Linux User’s Guide

5-20

発生する可能性のあるエラーのタイプのリストについてはsem_wait(3)のmanページを参照し

てください。

sem_trywaitルーチン5

sem_trywait(3)ライブラリ・ルーチンはセマフォがアンロックされていることを示すセマフ

ォの値が0より大きい場合のみ、呼び出し元プロセスがカウンティング・セマフォをロックす

ることが可能です。もしセマフォの値がゼロである場合、セマフォを既にロックされてお

り、sem_trywaitの呼び出しは失敗します。もしプロセスがセマフォのロックに成功する場

合、セマフォの値は減少し、そうでない場合は変わりません。

概要

#include <semaphore.h>

int sem_trywait(sem_t *sem);

引数は以下のように定義されます：

sem 呼び出し元プロセスがロックする名前なしカウンティング・セマフォへのポ

インタ

戻り値0は呼び出し元プロセスが指定したセマフォのロックに成功したことを示します。戻り

値-1はエラーが発生したことを示し、errnoはエラーを示すために設定されます。発生する可

能性のあるエラーのタイプのリストについてはsem_trywait(3)のmanページを参照してくださ

い。

sem_postルーチン5

sem_post(3)ライブラリ・ルーチンは呼び出し元プロセスがカウンティング・セマフォをア

ンロックすることが可能です。もし1つ以上のプロセスがセマフォを待ってブロックしている

場合、最高優先度の待機中プロセスがセマフォがアンロックされた時に起こされます。

概要

#include <semaphore.h>

int sem_post(sem_t *sem);

引数は以下のように定義されます：

sem アンロックする名前なしカウンティング・セマフォへのポインタ

戻り値0はsem_postの呼び出しが成功したことを示します。もし正しくないセマフォ記述子

が提供された場合、セグメンテーション・フォルトが生じます。戻り値-1はエラーが発生した

ことを示し、errnoはエラーを示すために設定されます。発生する可能性のあるエラーのタ

イプのリストについてはsem_post(3)のmanページを参照してください。

sem_getvalueルーチン5

sem_getvalue(3)ライブラリ・ルーチンは呼び出し元プロセスが名前なしカウンティング・セ

マフォの値を取得することが可能です。

プロセス間同期

5-21

概要

#include <semaphore.h>

int sem_getvalue(sem_t *sem, int *sval);

引数は以下のように定義されます：

sem 値を取得したい名前なしカウンティング・セマフォへのポインタ

sval 名前なしカウンティング・セマフォの値が返される場所へのポインタ。返さ

れる値はコール中のあるタイミングでのセマフォの実際の値を表します。こ

の値は呼び出しから戻るその時点でのセマフォの実際値ではないかもしれな

い事に注意することが重要です。

戻り値0はsem_getvalueの呼び出しに成功したことを示します。戻り値-1はエラーが発生し

たことを示し、errnoはエラーを示すために設定されます。発生する可能性のあるエラーの

タイプのリストについてはsem_getvalue(3)のmanページを参照してください。

POSIXミューテックスの基礎5

ミューテックスは同時更新やクリティカル・セクションの実行から共有データ構造体を保護

するために便利な相互排他デバイスです。ミューテックスはアンロック(どのスレッドにも所

有されていない)とロック(1つのスレッドが所有)の2つの状態を持っています。他のスレッド

が既にロックしているミューテックスをロックしようとするスレッドは、まず所有している

スレッドがミューテックスをアンロックするまで停止します。

RedHawkで利用可能な標準的なPOSIXのPスレッド・ミューテックス機能には以下のサービス

が含まれます。これらのサービスのすべての情報はmanページを参照してください。

pthread_mutex_init(3) ミューテックスを初期化
pthread_mutex_lock(3) ミューテックスをロック
pthread_mutex_trylock(3) ミューテックスのロックを試す
pthread_mutex_unlock(3) ミューテックスをアンロック
pthread_mutex_destroy(3) ミューテックスを破棄
pthread_mutexattr_init(3) ミューテックスの属性オブジェクトを初期化
pthread_mutexattr_destroy(3) ミューテックスの属性オブジェクトを破棄
pthread_mutexattr_settype(3) ミューテックスの属性タイプを設定
pthread_mutexattr_gettype(3) ミューテックスの属性タイプを取得

それらのサービスに加え、RedHawkにはロウバスト性(堅牢性)と優先度継承を提供する以下の

POSIXのPスレッド・ミューテックス機能が含まれます。ロウバスト性 はもしアプリケーシ

ョンのスレッドの1つがミューテックス保持中に死んだ場合、回復する機会をアプリケーショ

ンに与えます。「優先度継承」は、ミューテックスを所有するどのスレッドも直接的または

間接的にスレッドの優先度のスケジューリングをスリープ中の最高優先度スレッドの優先度

へ自動的に引き上げます。これらの条件の詳細を以下に記述します。

RedHawk Linux User’s Guide

5-22

サービスは以降のセクションおよびmanページで説明されています。

pthread_mutex_consistent(3) 矛盾するミューテックスの矛盾をなくす
pthread_mutexattr_getprotocol(3) プロトコルを返す
pthread_mutexattr_getrobust(3) ロウバスト・レベルを返す
pthread_mutexattr_setprotocol(3) プロトコルを設定
pthread_mutexattr_setrobust(3) ロウバスト・レベルを設定

ロウバスト・ミューテックス5

ロウバスト・ミューテックスを使用するアプリケーションは、ミューテックスを保持中に前

のミューテックス所有者が終了したかどうかを検出することが可能です。新しい所有者はミ

ューテックスに保護されている状態を除去しようとし、もしそれが出来た場合、再び正常な

ミューテックスをマークするすることが可能となります。もし状態の除去が出来なかった場

合、ミューテックスをロックしようとする際に回復不可能であることを表すステータスを取

得するようにするためにミューテックスは回復不可能とマークする可能性があります。

これを実装するには、EOWNERDEADとENOTRECOVERABLEの2つerrnoコードが利用でき

ます。ミューテックス保持中にスレッドが死んだ時、ミューテックスは自動的にアンロック

し死んだとマークされます。デッド・ミューテックスにおいて各々の成功したロックが成功

ではなくEOWNERDEADエラーを返すことを除いては、デッド・ロックは通常のロックのよ

うに動作します。

従って、ロウバストに関係するアプリケーションは戻された全ロック要求のステータスを調

べる必要があります。EOWNERDEADである時、アプリケーションはそれを無視することが

可能で、所有者が死んだおよび矛盾(正常)がマークされたことに起因するアプリケーションの

不正を何でも回復、もし回復出来なかった場合、回復不可能をマークします。

回復不可能をマークされたミューテックスはENOTRECOVERABLEエラーを伴うミューテッ

クスの将来全ての操作を拒否します。唯一の例外はミューテックスを最初期化するサービス

とミューテックスの状態を問い合わせるサービスです。回復不可能になるミューテックスで

スリープしているスレッドはENOTRECOVERABLEエラーを伴い直ぐに起き上がります。

優先度継承5

優先度継承ミューテックスを使用するアプリケーションは、その時々に一時的に引き上げら

れる優先度を検出することが可能です。引き上げはミューテックスを取得したそれらのスレ

ッドで発生し、他の高優先度スレッドはそのミューテックスを待ってスリープ状態に入りま

す。この場合、スリープしているスレッドの優先度は所有者がロックを保持する間は一時的

にロック所有者に移されます。

それらのスリープしているスレッドは他のミューテックスを順に所有することができるた

め、それら自身が優先度を引き上げ、最大機能はどの優先度へ引き上げるかを決定する際に

優先度を引き上げられるスリープ・スレッドを使用して解決します。

ユーザー・インターフェース5

ここに記載されたサービスの完全な説明は後に続くセクションおよび対応するオンラインの

manページで提供されます。

プロセス間同期

5-23

以下のサービスはミューテックスの状態で操作します。

pthread_mutex_consistent(3) 矛盾したミューテックスの矛盾をなくす

以下に記載されたサービスはミューテックス属性オブジェクト内に格納されている属性に関

して修正もしくは問い合わせを行います。「ミューテックス属性オブジェクト」は属性オブ

ジェクトを伴い作成されたミューテックス内で利用可能であるミューテックスの機能を定義

するデータ構造体です。ミューテックスは多くの機能を持っているので、ミューテックス属

性オブジェクトはアプリケーションが1つのミューテックス属性オブジェクト内で要求される

すべての属性を定義するためにそれの使い勝手を良くして、一連の属性オブジェクトを持つ

ことになる全てのミューテックスを作成します。

更にミューテックスの寿命のために固定される必要のあるそれらの属性は、ミューテックス

属性オブジェクトを通してのみ定義することが可能です。同様にミューテックスの寿命を変

更可能な属性は、ミューテックス属性オブジェクトを通して最初の定義を与えることが可能

で、その後、対応するミューテックス自身の属性操作を介して変更することが可能です。

属性の取得：

pthread_mutexattr_getprotocol(3) プロトコルを返す
pthread_mutexattr_getrobust(3) ロウバスト・レベルを返す

属性の設定：

pthread_mutexattr_setprotocol(3) プロトコルを設定
pthread_mutexattr_setrobust(3) ロウバスト・レベルを設定

pthread_mutex_consistent5

このサービスは矛盾するミューテックスの矛盾をなくします。

概要

int pthread_mutex_consistent(pthread_mutex_t *mutex)

もしミューテックスの所有者がそれを保持中に死んだ場合に矛盾のないミューテックスは矛

盾することになります。更に、所有者の死の検出においては、まるで

pthread_mutex_unlockが実行されたかのようにミューテックスはアンロック状態となりま

す。後続の所有者が所有権を与えられたpthread_mutex_lockから戻りEOWNERDEADエラー

を受信することを除いて、ロックは通常のように機能し続けます。これは取得したミューテ

ックスが矛盾していることを新しい所有者へ知らせています。

このサービスは矛盾するミューテックスの所有者に呼ばれることのみ可能です。

pthread_mutexattr_getprotocol5

このサービスはこの属性一式で初期化されるミューテックスのためのプロトコルを返しま

す。

概要

int pthread_mutexattr_getprotocol(pthread_mutexattr_t *attr, int
*protocol)

利用可能なプロトコル：

PTHREAD_PRIO_NONE
スレッドのスケジューリング・ポリシーはこのミューテックスの動作に影響

を受けません。

RedHawk Linux User’s Guide

5-24

PTHREAD_PRIO_INHERIT
スレッドのスケジューリング・ポリシーは優先度継承のルールに従い変更さ

れます：スレッドがミューテックスの所有者である限り、それは直接的もし

くは間接的にミューテックスを取得するために待機している最高優先度スレ

ッドの優先度を継承します。

pthread_mutexattr_getrobust5

このサービスはこの属性一式で初期化されるミューテックスのためのロウバスト・レベルを

返します。

概要

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *attr,
int *robustness)

利用可能なレベル：

PTHREAD_MUTEX_ROBUST
この属性オブジェクトで初期化されるミューテックスはロウバストになりま

す。

PTHREAD_MUTEX_STALLED
この属性オブジェクトで初期化されるミューテックスはロウバストにはなり

ません。

ロウバスト・ミューテックスはこの所有者が死んで矛盾状態へ移行した時に検出するもので

す。矛盾状態の定義については「pthread_mutex_consistent」を参照してください。

非ロウバスト・ミューテックスはこの所有者が死んで無期限(これは、シグナルに割り込まれ

るまで、もしくは何か他のスレッドが死んだプロセスに代わりミューテックスをアンロック

するまで)でロックされたままの場合に検出しません。

pthread_mutexattr_setprotocol5

このサービスはこのミューテックス属性一式から作成されるどのミューテックスのプロトコ

ルでも設定します。

概要

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int
protocol)

protocol は、PTHREAD_PRIO_NONEもしくはPTHREAD_PRIO_INHERITになります。これら

の定義については「pthread_mutexattr_getprotocol」を参照してください。

pthread_mutexattr_setrobust5

このサービスはこのミューテックス属性オブジェクトで作成されるミューテックスのための

ロウバスト・レベルを設定します。

概要

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr, int
robustness)

robustness は、PTHREAD_MUTEX_ROBUSTもしくはPTHREAD_MUTEX_STALLEDになりま

す。これらの定義については「pthread_mutexattr_getrobust」を参照してください。

プロセス間同期

5-25

POSIXミューテックス・プログラムのコンパイル5

上述の優先度継承、ロウバスト・ミューテックスを使用するプログラムは標準的なcc(1),
gcc(1), g++(1)ツールでコンパイルします。

RedHawkの以前のバージョンには、ccur-gccもしくはccur-g++でアプリケーションをコンパ

イルおよびリンクすることでアクセスされるこれらのミューテックスための拡張部分を提供

する代替えのglibcが含まれていたことに注意してください。この機能は現在標準glibcに含ま

れており、代替えglibcやccur-*コンパイル・スクリプトは既に利用できません。

標準glibc追加は代替えglibcを通して提供された拡張部分と完全なバイナリ互換ではありませ

ん。RedHawkの以前のバージョン上でccur-gccまたはccur-g++でコンパイルされた既存のバ

イナリは、現在のRedHawkのバージョン上で再コンパイルおよび/もしくは移植する必要があ

る可能性があります。これはロウバストおよび/もしくは優先度継承の機能が使用された場合

に特に当てはまります。移植作業では、移植の大半はPスレッド関数や変数名称から単に古い

接尾辞_npや_NPの削除だけとなります。

System Vセマフォ5

概要5-25

System Vセマフォはプロセスがセマフォ値の交換を介して同期することが可能なプロセス間

通信(IPC)メカニズムです。多くのアプリケーションが1つ以上のセマフォの使用を必要として

いるため、オペレーティング・システムはセマフォの集合もしくは配列を初期化するための

機能を持っています。セマフォの集合は1つ以上、最大SEMMSL(<linux/sem.h>内に定義)の
制限値までのセマフォを収納することが可能です。セマフォのセットはsemget(2)システムコ

ールを使用することで作成されます。

単純なセマフォだけが必要とされる時、カウンティング・セマフォはより効果的です。

(「POSIXカウンティング・セマフォ」セクションを参照してください)

semgetシステムコールを実行しているプロセスは所有者/作成者になり、いくつのセマフォが

集合の中にあるのかを割り出し、自分自身を含む全てのプロセスに対して最初の操作パーミ

ッションを設定します。このプロセスはその後集合の所有権を放棄することが可能、さもな

ければsemctl(2)システムコールを使って操作権限を変更することが可能です。作成されたプ

ロセスは機能が存在する限り常に作成者のままです。操作パーミッションを持つ他のプロセ

スは、他の制御機能を実行するためにsemctlを使用することが可能です。

セマフォの所有者がパーミッションを許可する場合、どのプロセスでもセマフォを操作する

ことが可能です。集合内の各セマフォをsemop(2)システムコールによりインクリメントおよ

びデクリメントすることが可能です(後述の「semopシステムコール」セクションを参照して

ください)。

セマフォをインクリメントするには、望む大きさの整数値をsemopシステムコールへ渡しま

す。セマフォをデクリメントするには、望む大きさのマイナス(-)値を渡します。

オペレーティング・システムは、確実にその時点で設定されるセマフォが操作可能なのは1つ
のプロセスだけとします。同時リクエストは任意の方法で順番に実行されます。

プロセスは値の大きなセマフォの1つをデクリメントすることによりセマフォ値を特定の値よ

りも大きくするためにテストすることが可能です。もしプロセスが成功する場合、セマフォ

値は特定値よりも大きくなります。さもなければセマフォ値はそうなりません。

RedHawk Linux User’s Guide

5-26

それをしている間、プロセスはセマフォ値が実行を許可(他のプロセスがセマフォをインクリ

メント)するまでその実行を停止(IPC_NOWAITフラグ未設定)することが可能で、さもなけれ

ばセマフォ機能は削除されます。

実行を停止する機能は「ブロッキング・セマフォ操作」と呼ばれます。この機能もまたゼロ

と等しいセマフォをテスト(読み取り専用パーミッションが必要)しているプロセスを利用可能

で、これはsemopシステムコールへゼロの値を渡すことで実現されます。

一方、プロセスが成功せずその実行を停止するリクエストが無い場合、これは「非ブロッキ
ング・セマフォ操作」と呼ばれます。この場合、プロセスは-1を返し、外部変数errnoにその

結果が設定されます。

ブロッキング・セマフォ操作は、プロセスが異なるタイミングでセマフォの値を介して同期

することが可能です。IPC機能は許可されたプロセスにより削除されるまで、もしくはシステ

ムが再初期化されるまでオペレーティング・システムの中に留まることを思い出してくださ

い。

セマフォの集合が作成された時、集合内の最初のセマフォはセマフォ番号がゼロです。集合

内の最後のセマフォ番号は集合の総数よりも1小さい数が設定されます。

1つのシステムコールは、セマフォの集合において一連のこれらのブロッキング/非ブロッキン

グ操作を実行するために使用することが可能です。一連の操作を実行する時、ブロッキング/
非ブロッキング操作は集合の一部または全てのセマフォに適用することが可能です。また、

操作はセマフォの数のどんな順番でも適用することが可能です。しかし、それらが全て正常

に処理されるまでは操作されません。例えば、もし10個のセマフォの集合の6個の処理のうち

最初の3個が正常終了し、4つ目の操作でブロックされた場合、6個の操作全てがブロック無し

で実行できるようになるまで、集合に対して変更を行うことはありません。操作全てが成功

およびセマフォが変更のどちらか一方、もしくは1つ以上の(非ブロック)操作が失敗では、何

も変更されません。つまり、操作はアトミックに実行されます。

単一のセマフォもしくはセマフォの集合のための非ブロック操作のどのような失敗も、操作

が少しも実行されずに即座に戻る原因となることを思い出してください。これが発生した

時、プロセスから-1が返され、外部変数errnoにその結果が設定されます。

システムコールはプロセスが利用可能なこれらのセマフォ機能を構成します。呼び出し元プ

ロセスシステムコールへ引数を渡し、システムコールはその機能を実行して成功もしくは失

敗のどちらか一方となります。もしシステムコールが成功する場合、その機能が実行され適

切な情報を返します。そうではない場合、プロセスから-1が返され、外部変数errnoにその結

果が設定されます。

System Vセマフォの利用5

セマフォが使用する(実行するまたは制御される)前に一意に識別されるデータ構造体およびセ

マフォの集合(配列)は作成される必要があります。ユニークな識別子はセマフォ集合識別子

(semid) と呼ばれ、これは特定のデータ構造体やセマフォの集合を識別するため、もしくは参

照するために使用されます。この識別子はシステム内のどのプロセスでもアクセス可能で、

通常のアクセス制限事項の対象となります。

セマフォ集合は配列に所定の数の構造体を含みます(集合中のセマフォにつき1つの構造体)。
セマフォ集合内のセマフォの数(nsems)はユーザーが選択可能です。

プロセス間同期

5-27

semop(2)システムコールで使用されるsembuf構造体を図5-1に示します。

図5-1 sembuf構造体の定義

struct sembuf {

unsigned short int sem_num; /* semaphore number */

short int sem_op; /* semaphore operation */

short int sem_flg; /* operation flag */

};

sembuf 構造体は<sys/sem.h>ヘッダー・ファイル内に定義されています。

semctl(2)サービスコールで使用されるsemid_ds構造体を図5-2に示します。

図5-2 semid_ds構造体の定義

struct semid_ds {

struct ipc_perm sem_perm; /* operation permission struct */

__time_t sem_otime; /* last semop() time */

unsigned long int __unused1;

__time_t sem_ctime; /* last time changed by semctl() */

unsigned long int __unused2;

unsigned long int sem_nsems; /* number of semaphores in set */

unsigned long int __unused3;

unsigned long int __unused4;

};

semid_dsデータ構造体は<bits/sem.h>にありますが、ユーザー・アプリケーションは

<bits/sem.h>ヘッダー・ファイルを内部的に含む<sys/sem.h>ヘッダー・ファイルを含める

必要があります。

この構造体のメンバーsem_permはipc_perm型であることに注意してください。このデータ

構造体は全てのIPC機能(<bits/ipc.h>ヘッダー・ファイル)と同じですが、ユーザー・アプリケ

ーションは<bits/ipc.h>ヘッダー・ファイルを内部的に含む<sys/ipc.h>ファイルを含める必

要があります。ipc_permデータ構造体の詳細は3章の「System Vメッセージ」セクション内

に記述されています。

semget(2)システムコールは2つの仕事のうち1つを実行します：

• 新しいセマフォ集合識別子を作成し、それ用に対応するデータ構造体とセマフォ集

合を作成します
• 既に関連付けられたデータ構造体とセマフォ集合を持つ既存のセマフォ集合識別子

を見つけます

実行されるタスクはsemgetシステムコールへ渡すkey 引数の値により決まります。もしkey
が既存のsemid で使用されておらずIPC_CREATフラグが設定されていない場合、新しいsemid
はシステム・チューニング・パラメータを超えない条件で関連付けられたデータ構造体と作

成されたセマフォの集合と共に返されます。

key の値をゼロに指定するためにプライベート・キー(IPC_PRIVATE)として知られる条件もあ

ります。

RedHawk Linux User’s Guide

5-28

このキーが指定される時、新しい識別子はシステム・チューニング・パラメータを超えない

限り、常に関連付けられたデータ構造体と作成されたセマフォの集合と共に返されます。

ipcs(1)コマンドはsemid用のkey フィールドを全てゼロとして表示します。

セマフォ集合が作成される時、semgetを呼び出すプロセスは所有者/作成者になり、関連付け

られるデータ構造体はそれに応じて初期化されます。所有権は変更される可能性があります

が、作成されるプロセスは常に作成者のままでいることを思い出してください(「semctlシス

テムコール」セクションを参照してください)。セマフォ集合の作成者はこの機能のために最

初の操作パーミッションもまた決定します。

もし指定されたキーに対するセマフォ集合識別子が存在する場合、既存の識別子の値が返さ

れます。もし既存のセマフォ集合識別子が返されることを望まないのであれば、制御コマン

ド(IPC_EXCL)をシステムコールへ渡すsemflg 引数の中に指定(設定)することが可能です。実

際の集合の数よりも大きなセマフォの数(nsems)を値として渡された場合はシステムコールは

失敗します。もし集合にセマフォがいくつあるのか分からない場合は、nsems に対し0を指定

してください(詳細な情報については「semgetシステムコール」を参照してください)。

一旦、一意に識別されるセマフォの集合とデータ構造体が作成される、もしくは既存のもの

が見つかるとsemop(2)およびsemctl(2)を使用することが可能になります。

セマフォの操作はインクリメント、デクリメント、ゼロにするための試験から構成されま

す。semopシステムコールはこれらの操作を実行するために使用されます(semopシステムコ

ールの詳細については「semopシステムコール」を参照してください)。

semctlシステムコールは以下の方法によりセマフォ機能の制御を許可します：

• セマフォの値を返す(GETVAL)
• セマフォの値を設定する(SETVAL)
• セマフォ集合に関する操作を実行する最後のプロセスのPIDを返す(GETPID)
• 現在の値よりもセマフォ値を大きくなるのを待っているプロセスの数を返す(GETNCNT)
• セマフォ値がゼロになるのを待っているプロセスの数を返す(GETZCNT)
• 集合の中の全てのセマフォ値を取得しユーザー・メモリ内の配列の中に収納します

(GETALL)
• ユーザー・メモリ内の配列からセマフォ集合内の全てのセマフォ値を設定します

(SETALL)
• セマフォ集合に関連付けられたデータ構造体を取得します(IPC_STAT)
• セマフォ集合のために操作パーミッションを変更します(IPC_SET)
• セマフォ集合に関連付けられたデータ構造体とセマフォ集合と共にオペレーティング・

システムから特定のセマフォ集合識別子を削除します(IPC_RMID)

semctlシステムコールの詳細は「semctlシステムコール」セクションを参照してください。

プロセス間同期

5-29

semgetシステムコール5

semget(2)は新しいセマフォ集合を作成もしくは既存のセマフォ集合を特定します。

本セクションシではsemgetシテムコールの使用方法について説明します。より詳細な情報に

ついては、semget(2)のmanページを参照してください。このシステムコールの使用を例示す

るプログラムは、README.semget.txt内に提供された多数のコメントと共に

/usr/share/doc/ccur/examples/semget.cで見つけることが可能です。

概要

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key_t key, int nsems, int semflg);

上記の全てのインクルードファイルは、オペレーティング・システムの/usr/includeサブディ

レクトリにあります。

key_t はヘッダー・ファイル<bits/sys/types.h>の中で整数型にするためにtypedefによっ

て定義されています(このヘッダー・ファイルは<sys/types.h>内部に含まれています)。正常

終了した場合にこのシステムコールから返される整数は、key の値に対応するセマフォ集合識

別子(semid)です。semid は本章の「System Vセマフォの利用」セクション内で説明されていま

す。

セマフォ集合およびデータ構造体に対応する新しいsemid は以下の条件に1つでも該当する場

合に作成されます。

• key が IPC_PRIVATE
• セマフォ集合およびデータ構造体に対応するsemid が存在しないkey 、かつsemflgと

IPC_CREAT の論理積がゼロではない

semflg 値の組み合わせ：

• 制御コマンド (フラグ)
• 操作パーミッション

制御コマンドはあらかじめ定義された定数です。以下の制御コマンドはsemgetシステムコー

ルに適用され、<sys/ipc.h>ヘッダー・ファイル内部に含まれる<bits/ipc.h>ヘッダー・ファ

イル内に定義されています。

IPC_CREAT 新しいセグメントをセマフォ集合するために使用されます。もし使

用されない場合、semgetはkey に対応するセマフォ集合の検出

し、アクセス許可の確認をします。

IPC_EXCL IPC_CREATと一緒の使用は、指定されたkey に対応するセマフォ

集合識別子が既に存在している場合、このシステムコールはエラー

を引き起こします。これは新しい(ユニークな)識別子を受け取らな

かった時に受け取ったと考えてしまうことからプロセスを守るため

に必要です。

パーミッション操作はユーザー、グループ、その他のために読み取り/書き込み属性を定義し

ます。
表5-1は有効な操作パーミッション・コードの(8進数で示す)数値を示します。

RedHawk Linux User’s Guide

5-30

表5-1 セマフォ操作パーミッション・コード

操作パーミッション 8進数値
Read by User
Alter by User
Read by Group
Alter by Group
Read by Others
Alter by Others

00400
00200
00040
00020
00004
00002

特有の値は、必要とする操作パーミッションのために8進数値を追加もしくはビット単位の論

理和によって生成されます。これが、もし「Read by User」と「Read/Write by Others」を要求

された場合、コードの値は00406 (00400＋00006)となります。

semflg 値は、フラグ名称と8進数の操作パーミッション値を一緒に使用して簡単に設定するこ

とが可能です。
使用例：

semid = semget (key, nsems, (IPC_CREAT | 0400));
semid = semget (key, nsems, (IPC_CREAT | IPC_EXCL | 0400));

以下の値は<linux/sem.h>の中で定義されています。これらの値を超えると常に失敗の原因と

なります。

SHMMNI いつでも利用可能なユニークなセマフォ集合(semids)の最大数
SEMMSL 各セマフォ集合内のセマフォの最大数
SEMMNS システム全体の全セマフォ集合内のセマフォの最大数

セマフォ制限値のリストは以下のオプションの使用によりipcs(1)コマンドで取得することが

可能です。詳細はmanページを参照してください。

ipcs -s -l

特定の関連するデータ構造体の初期化および特定のエラー条件についてはsemget(2)のmanペ
ージを参照してください。

semctlシステムコール5

semctl(2)はセマフォ集合の制御操作を実行するために使用されます。

本セクションではsemctl システムコールを説明します。さらに詳細な情報はsemctl(2)のman
ページを参照してください。

プロセス間同期

5-31

この呼び出しの使用を説明しているプログラムは、README.semctl.txt内に提供された多く

のコメントと共に/usr/share/doc/ccur/examples/semctl.cで見つけることが可能です。

概要

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (int semid, int semnum, int cmd, int arg);

union semun
{

int val;
struct semid_ds *buf;
ushort *array;

} arg;

上記の全てのインクルードファイルは、オペレーティング・システムの/usr/includeサブディ

レクトリにあります。

semid 変数はsemgetシステムコールを使って作成された有効な負ではない整数値でなければ

なりません。

semnum 引数はその数でセマフォを選択するために使用されます。これは集合の(アトミック

に実行される)操作の順番に関連します。セマフォの集合が作成される時、最初のセマフォは

数が0、最後のセマフォは集合の総数よりも1小さい数が設定されます。

cmd 引数は以下の値のいずれかとなります。

GETVAL セマフォ集合内の単一のセマフォ値を返します
SETVAL セマフォ集合内の単一のセマフォ値を設定します
GETPID セマフォ集合内のセマフォの操作を最後に実行したプロセスのPIDを返します
GETNCNT 現在値よりも大きくなるために特定のセマフォの値を待っているプロセスの

数を返します
GETZCNT ゼロになるために特定のセマフォの値を待っているプロセスの数を返します
GETALL セマフォ集合内の全てのセマフォの値を返します
SETALL セマフォ集合内の全てのセマフォの値を設定します
IPC_STAT 指定されたsemid に関連するデータ構造体に含まれるステータス情報を返

し、arg.bufで指し示されたデータ構造体の中に格納します
IPC_SET 指定されたセマフォ集合(semid)に対して有効なユーザー/グループIDと操作パ

ーミッションを設定します
IPC_RMID 指定されたセマフォ集合とそれに関連するデータ構造体と共に削除します

RedHawk Linux User’s Guide

5-32

NOTE

semctl(2)サービスはIPC_INFO, SEM_STAT, SEM_INFOコマンドもサ

ポートします。しかし、これらのコマンドはipcs(1)ユーティリティ

で使用するためだけに意図されているので、これらのコマンドについ

ての説明はありません。

IPC_SETまたはIPC_RMID制御コマンドを実行するため、プロセスは以下の条件を1つ以上満

たしていなければなりません。

• 有効なOWNERのユーザーIDを所有
• 有効なCREATORのユーザーIDを所有
• スーパー・ユーザー
• CAP_SYS_ADMINケーパビリティを所有

セマフォ集合は、-s semid (セマフォ集合識別子)または-S semkey (対応するセマフォ集合のキ

ー)オプション指定によるipcrm(8)コマンドの利用で削除される可能性もあることに注意して

ください。このコマンドを使用するため、プロセスはIPC_RMID 制御コマンドの実行に必要

となるのと同じ権限を持っている必要があります。このコマンドの使用に関して更なる情報

はipcrm(8)のmanページを参照してください。

残りの制御コマンドは必要に応じて読み取りもしくは書き込みパーミッションのいずれかが

必要になります。

arg 引数は制御コマンドが実行するために適切な共用体をシステムコールに渡して使用され

ます。制御コマンドの一部に関しては、arg 引数は必要とされずに単に無視されます。

• arg.valに必須： SETVAL
• arg.bufに必須： IPC_STAT, IPC_SET
• arg.arrayに必須： GETALL, SETALL
• arg は無視： GETVAL, GETPID, GETNCNT, GETZCNT, IPC_RMID

semopシステムコール5

semop(2)は選択されたセマフォ集合のメンバーの操作を実行するために使用されます。

本セクションではsemopシステムコールを説明します。さらに詳細な情報はsemop(2)のman
ページを参照してください。この呼び出しの使用を説明しているプログラムは、

README.semop.txt内に提供された多くのコメントと共に

/usr/share/doc/ccur/examples/semop.cで見つけることが可能です。

概要

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (int semid, struct sembuf *sops, unsigned nsops);

プロセス間同期

5-33

上記の全てのインクルード・ファイルは、オペレーティング・システムの/usr/includeサブデ

ィレクトリにあります。

semopシステムコールは正常終了でゼロ、そうでない場合は-1の整数値を返します。

semid 引数は有効な正の整数値である必要があります。または、それは事前にsemget(2)シス

テムコールから返されている必要があります。

sops 引数は各セマフォを変更するために以下を含むユーザー・メモリ領域内の構造体の配列

を指し示します：

• セマフォの番号 (sem_num)
• 実行する操作 (sem_op)
• 制御フラグ (sem_flg)

*sops 宣言は配列名称(配列の最初の要素のアドレス)もしくは使用可能な配列へのポインタを

意味します。sembufは配列内の構造体メンバーのテンプレートして使用されるデータ構造体

のタグ名称で、それは<sys/sem.h>ヘッダー・ファイルにあります。

nsops 引数は配列の長さ(配列内の構造体の数)を指定します。この配列の最大サイズは

SEMOPMシステム・チューニング・パラメータによって決定されます。従って、SEMOPM操

作の上限は各semopシステムコールに対して実行されることが可能です。

セマフォ番号(sem_num) は操作が実行される集合内の特定のセマフォを確定します。

実行される操作は以下によって決定されます：

• sem_op が正の場合、セマフォ値はsem_op の値によりインクリメントされます
• sem_op が負の場合、セマフォ値はsem_op の絶対値によりデクリメントされます
• sem_op がゼロの場合、セマフォ値はゼロと等しくなるまでテストされます

以下の操作コマンド(フラグ)を使用することが可能：

IPC_NOWAIT 配列内のどのような操作でも設定することが可能です。もし

IPC_NOWAITが設定されているどのような操作もうまく実行でき

ない場合、セマフォの値を少しも変更することなくシステムコール

は失敗して戻ります。セマフォの現在の値よりもデクリメントしよ

うとする時、そうではなくセマフォをゼロと等しくするためにテス

トをする時にシステムコールは失敗します。

SEM_UNDO プロセスが終了する時に自動的にプロセスのセマフォの変更を元に

戻すことをシステムに指示し、これはプロセスがデッドロック問題

を回避することを可能にします。この機能を実装するため、システ

ム内のプロセス毎のエントリを含むテーブルをシステムは維持しま

す。各エントリはプロセスに使用される各セマフォのためのアンド

ゥ構造体の集合を指し示します。システムは最終的な変更を記録し

ます。

RedHawk Linux User’s Guide

5-34

条件同期5

再スケジューリング変数はARM64アーキテクチャではサポートされていないため、条件同期

もまたARM64アーキテクチャではサポートされていないことに注意して下さい。

以下のセクションでは、協同プロセスを操作するために使用することが可能なpostwait(2),
server_block/server_wake(2)の各システムコールを説明します。

postwaitシステムコール5

postwait(2)ファンクションは協同グループのスレッド間で使用する高速で効果的なスリープ/
ウェイクアップ/タイマーのメカニズムです。スレッドは同じプロセスのメンバーである必要

はありません。

概要

#include <sys/time.h>
#include <sys/rescntl.h>
#include <sys/pw.h>

int pw_getukid(ukid_t *ukid);
int pw_wait(struct timespec *t, struct resched_var *r);
int pw_post(ukid_t ukid, struct resched_var *r);
int pw_postv(int count, ukid_t targets[], int errors[], struct
resched_var *r);
int pw_getvmax(void);

gcc [options] file -lccur_rt ...

スリープ状態にするには、スレッドはpw_wait()を呼び出します。スレッドは次の時に起き上

がります：

• タイマーが終了する
• スレッドが、pw_wait中スレッドのukid によるpw_post()またはpw_postv()の呼び出し

で他のスレッドよりポストされる
• 呼び出しが割り込まれる

postwait(2)サービスを使用しているスレッドはukid によって識別されます。スレッドはukid
を取得するためにpw_getukid()を呼び出す必要があります。ukid は呼び出し元のユニークな

グローバル・スレッドIDへマッピングします。この値はこのスレッドへポストする可能性の

ある他の共同スレッドと共有することが可能です。

スレッド毎に、postwait(2)は多くても1つの未消費ポストを覚えています。未消費ポストを持

っているスレッドへポストしても効果はありません。

再スケジューリング変数のポインタ引数を持つ全てのpostwait(2)サービスにおいて、もしそ

のポインタがNULLではない場合、関連する再スケジューリング変数のロック・カウントはデ

クリメントされます。

pw_wait()はポストを消費するために使用されます。これは任意のタイムアウト値および任意

の再スケジューリング変数と一緒に呼び出します。これは、ポストを消費した場合は1の値、

もしくはポストを消費するための待機がタイムアウトした場合は0の値を返します。

プロセス間同期

5-35

もしタイムアウト値に指定された時間が0より大きい場合、スレッドはポストの消費を待つた

め多くてもその時間分スリープします。もしポストとの接触なしにこの時間が終了する場合

は0が返されます。もし呼び出しが割り込まれた場合はEINTRが返され、タイムアウト値は残

り時間を反映するために更新されます。もしこのインターバル中にポストされた、もしくは

以前の未消費ポストに接触した場合、ポストは消費され1が返されます。

もしタイムアウト値が0の場合、pw_wait()は即座に戻ります。これは、以前の未消費ポスト

が消費された場合は1を返し、もしくは消費可能なポストが存在しない場合はEAGAINを返し

ます。

もしタイムアウト値のへのポインタがNULLである場合、動作はスレッドが決してタイムアウ

トしないこと以外は同じです。もし割り込まれた場合、EINTRが返されますが指定されてい

ないタイムアウト値は更新されません。

pw_post() ukid で指定されたスレッドへポストを送信します。もしそのスレッドがポ

ストを待っている場合、スレッドは起き上がりポストを消費します。もしそのスレッドがポ

ストを待っていなかった場合、次回そのスレッドはポストを待とうとするために未消費ポス

トは記憶され、それは保存されたポストを消費して警告なしで返します。多くても1つの未消

費ポストがスレッド毎に記憶されます。

pw_postv() 一度で複数のスレッドへポストするために使用することが可能です。全ての

ポストが完了するまで誰もポストしているスレッドにプリエンプトすることが許可されない

という点でこれらのポストはアトミックとなります。ターゲットスレッドのukid は、targets
配列の中に格納されている必要があります。それぞれのターゲットのエラーはerrors 配列の

中に返されます。targets とerrors 配列で使用されるエントリの数は、count 引数を通して渡

す必要があります。

pw_postv() 全て成功した場合は0を返し、いくつかエラーがある場合は最後のターゲッ

トで発生したエラーのエラー値を返します。

pw_getvmax() ポストすることが可能なターゲットの最大数を返します。

pw_postv() この値はカーネル・チューニング・パラメータPW_VMAXにより決定されま

す。

発生する可能性があるエラーの種類のリストについてはpostwait(2)のmanページを参照して

ください。

serverシステムコール5

一連のシステムコールは、PowerMAXオペレーティング・システムと互換性のあるインター

フェースを使うサーバとして動作するプロセスを操作することが可能です。これらのシステ

ムコールを以下で簡単に説明します：

server_block server_blockから最後に戻った後にウェイクアップ・リクエスト

が発生しなかった場合のみ呼び出し元プロセスをブロックします。

もしウェイクアップが発生した場合、server_blockは即座に戻り

ます。

server_wake1 server_blockシステムコールでブロックされた場合にサーバを起

こし、もし指定されたサーバがこの呼び出しでブロックされない場

合、ウェイクアップ・リクエストはサーバの次のserver_blockの
呼び出しに適用します。

server_wakevec プロセスのべクトルが1つのプロセスよりも指定される可能性があ

ることを除いてはserver_wake1と同じ目的で扱います。

RedHawk Linux User’s Guide

5-36

CAUTION

これらのシステムコールはシングル・スレッドのプロセスでのみ使用

する必要があります。多重スレッドのグローバル・プロセスIDはスレ

ッドが現在スケジュールされているプロセス次第で変わります。従っ

て、これらのインターフェースを多重スレッドで使用する時、間違っ

たスレッドが起こされるもしくはブロックされる可能性があります。

server_block5

server_blockから最後に戻った後にウェイクアップ・リクエストが発生しなかった場合の

み、server_blockは呼び出し元プロセスをブロックします。

概要

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_block(options, r, timeout)
int options;
struct resched_var *r;
struct timeval *timeout;

gcc [options] file -lccur_rt ...

引数は以下のように定義されます：

options この引数の値はゼロである必要があります。

r 呼び出し元プロセスの再スケジューリング変数へのポインタ。この引数は

任意で、この値をNULLにすることが可能です。

timeout 呼び出し元プロセスをブロックする最大時間を含むtimeval構造体へのポ

インタ。この引数は任意でこの値をNULLにすることが可能です。もしこの

値がNULLの場合、タイムアウトはありません。

もし呼び出し元プロセスが保留中のウェイクアップ・リクエストを持っている場合、

server_blockシステムコールは即座に戻り、さもなければ呼び出し元プロセスが次のウェイ

クアップ・リクエストを受信する時に返ります。戻り値0は呼び出しが成功したことを示しま

す。戻り値-1はエラーが発生したことを示し、errnoはエラーを示すために設定されます。戻

るときに呼び出し元プロセスはブロックする原因になった条件を再テストする必要がありま

すが、プロセスが早期にシグナルで起こされることもあるので条件が変わったことを保証し

ないことに注意してください。

server_wake15

server_wake1はserver_blockの呼び出しでブロックされているサーバを起こすために呼び出

されます。

概要

プロセス間同期

5-37

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_wake1(server, r)
global_lwpid_t server;
struct resched_var *r;

gcc [options] file -lccur_rt ...

引数は以下のように定義されます：

server 起こされるサーバ・プロセスのグローバル・プロセスID

r 呼び出し元プロセスの再スケジューリング変数へのポインタ。この引数は任

意で、この値をNULLにすることが可能です。

server_wake1呼び出しで使用するために、呼び出し元プロセスの実在するもしくは有効なユ

ーザーIDは、server で指定されたプロセスの実在するもしくは(execで)保存されたユーザー

IDと一致しなければならないことに注意することが重要です。

もしserver_block呼び出しで指定されたサーバがブロックされている場合、server_wake1は
それを起こします。もしこの呼び出しでサーバがブロックされていない場合、ウェイクアッ

プ・リクエストはサーバの次のserver_block呼び出しまで持っています。server_wake1もや

はりr に指定された再スケジューリング変数に関連付けられた再スケジューリング・ロック

の数をデクリメントします。

戻り値0は呼び出しが成功したことを示します。戻り値-1はエラーが発生したことを示し、

errnoはエラーを示すために設定されます。

server_wakevec5

server_wakevecシステムコールはserver_blockの呼び出しでブロックされたサーバのグルー

プを起こすために呼び出されます。

概要

#include <sys/types.h>
#include <sys/time.h>
#include <sys/pw.h>

int server_wakevec(servers, nservers, r)
global_lwpid_t *servers;
int nservers;
struct resched_var *r;

gcc [options] file -lccur_rt ...

引数は以下のように定義されます：

servers 起こされるサーバ・プロセスのグローバル・プロセスIDの配列へのポインタ

nservers 配列のエレメント数を指定する整数値

r 呼び出し元プロセスの再スケジューリング変数へのポインタ。この引数は任

意で、この値をNULLにすることが可能です。

RedHawk Linux User’s Guide

5-38

server_wakevec呼び出しで使用するために、呼び出し元プロセスの実在するもしくは有効な

ユーザーIDは、servers で指定されたプロセスの実在するもしくは(execで)保存されたユーザ

ーIDと一致しなければならないことに注意することが重要です。

もしserver_block呼び出しで指定されたサーバがブロックされている場合、server_wakevec
はそれらを起こします。もしこの呼び出しでサーバがブロックされていない場合、ウェイク

アップ・リクエストはサーバの次のserver_block呼び出しまで適用します。server_wakevec
もやはりr に指定された再スケジューリング変数に関連付けられた再スケジューリング・ロ

ックの数をデクリメントします。

戻り値0は呼び出しが成功したことを示します。戻り値-1はエラーが発生したことを示し、

errnoはエラーを示すために設定されます。

これらの呼び出しの使用に関する追加の情報については、server_block(2)のmanページを参

照してください。

条件同期ツールの適用5

再スケジューリング変数、スピン・ロック、サーバ・システムコールは、共有メモリ領域内

のメールボックスの使用を通して生産者プロセスと消費者プロセスのデータ交換を可能にす

る機能を設計するために使用することが可能です。消費者が空のメールボックスを見つけた

時、それは新しいデータが到着するまでブロックします。生産者がメールボックスの中に新

しいデータを挿入した後、それは待機中の消費者を起こします。消費者がそれを処理するよ

りも早く、生産者がデータを生成した時、類似の状況が発生します。生産者が満杯のメール

ボックスを見つけた時、それはデータが削除されるまでプロックします。消費者がデータを

削除した後、それは待機中の生産者を起こします。

メールボックスは以下のように表すことが可能です：

struct mailbox {
struct spin_mutex mx; /* serializes access to mailbox */
queue_of consumers; /* waiting consumers */
queue_of data; /* the data, type varies */

};

mx フィールドはメールボックスへ順番にアクセスするために使用し、consumers フィールド

はデータを待っているプロセスを識別し、data フィールドは生産者から消費者へ渡されるデ

ータを保持します。queue_of 型は通常2つのオペレータ(リストの最後尾に項目をリンクする

enqueueとリストの先頭に項目をリンクするdequeue)をサポートするリンクされたリストを

定義します。

spin_acquireとspin_releaseの機能を使用して、消費者がメールボックスからデータを取り

出すことが可能になる関数は以下のように定義することが可能です：

void
consume (box, data)

struct mailbox *box;
any_t *data;

{
spin_acquire (&box–>mx, &rv);
while (box–>data == empty) {

enqueue (box–>consumers, rv.rv_glwpid);
spin_unlock (&box–>mx);
server_block (0, &rv, 0);
spin_acquire (&box–>mx, &rv);

プロセス間同期

5-39

}
*data = dequeue (box–>data);
spin_release (&box–>mx, &rv);

}

この関数では、消費者プロセスはデータのチェックおよび削除の前にメールボックスをロッ

クすることに注意してください。もしこれが空のメールボックス見つけた場合、生産者がデ

ータを挿入するのを許可するためにメールボックスをアンロックし、データの到着を待つた

めにserver_blockを呼び出します。消費者が起こされた時に再度メールボックスをロック

し、データをチェックする必要があります(消費者が早期にシグナルによって起こされる可能

性があり、メールボックスがデータを収容している保証がない)。

同様に生産者がメールボックスにデータを収納することを可能にする関数は以下のように定

義することが可能です：

void
produce (box, data)

struct mailbox *box;
any_t data;

{
spin_acquire (&box–>mx, &rv);
enqueue (box–>data, data);
if (box–>consumer == empty)

spin_release (&box–>mx, &rv);
else {

global_lwpid_t id = dequeue (box–>consumers);
spin_unlock (&box->mx);
server_wake1 (id, &rv);

}
}

この関数では、生産者プロセスは新しいデータを挿入する前にメールボックスが空になるの

を待ちます。生産者は消費者が待機している時のみデータの到着を通知、これはメールボッ

クスをアンロックした後にそうすることに注意して下さい。起き上がった消費者はデータの

チェックおよび削除のためにメールボックスをロックする可能性があるため、生産者は最初

にメールボックスをアンロックする必要があります。server_wake1の呼び出しの前にメール

ボックスをアンロックすることもやはり相互排除を短時間保持することを確実にします。不

必要なコンテキスト・スイッチを回避するため、再スケジューリングは消費者が起こされる

まで無効にします。

RedHawk Linux User’s Guide

5-40

6-1

6
プログラム可能なクロックおよびタイマー

646

本章ではタイミングのために使用可能ないくつかの機能の概要を提供します。POSIXクロッ

クおよびタイマー・インターフェースはIEEE規格1003.1b-1993に準拠しています。クロック・

インターフェースは、タイムスタンプまたはコード・セグメント長の時間計測などの目的の

ために使用することが可能な高分解能クロックを提供します。タイマー・インターフェース

は将来シグナルを受信する手段もしくは非同期にプロセスを起こす手段を提供します。更に

非常に短い時間プロセスをスリープ状態にするために利用可能で、スリープ時間の測定に使

用できるクロックを指定できる高分解能システムコールを提供します。追加のクロックとタ

イマーはRCIM PCIカードにより提供されます。

クロックおよびタイマーの理解6

リアルタイム・アプリケーションはアプリケーションまたはシステムイベントをスケジュー

ルするために厳格なタイミングの制約内でデータを操作できる必要があります。高分解能の

クロックとタイマーは、アプリケーションが高分解能クロックに基づく相対または絶対時間

を使用する事やワンショットまたは定期的にイベントをスケジュールすることが可能です。

アプリケーションは各プロセスのために複数のタイマーを作成することが可能です。

いくつかのタイミング機能はiHawkシステム上で利用可能です。これらはPOSIXクロックとタ

イマーも非割り込みクロックやリアルタイム・クロック＆インタラプト・モジュール(RCIM)
PCIカードにより提供されるリアルタイム・クロック・タイマーも含みます。これらのクロッ

クとタイマーおよびそれらのインターフェースは以下のセクションで説明しています。

システム・クロックとタイマーに関する情報は7章を参照してください。

RCIMクロックおよびタイマー6

リアルタイム・クロック＆インタラプト・モジュール(RCIM)は2つの非割り込みクロックを提

供します。これらのクロックはRCIMがチェーン接続されている時に他のRCIMと同期させる

ことが可能です。2つのRCIMクロックは以下のとおり：

tick clock 一般的な400nsのクロック信号のティックを1ずつインクリメントす

る64 bit非割り込みクロック。このクロックは共通のタイムスタン

プを提供するチェーン接続されたRCIM全体でゼロにリセットおよ

び同期することが可能です。

ティック・クロックはマスターでもスレーブでもどのシステムでも

プログラムのアドレス空間に/dev/rcim/sclkデバイス・ファイルを

マッピングしている時にダイレクト・リードを使用して読み取るこ

とが可能です。

POSIX POSIX1003.1フォーマットにコード化された64 bit非割り込みカウン

ター。上位32 bitは秒を収容し、下位32 bitはナノ秒を収容します。

このクロックは一般的な400nsのクロック信号のティックを400ずつ

インクリメントされます。

RedHawk Linux User’s Guide

6-2

主に高分解能ローカル・クロックとして使用されます。

RCIM POSIXクロックは、同じユーティリティとデバイス・ファイ

ルが使われているという点ではティック・クロックと類似する方法

でアクセスされます。POSIXクロックは任意の時間をロードするこ

とが可能ですが、ロードした値はチェーン接続されたRCIMの他の

クロックとは同期されません。ホストに接続されているRCIMの

POSIXクロックだけは更新されます。

RCIMは最大8個のリアルタイム・クロック(RTC)タイマーも供給します。これらの各カウンタ

ーは特別なデバイス・ファイルを使ってアクセス可能で各々は殆どのタイミングまたは周波

数を制御する機能のために使用することが可能です。それらはクロック・カウント値を組み

合わせる事で様々なタイミング間隔を供与しそれぞれ異なる分解能にてプログラム可能で

す。これは所定の周波数(例えば100Hz)でプロセスを実行する、もしくコード・セグメントの

タイミングには理想的な状態となります。ホスト・システム上で割り込みを生成することが

出来ることに加えて、RTCの出力が対応するホストに対して配信するため、またはRCIMの外

部出力割り込み線の1つに接続された外部機器へ配信するため、他のRCIMボードに対して分

配することが可能となります。RTCタイマーはopen(2), close(2), ioctl(2)の各システムコール

により制御されます。

RCIMクロックおよびタイマーに関する全ての情報についてはReal-Time Clock and Interrupt
Module (RCIM) User’s Guide を参照してください。

POSIXクロックおよびタイマー6

POSIXクロックは時間の測定および表示のために高分解能メカニズムを提供します。

POSIXクロックには2種類のタイマー(ワン・ショットと周期)があります。これらは最初の満

了時間と繰り返し間隔に関して定義されます。これは絶対時刻(例：午前8:30)もしくは現在時

刻からの相対時間(例：30秒後)にすることが可能です。繰り返し間隔はタイマー満了から次ま

でに経過する時間量を指示します。タイミング用に使用されるクロックは、タイマーが作成

された時に指定されます。

ワン・ショット・タイマーは絶対または相対初期満了時間とゼロの繰り返し間隔のいずれも

実装されています。これは(初期満了時間の)たった1回で終了し、その後実装が解除されま

す。

周期タイマーは絶対または相対初期満了時間とゼロよりも大きな繰り返し間隔のいずれも実

装されます。繰り返し間隔は、常に最後のタイマー満了時点との相対です。最初の満了時間

が来た時、タイマーは繰り返し間隔の値をリロードし、カウントを継続します。タイマーは

初期満了時間をゼロへ設定することにより実装を解除することが可能です。

ローカル・タイマーはPOSIXタイマー満了スケジューリングの割り込みソースとして使用さ

れます。ローカル・タイマーに関する情報については7章を参照してください。

プログラム可能なクロックおよびタイマー

6-3

NOTE

高分解能クロックおよびタイマーへのアクセスは、libccur_rtおよび

librt内のシステムコールにより提供されますが、libccur_rtルーチン

は軽視されることになります。常に‘ccur_rt’ の前に‘rt’をリンクして

librt内のルーチンを使用することを推奨します。例：

gcc [options] file -lrt -lccur_rt ...

POSIX時間構造体の理解6

POSIXルーチンに関連するクロックおよびタイマーは時間指定のために2つの構造体

(timespec構造体とitimerspec構造体)を使用します。これらの構造体は<time.h>ファイル

の中で定義されます。

timespec構造体は秒とナノ秒で単一時間値を指定します。クロックの時間設定もしくは時間

/クロックの分解能を取得するためにルーチン(これらのルーチンに関する情報は「POSIX
clockルーチンの利用」を参照してください)を呼び出す時にtimespec 構造体へのポインタを

指定します。構造体は以下のように定義されます：

struct timespec {
time_t tv_sec;
long tv_nsec;

};

構造体内のフィールドは以下で説明します：

tv_sec 時間値内の秒数を指定します。

tv_nsec 時間値内の追加のナノ秒数を指定します。このフィールドの値は、

ゼロから999,999,999の範囲内である必要があります。

itimerspec構造体はタイマー用に最初の満了時間と繰り返し間隔を指定します。タイマー

が満了する時間の設定もしくはタイマーの満了時間に関する情報の取得のためにルーチン(こ
れらのルーチンに関する情報は「POSIX clockルーチンの利用」を参照してください)を呼び出

す時にitimerspec構造体へのポインタを指定します。構造体は以下のように定義されま

す：

struct itimerspec {
struct timespec it_interval;
struct timespec it_value;

};

構造体内のフィールドは以下で説明します：

it_interval タイマーの繰り返し間隔を指定します

it_value タイマーの最初の満了時間を指定します

RedHawk Linux User’s Guide

6-4

POSIX clockルーチンの利用6

クロックに関連する様々な機能を実行することが可能なPOSIXルーチンを以下で簡単に説明

します。

clock_settime 指定したクロックの時間を設定します。
clock_gettime 指定したクロックから時間を取得します。
clock_getres 指定したクロックのナノ秒単位の分解能を取得します。

これらのルーチンの各々の使用手順は以降のセクションで説明します。

clock_settimeルーチンの利用6

clock_settime(2)システムコールはシステムtime-of-dayクロック、CLOCK_REALTIMEの時間

を設定することが可能です。呼び出し元プロセスはルートもしくはCAP_SYS_NICEケーパビ

リティを所有している必要があります。定義上、CLOCK_MONOTONICクロックは設定する

ことができません。

もしシステム起動後にCLOCK_REALTIMEを設定した場合、以下の時間は正確ではない可能

性があることに注意する必要があります：

• ファイルシステムの作成および変更時間
• アカウンティングおよび監査記録内の時間
• カーネル・タイマー・キュー・エントリの満了時間

システム・クロックの設定はキューイングされたPOSIXタイマーに影響を及ぼしません。

概要

#include <time.h>

int clock_settime(clockid_t which_clock, const struct timespec
*setting);

引数は以下のように定義されます：

which_clock 時間が設定されるクロックの識別子。CLOCK_REALTIMEだけが設

定することが可能です。

setting which_clock へ設定する時間を指定する構造体へのポインタ。

which_clock がCLOCK_REALTIMEの時、time-of-dayクロックは新

しい値が設定されます。クロック分解能の整数倍ではない時間値は

切り捨てられます。

戻り値0は指定したクロックの設定に成功したことを示します。戻り値-1はエラーが発生した

ことを示し、errnoはエラーを示すために設定されます。発生する可能性があるエラーの種

類のリストについてはclock_settime(2)のmanページを参照してください。

プログラム可能なクロックおよびタイマー

6-5

clock_gettimeルーチンの利用6

clock_gettime(2)システムコールは指定したクロックから時間を取得することが可能です。

この呼び出しは常に利用可能な最高のクロック(通常は1マイクロ秒より上)の分解能を返しま

す。

概要

#include <time.h>

int clock_gettime(clockid_t which_clock, struct timespec *setting);

引数は以下のように定義されます：

which_clock 時間を取得するクロックの識別子。which_clock の値は

CLOCK_REALTIMEまたはCLOCK_MONOTONICにすることが可能

です。

setting which_clock の時間が返される構造体へのポインタ。

戻り値0はclock_gettimeの呼び出しが成功したことを示します。戻り値-1はエラーが発生し

たことを示し、errnoはエラーを示すために設定されます。発生する可能性があるエラーの

種類のリストについてはclock_gettime(2)のmanページを参照してください。

clock_getresルーチンの利用6

clock_getres(2)システムコールは指定したクロックのナノ秒単位の分解能を取得することが

可能です。分解能は、clock_settime(2)で設定したタイミング満了を丸めた精度に決定し、そ

の精度は同じクロックを使用するclock_nanosleep(2)とnanosleep(2)の呼び出しで使用され

ます。

クロックの分解能はシステム依存でありユーザーが設定することはできません。

概要

#include <time.h>

int clock_getres(clockid_t which_clock, struct timespec *resolution);

引数は以下のように定義されます：

which_clock 分解能を取得するクロックの識別子。which_clock の値は

CLOCK_REALTIMEまたはCLOCK_MONOTONICにすることが可能

です。

resolution which_clock の分解能が返される構造体へのポインタ。

RedHawk Linux User’s Guide

6-6

戻り値0はclock_getresの呼び出しが成功したことを示します。戻り値-1はエラーが発生した

ことを示し、errnoはエラーを示すために設定されます。発生する可能性があるエラーの種

類のリストについてはclock_getres(2)のmanページを参照してください。

POSIX timerルーチンの利用6

プロセスはタイマーを作成、削除、設定、問い合わせすることが可能でタイマーが満了した

時に通知を受け取ることが可能です。

タイマーに関連した様々な機能を実行可能なPOSIXシステムコールを以下で簡単に説明しま

す。

timer_create 指定したクロックを使用するタイマーを作成

timer_delete 指定したタイマーを削除

timer_settime 満了時間の設定で指定したタイマーを実装または解除

timer_gettime 指定したタイマーの繰り返し間隔とタイマー満了までの残り時間を

取得

timer_getoverrun 指定した周期タイマーのオーバーラン総数を取得

nanosleep 指定した時間だけ実行を一時停止

clock_nanosleep 指定したクロックに基づき高分解能一時停止を提供

これらの各システムコールの使用手順は以降のセクションで説明します。

timer_createルーチンの利用6

timer_create(2)システムコールは、呼び出し元プロセスがタイミング・ソースとして指定さ

れたクロックを使用するタイマーを作成することが可能です。

それが作成される時、タイマーは解除されます。プロセスがtimer_settime(2)システムコール

を呼び出した時に実装されます(このシステムコールの説明は「timer_settimeルーチンの利用」

を参照してください)。

以下に注意することが重要です：

• プロセスがforkシステムコールを呼び出す時、作成されたタイマーは子プロセスには継

承しません。
• プロセスがexecシステムコールを呼び出す時、作成されたタイマーは解除および削除さ

れます。

プログラム可能なクロックおよびタイマー

6-7

同じスレッド・グループ内のLinuxスレッドはタイマーを共有することが可能です。

timer_createを呼び出したスレッドはシグナル全てを受信しますが、同じスレッド・グルー

プ内の他のスレッドはtimer_settime(2)の呼び出しを通してタイマーを操作することが可能で

す。

概要

#include <time.h>
#include <signal.h>

int timer_create(clockid_t which_clock, struct sigevent *timer_event_spec,
timer_t created_timer_id);

引数は以下のように定義されます：

which_clock タイマーに使用されるクロックの識別子。which_clock の値は

CLOCK_REALTIMEである必要があります。

timer_event_spec NULLポインタ定数または呼び出し元プロセスにタイマー満了を非

同期で通知する方法を指定する構造体へのポインタ：

NULL タイマー満了時にSIGALRMがプロセスへ送信されます
sigev_notify=SIGEV_SIGNAL

sigev_signo に指定されたシグナルはタイマー満了時に

プロセスへ送信されます。
sigev_notify=SIGEV_THREAD

指定したsigev_notify 機能はタイマー満了時に

sigev_valueを引数として新しいスレッドの中から呼ばれ

ます。現在、-lccur_rtではサポートされていないた

め、-lrtを最初にリンクして使用します。
sigev_notify=SIGEV_THREAD_ID

sigev_notify_thread_id の番号にはタイマー満了時に

sigev_signoシグナルを受信するスレッドの

ID(pthread_t)を収納する必要があります。
sigev_notify=SIGEV_NONE

タイマー満了時に通知は配信されません。

NOTE

タイマー満了を意味するシグナルは、シグナルを処理するシステムコ

ールを指定しない限りプロセスを終了させる原因となる可能性があり

ます。特定のシグナルへの既定のアクションを決定するために

signal(2)のmanページを参照してください。

created_timer_id タイマーIDが格納されている場所へのポインタ。この識別子は他

のPOSIXタイマーのシステムコールで必要とされ、システムコール

でタイマーが削除されるまで呼び出し元プロセスの中では一意で

す。

戻り値0はtimer_createの呼び出しが成功したことを示します。戻り値-1はエラーが発生した

ことを示し、errnoはエラーを示すために設定されます。発生する可能性があるエラーの種

類のリストについてはtimer_create(2)のmanページを参照してください。

RedHawk Linux User’s Guide

6-8

timer_deleteルーチンの利用6

timer_delete(2)システムコールは呼び出し元プロセスが指定されたタイマーを削除すること

が可能です。もし選択されたタイマーが既に開始されている場合、これは無効になりタイマ

ーに割り付けられているシグナルもしくはアクションは配信または実行されません。タイマ

ー満了からシグナルが保留中であっても削除されません。

概要

#include <time.h>

int timer_delete(timer_t timer_id);

引数は以下のように定義されます：

timer_id 削除するタイマーの識別子。この識別子は前のtimer_create(2)呼
び出しから来ています(このシステムコールの説明は「timer_create
ルーチンの利用」を参照してください)。

戻り値0は指定したタイマーの削除に成功したことを示します。戻り値-1はエラーが発生した

ことを示し、errnoはエラーを示すために設定されます。発生する可能性があるエラーの種

類のリストについてはtimer_delete(2)のmanページを参照してください。

timer_settimeルーチンの利用6

timer_settime(2)システムコールは、タイマーが満了する時間を設定することで呼び出し元プ

ロセスが指定されたタイマーを実装することが可能です。満了する時間は絶対値または相対

値で定義します。呼び出し元プロセスは、実装されたタイマーに対して次のタイマー満了ま

でに(1)タイマーの解除、または(2)時間のリセットをするためにこのシステムコールを使用す

ることが可能です。

概要

#include <time.h>

int timer_settime(timer_t timer_id, int flags, const struct itimerspec
*new_setting, const struct itimerspec *old_setting);

引数は以下のように定義されます：

timer_id 設定するタイマーの識別子。この識別子は前のtimer_create(2)呼
び出しから来ています(このシステムコールの説明は「timer_create
ルーチンの利用」を参照してください)。

flags 以下のいずれかを指定する整数値：

TIMER_ABSTIME 選択されたタイマーは絶対満了時間を実装しま

す。タイマーは、タイマーに関連付けられたク

ロックがit_value で指定された値に到達する時

に満了となります。もしこの時間が既に過ぎて

いる場合、timer_settimeは成功し、タイマー

満了通知が行われます。

プログラム可能なクロックおよびタイマー

6-9

0 選択されたタイマーは相対満了時間を実装しま

す。タイマーは、タイマーに関連付けられたク

ロックがit_value で指定された値に到達する時

に満了となります。

new_setting 繰り返し間隔とタイマーの初期満了時間を格納する構造体へのポイ

ンタ。

もしワン・ショット・タイマーを望む場合はゼロの繰り返し間隔

(it_interval)を指定します。この場合、初期満了時間になった時、一

旦タイマーが満了となり解除されます。

もし周期的なタイマーを望む場合はゼロではない繰り返し間隔

(it_interval)を指定します。この場合、初期満了時間になった時、タ

イマーは繰り返し間隔の値をリロードしてカウントを続けます。

いずれにせよ、初期満了時間として絶対値(例：午後3:00)または現

在時刻からの相対値(例：30秒後)を設定することが可能です。初期

満了時間に絶対値を設定するにはflags 引数にTIMER_ABSTIMEビ
ットを設定する必要があります。指定されたタイマーが前に満了と

なったことが原因で既に保留中のどのようなシグナルもやはりプロ

セスへ配信されます。

タイマーを解除するために初期満了時間をゼロに設定します。指定

されたタイマーが前に満了となったことが原因で既に保留中のどの

ようなシグナルもやはりプロセスへ配信されます。

old_setting NULLポインタ定数または前の繰り返し間隔とタイマーの初期満了

時間を返す構造体へのポインタ。もしタイマーが解除されていた場

合、初期満了時間の値はゼロとなります。old_setting のメンバーは

タイマーの分解能に左右され、その時点で呼び出す

timer_gettime(2)より返される値と同じになります。

戻り値0は指定したタイマーの設定に成功したことを示します。戻り値-1はエラーが発生した

ことを示し、errnoはエラーを示すために設定されます。発生する可能性があるエラーの種

類のリストについてはtimer_settime(2)のmanページを参照してください。

timer_gettimeルーチンの利用6

timer_gettime(2)システムコールは呼び出し元プロセスが指定したタイマーの繰り返し間隔と

タイマーが満了になるまでの残り時間量を取得することが可能です。

概要

#include <time.h>

int timer_gettime(timer_t timer_id, struct itimerspec *setting);

RedHawk Linux User’s Guide

6-10

引数は以下のように定義されます：

timer_id 繰り返し時間と残り時間をリクエストするタイマーの識別子。この

識別子は前のtimer_create(2)呼び出しから来ています(このシステ

ムコールの説明は「timer_createルーチンの利用」を参照してくださ

い)。

setting 繰り返し間隔とタイマーの残り時間量を返す構造体へのポインタ。

残り時間量は現在時間との相対です。もしタイマーが解除されてい

る場合、値はゼロになります。

戻り値0はtimer_gettimeの呼び出しに成功したことを示します。戻り値-1はエラーが発生し

たことを示し、errnoはエラーを示すために設定されます。発生する可能性があるエラーの

種類のリストについてはtimer_gettime(2)のmanページを参照してください。

timer_getoverrunルーチンの利用6

timer_getoverrun(2)システムコールは呼び出し元プロセスが特定の周期タイマーのオーバー

ラン回数を取得することが可能です。タイマーはシステムがアプリケーションへシグナルを

配信するよりも速く満了となる可能性があります。もしシグナルが他のシグナルのキューイ

ングではなく前回のタイマー満了から保留中である場合、満了を見逃した総数は保留のシグ

ナルと一緒に保持されます。これはオーバーランの総数となります。

シグナルがアプリケーションにブロックされたため、またはタイマーがオーバーコミットし

たためにタイマーがオーバーランとなる可能性があります。

シグナルは常にタイマー満了通知SIGEV_SIGNALを使うタイマー付きプロセスをキューイン

グまたは保留することを前提とします。もしシグナルがキューイングもしくは保留している

間にこのタイマーが満了となる場合、タイマーのオーバーランが発生し、追加のシグナルは

送信されません。

NOTE

タイマー満了シグナル・ハンドラからこのシステムコールを呼び出す

必要があります。もし外側でこのシステムコールを呼び出す場合、返

されるオーバーラン回数は最後に取得したタイマー満了シグナルに関

しては有効ではありません。

概要

#include <time.h>

int timer_getoverrun(timer_t timer_id);

引数は以下のように定義されます：

timer_id オーバーラン回数を取得したい周期タイマーの識別子。この識別子

は前のtimer_create(2)呼び出しから来ています(このシステムコー

ルの説明は「timer_createルーチンの利用」を参照してください)。

プログラム可能なクロックおよびタイマー

6-11

もし呼び出しが成功した場合、timer_getoverrunは指定されたタイマーのオーバーラン回数

を返します。この回数は<limits.h>ファイル内のDELAYTIMER_MAXを超えることはできま

せん。戻り値-1はエラーが発生したことを示し、errnoはエラーを示すために設定されます。

発生する可能性があるエラーの種類のリストについてはtimer_getoverrun(2)のmanページを

参照してください。

POSIX sleepルーチンの利用6

nanosleep(2)とclock_nanosleep(2)のPOSIXシステムコールは、呼び出し元プロセスまたは

スレッドを(1)指定された時間が経過するまで、または(2)シグナルを受信し関連する処理がシ

グナル・ハンドリング・システムコールを実行するもしくはプロセスが終了するまで停止さ

せる高分解能スリープのメカニズムを提供します。

clock_nanosleep(2)システムコールは指定されたクロックによる高分解能スリープを提供し

ます。これは現在動作中スレッドの実行をrqtp により指定された時間が経過するもしくはス

レッドがシグナルを受信するまで一時停止します。

これらのシステムコールの利用はどのシグナルの動作にも影響を与えません。

nanosleepルーチンの利用6

概要

#include <time.h>

int nanosleep(const struct timespec *req, struct timespec *rem);

引数は以下のように定義されます：

req プロセスをスリープする時間の長さを含むtimespec構造体へのポ

インタ。req の値はスリープの分解能の整数倍へ切り上げるため、

またはシステムによる他の動作スケジュールのために一時停止時間

はリクエストされたよりも長くなる可能性があります。シグナルに

割り込まれるケースを除き、一時停止時間はCLOCK_REALTIMEで
測定されるreq によって指定される時間よりも短くはなりません。

ブロック要求に関しては1μ秒の分解能を得られます。

rem NULLポインタ定数またはnanosleepがシグナルに割り込まれた場

合のスリープ間隔の残り時間が返されるtimespec構造体へのポイ

ンタ。もしrem がNULLかつnanosleepがシグナルに割り込まれた

場合、残り時間は返されません。

戻り値0は要求した時間が経過したことを示します。戻り値-1はエラーが発生したことを示

し、errnoはエラーを示すために設定されます。発生する可能性があるエラーの種類のリス

トについてはnanosleep(2)のmanページを参照してください。

RedHawk Linux User’s Guide

6-12

clock_nanosleepルーチンの利用6

概要

#include <time.h>

int clock_nanosleep(clockid_t which_clock, int flags, const struct
timespec *rqtp, struct timespec *rmtp);

引数は以下のように定義されます：

which_clock 使用するクロックの識別子。which_clock の値は

CLOCK_REALTIMEまたはCLOCK_MONOTONICとなります。

flags 以下のいずれかを指定する整数値：

TIMER_ABSTIME rqtp で指定された時間はwhich_clock で指定

されたクロック値に関する絶対値であると解

釈します。

0 rqtp で指定された時間は現在時刻の相対値で

あると解釈します。

rqtp プロセスをスリープする時間の長さを含むtimespec 構造体への

ポインタ。もしTIMER_ABSTIMEフラグが指定され、rqtp で指定

された時間が指定したクロックの現在時刻以下である(またはクロ

ックの値がその時間へ変更される)場合、この機能は即座に戻りま

す。更にスリープする時間はclock_nanosleep(2)を呼び出した後

のクロックのどのような変更にも影響を受けます。つまり、設定ま

たは実際の通過時間またはこれらの組み合わせを通して、現在の時

間が要求した時間以上の時にクロックがその時間に達したかどうか

を問わず呼び出しが完了します。

指定された時間値がクロック分解能の整数倍へ切り上げられる、ま

たはスケジューリングや他のシステムの動作のためにスリープする

時間は要求よりも長くなる可能性があります。シグナルによる割り

込みのケースを除いて、一時停止時間は決して要求よりも小さくは

なりません。

rmtp TIMER_ABSTIMEが指定されていない場合、rmtp で示される

timespec構造体は間隔の残り時間量を収納するために更新されま

す(すなわち、要求時間 - 実際にスリープした時間)。もしrmtp が
NULLの場合、残り時間は設定されません。rmtp の値は絶対時間

値のケースでは設定されません。

成功した場合、clock_nanosleepは少なくても指定した時間が過ぎた後に0の値を返します。

失敗した場合、clock_nanosleepは-1の値を返し、errnoはエラーを示すために設定されま

す。発生する可能性があるエラーの種類のリストについてはclock_nanosleep(2)のmanペー

ジを参照してください。

7-1

7
システム・クロックおよびタイマー

75

本章ではシステム機能上のシステム時間計測、ローカル・タイマー、ローカル・タイマー無

効時の影響について説明します。

システム時間計測7

標準Linuxのシステム時間計測は、タイマー・カウントからナノ秒へ変換するためにタイマー

とキャリブレーションの値を読み取るルーチンにて構成される独立したアーキテクチャのド

ライバを含む“clocksource” メカニズムを使用します。

RedHawkでは、TSCベースのクロックが殆どの時間計測の要求を満たすために使用されます。

カーネル・チューニング・パラメータREQUIRE_TSCおよびREQUIRE_RELIABLE_TSC(カー

ネル構成GUI上の「Processor Type & Features」項目でアクセス可能)は、TSCが構成されて

いないカーネルの信頼性は損害を与えることで知られている電源管理の側面を保証するため

にデフォルトでプレビルト・カーネルの中で有効になっています。

更にTSCはクロックの安定性を向上させるために2番目のクロックソースに統制されます。

RCIMがシステム内に存在する時、RCIMは2番目のクロックソースとして使用されます。そう

でなければ、HPETまたはPMタイマーが使用されます。

/sys/devices/system/clocksource/clocksource0/current_clocksourceファイルを読み取る

と現在の2番目のクロックソースが表示されます。echo(1)を使ってこのファイルへ他のクロ

ックソース名称を書き込むと割り当てが変更されます。

ブート・コマンドライン・オプションは、適切なTSC同期のためにBIOSをチェックしTSCが
正しく同期しない場合はブートの最後で再同期(tsc_sync=auto [デフォルト])、強制的に再同期

(tsc_sync=force)、BIOSをチェックし同期していない場合は実行できるクロックソースとして

TSCを正確に無効(tsc_sync=check)にすることが可能です。ホットプラグCPUはオペレーティン

グ・システムにより再同期させる機会を持っていないことに注意してください。それらのた

めにTSC同期のチェックだけは利用可能です。

これらの時間計測機能に関して更に理解するために/kernel-source/Documentation/hrtimers内
のテキスト・ファイルを参照してください。

ローカル・タイマー7

Concurrent Real-Timeのihawkシステムでは、各CPUがそのCPUへの周期割り込みのソースとし

て使用されるローカル(プライベート)・タイマーを持っています。1つのCPUだけがローカ

ル・タイマー割り込みを同時に処理するために既定値ではそれらの割り込みは1秒につき100
回、正しいテンポでずらして発生させます、

ローカル・タイマー割り込みルーチンは次のローカル・タイミング機能(以降のセクションで

詳細に説明します)を実行します：

RedHawk Linux User’s Guide

7-2

• top(1)および他のユーティリティを使ってCPU使用率の統計データを収集します
• 周期的にタイム・クォンタムを消費するためにCPU上で実行中のプロセスを起こします
• タイム・クォンタムを使い果たした時に実行中のプロセスをCPUから解放し他の実行中

のプロセスを優先させます
• 周期的にCPU間で実行可能なプロセスの負荷バランスを保ちます
• プロセスとシステム・プロファイリングを実行します
• この機能が利用可能なプロセスのためのシステムtime-of-dayクロックおよび実行時間の

クォータ制限を実装します
• POSIXタイマーのための割り込みソースを提供します
• リード・コピー・アップデート(RCU)処理中に構造体のデータを解放するために各CPUの

正状態をポーリングします
• システムtime-of-dayクロックとブート時からのティック回数を更新します
• システム・タイマー・リストのイベント停止を送り出します。これにはウォッチドッ

グ・タイマー・ドライバやalarm(2)のようなプロセス・タイマー機能を含みます

ローカル・タイマーのシールディングは、ローカルCPUへのアフィニティを持つプロセスに

よって要求されたスケジューリング・イベントへのローカル・タイマーの使用を制限しま

す。ローカル・タイマー・シールディングは非シールドCPUへ重要ではない仕事を移動する

プロセス・シールディングと連動します。これは、「リアルタイム性能」章の中で説明した

ように割り込み応答の最悪のケースとCPU上のプログラム実行のデターミニズムの両方を改

善します。しかし、ローカル・タイマーを無効にすることはRedHawk Linuxにより標準的に提

供されるいくつかの機能に関して影響を及ぼします。これらの影響は以下で説明します。

機能7

ローカル・タイマーは以降のセクションの中で説明する機能を実行します。ローカル・タイ

マーを無効にする影響は、いくつかの機能のために実行可能な代案についても説明します。

CPUアカウンティング7

プロセス毎のCPU利用率はtop(1)やps(1)のようなユーティリティにより報告されます。これ

らのユーティリティはtimes(2), wait4(2), sigaction(2), acct(2)のようなシステム・サービス

から利用率の統計値を集めます。

標準的な非RedHawk Linuxカーネルにおいて、プロセスのCPU利用を決定するためにこれらの

サービスはローカル・タイマーに依存します。一方、RedHawkカーネルはこれを実現するた

めにローカル・タイマーの代わりに高分解能プロセス・アカウンティング機能を使用しま

す。高分解能プロセス・アカウンティングはローカル・タイマーが無効であっても機能し続

けます。

高分解能プロセス・アカウンティングは、カーネル構成GUI上の「General Setup」項目の

HRACCTカーネル・チューニング・パラメータを介して全てのプレビルトRedHawk カーネル

にて有効です。この機能に関するすべての情報はhracct(3)およびhracct(7)のmanページを参

照してください。

システム・クロックおよびタイマー

7-3

プロセス実行時間のクォンタムおよび制限7

ローカル・タイマーはSCHED_OTHERおよびSCHED_RRスケジューリング・ポリシーでスケ

ジュールされたプロセスのクォンタムを満了するために使用されます。これは同じスケジュ

ーリング・ポリシーのプロセスがラウンドロビン方式でCPUを共有することを可能にしま

す。もしローカル・タイマーがCPU上で無効である場合、CPU上のプロセスはもはやそれら

のクォンタムを満了することはありません。これは、このCPU上で実行中のプロセスはブロ

ックするまで、または高優先度プロセスが実行可能となるまで実行されることを意味しま

す。つまり、ローカル・タイマー割り込みが無効であるCPU上では、SCHED_RRスケジュー

リング・ポリシーにスケジュールされたプロセスはまるでSCHED_FIFOスケジューリング・

ポリシーにスケジュールされたように動作します。ローカル・タイマーが有効のままである

CPU上にスケジュールされたプロセスは影響を受けないことを注意してください。プロセ

ス・スケジューリング・ポリシーに関する詳細な情報については4章の「プロセス・スケジュ

ーリング」を参照してください。

setrlimit(2)およびgetrlimit(2)システムコールは、プロセスが消費可能なCPU時間に関する制

限をプロセスが設定および取得することを可能にします。この時間が満了となった時、プロ

セスにSIGXCPUシグナルが送信されます。CPU時間の蓄積はローカル・タイマー割り込みル

ーチンの中で行われます。従って、もしCPU上のローカル・タイマーが無効である場合、

CPU上のプロセスが実行する時間は計上されません。もしこれがプロセスを実行する唯一の

CPUである場合、SIGXCPUシグナルを受信することは決してありません。

インターバル・タイマーのデクリメント7

setitimer(2)およびgetitimer(2)システムコールはプロセスが個々に”仮想タイマー”のセットア

ップ、タイマーの値の取得を可能にします。仮想タイマーはプロセスが実行中の時だけデク

リメントされます。仮想タイマーには、ユーザー・レベルでプロセスが実行している時だけ

デクリメントするものとユーザー・レベルとカーネル・レベルのどちらでもプロセスが実行

している時にデクリメントするものの2種類が存在します。仮想タイマーが満了する時、シグ

ナルがプロセスへ送信されます。仮想タイマーのデクリメントはローカル・タイマー・ルー

チンで行われます。従って、ローカル・タイマーがCPU上で無効である時、使用時間が仮想

タイマーからデクリメントされることはありません。もしこれがプロセスを実行している唯

一のCPUである場合、その仮想タイマーは決して満了となりません。

システム・プロファイリング7

ローカル・タイマーはシステム・プロファイリングを操作します。プロファイラーが記録す

るサンプルはローカル・タイマー割り込みの発生により始動します。もしローカル・タイマ

ーが任意のCPU上で無効である場合、gprof(1)コマンドとprofil(2)システム・サービスはその

CPU上で動作するプロセスに対して正しく機能しません。

CPU負荷バランシング7

ローカル・タイマー割り込みルーチンは、このCPU上で実行可能なプロセスの数がシステム

内の他のCPU上で実行可能なプロセスよりも極めて少なくないことを確認するために周期的

にロード・バランサーを呼びます。このような場合、ロード・バランサーは全てのCPU間の

負荷のバランスをとるために他のCPUからプロセスを移動します。ローカル・タイマー割り

込みが無効になっているCPUで、実行するプロセスがCPUにない時にロード・バランサーは

呼ばれます。シールドCPU上でバックグラウンド・プロセスが実行することは通常望ましい

ことではないため、この機能の損失はシールドCPUにおいて通常は問題ではありません。

RedHawk Linux User’s Guide

7-4

CPU再スケジューリング7

resched_cntl(2)システムコールのRESCHED_SET_LIMIT機能は、再スケジューリング変数が

ロックされた状態を維持可能な時間の上限を設定することが可能です。制限時間を超えたと

きにSIGABRTシグナルがプロセスへ送信されます。この機能はアプリケーション開発中に問

題をデバッグするために提供されます。再スケジューリング変数がロックされたプロセスが

ローカル・タイマーが無効のCPU上で動作する時、制限時間はデクリメントされず、その結

果プロセスが指定された制限時間をオーバーランした時にシグナルは送信されない可能性が

あります。

POSIXタイマー7

ローカル・タイマーはPOSIXタイマーのためのタイミング・ソースを提供します。もしCPUが

ローカル・タイマー割り込みからシールドされた場合、そのCPU上のプロセスがPOSIXタイマ

ーまたはnanosleep(2)機能が動作中の場合にローカル・タイマー割り込みはシールドCPU上

で発生し続けます。もしプロセスがシールドCPU上で実行することが許可されていない場

合、このタイマーはプロセスが動作可能なCPUへ移動されます。

RCU処理7

カーネルのリード・コピー・アップデート(RCU)・コードは、伝統的にデータ構造体を解放す

るために各CPU上で静止状態をポーリングするためにローカル・タイマーに頼っています。

CPUがローカル・タイマー割り込みからシールドされている時、そのCPUは必要とするRCU
処理を実行することができません。同期メカニズムは任意のポイントでRCU処理を起動し、

RCU処理へのローカル・タイマーの関与を除いてタイマー駆動型ポーリングを待つことなく

完了します。RCU_ALTERNATIVEパラメータが全てのプレビルト・カーネルでデフォルトの

SHIELDパラメータと関連して設定された時にこの同期が発生します。RCU_ALTERNATIVE
がカーネルに設定されていない時、RCUコードはローカル・タイマーを使用します。

その他7

上述の機能に加えて、ローカル・タイマーが無効である時、標準Linuxのコマンドやユーティ

リティが提供する一部の機能はCPU上で正しく機能しない可能性があります。これらは以下

を含みます：

bash(1)
sh(1)
strace(1)

これらのコマンドやユーティリティの詳細な情報については、対応するmanページを参照し

てください

ローカル・タイマーの禁止7

ローカル・タイマーをシールドすることにより、ローカル・タイマーはどのようなCPUの組

み合わせに対しても無効となります。シールディングはshield(1)コマンドを介して、または

/proc/shield/ltmrsへの16進数値を割り当てることにより行われます。この16進数値はCPUの

ビットマスクで、各々のビットのポジションが1つのCPUを特定し、そのビットの値はその

CPUのローカル・タイマーが無効(=1)なのか有効(=0)なのかを特定します。

システム・クロックおよびタイマー

7-5

詳細な情報については2章の「リアルタイム性能」とshield(1)のmanページを参照してくださ

い。

RedHawk Linux User’s Guide

7-6

8-1

8
ファイルシステムとディスクI/O

本章ではxfsジャーナリング・ファイルシステムおよびRedHawk Linuxオペレーティング・シ

ステム上でのダイレクト・ディスクI/Oの実行手順について説明します。

ジャーナリング・ファイルシステム8

従来のファイルシステムは障害の後にファイルシステムの大きさ次第で完了までに多くの時

間を必要とする特殊なファイル・システム・チェックを実行する必要があります。ジャーナ

リング・ファイルシステムは「ジャーナル」と呼ばれる特殊なログ・ファイルを保存するこ

とによりデータ完全性を確保する障害回復可能なファイル・システムです。ファイルが更新

された時、ファイルのメタデータは本来のディスク・ブロックを更新する前にディスク上の

ジャーナルへ書き込まれます。もしジャーナル・エントリーがコミットされる前にシステ

ム・クラッシュが発生した場合、オリジナル・データはまだディスク上にあり、新しく変更

したものだけが失われます。もしディスク更新中にクラッシュが発生した場合、ジャーナ

ル・エントリーは発生したと考えられることを示します。再起動時にジャーナル・エントリ

ーは再生されて中断された更新は完了します。これはファイル・システム・チェックの複雑

さを大幅にカットし、回復時間を削減します。

SGIからのXFSジャーナリング・ファイルシステムのサポートは、RedHawk Linuxではデフォ

ルトで有効となっています。XFSはマルチ・スレッド化され、100万テラバイト程の大きさの

ファイルが取り扱い可能な64bitファイルシステムです。大容量ファイルおよび大容量ファイ

ルシステムに加えて、XFSがサポート可能な拡張属性、可変ブロックサイズは、容量をベース

にして性能と拡張性の両方を補助するためにBtree(ディレクトリ、大きさ、空き容量)を広範囲

に使用します。ユーザー割り当ておよびグループ割り当ての両方がサポートされます。

ジャーナリングの構造とアルゴリズムは、ジャーナリングのパフォーマンスへの影響を最小

限にして迅速にデータ・トランザクションの読み書きを記録します。XFSはほぼRAW I/O性能

を提供することが可能です。

拡張属性はファイルに関連付けられた名前と値のペアとなります。属性は普通のファイル、

ディレクトリ、シンボリック・リンク、デバイス・ノード、他のiノードの型全てに付随させ

ることが可能です。属性値は最大64KBの任意のバイナリ・データを含めることが可能です。

通常のファイルのアクセス権により保護されている全てのユーザーが利用可能なユーザー名

前空間、および特権のあるユーザーだけがアクセス可能なシステム名前空間の2つの属性の名

前空間が利用可能です。システム名前空間はアクセス制御リスト(ACLs：Access Control Lists)
や階層ストレージ管理(HSM：Hierarchical Storage Manage)ファイルの移動状況のような保護さ

れたファイルシステムのメタデータに使用することが可能です。

NFSバージョン3は、そのプロトコルをサポートする他のシステムへ64bitファイルシステムに

エクスポートするために使用することが可能です。NFS V2システムはプロトコルにより強い

られる32bitの制限があります。

ローカルおよびリモートのSCSIテープまたはファイルへのXFSファイルシステムのバックア

ップとリストアは、xfsdumpとxfsrestoreの使用で行えます。拡張属性と割り当て情報のダ

ンプがサポートされています。

ツールのフルセットはXFSを提供します。XFSファイルシステムのための多くの文書は以下で

見つけることが可能です：http://oss.sgi.com/projects/xfs/

http://oss.sgi.com/projects/xfs/

RedHawk Linux User’s Guide

8-2

XFSファイルシステムの作成8

XFSファイルシステムを作成するため、以下が必須となります：

• XFSファイルシステムを作成するパーティションを確認します。これは新しいディスク、

パーティションで区切られていない既存のディスク、既存のパーティションの上書きで

可能です。新しいパーティションを作成する場合はfdisk(1)のmanページを参照してくだ

さい。

• パーティション上にXFSファイルシステムを作成するためにmkfs.xfs(8)を使用します。

もしターゲット・ディスクのパーティションが現在ファイルシステムでフォーマットさ

れている場合、–f (強制)オプションを使用してください。

mkfs.xfs [-f] /dev/devfile

devfile はファイルシステムを作成したいパーティションの場所(例：sdb3)。これはパー

ティション上の現在のあらゆるデータを破壊しますので注意してください。

XFSファイルシステムのマウント8

XFSファイルシステムをマウントするためにmount(8)コマンドを使用します：

mount -t xfs /dev/devfile /mountpoint

XFSファイルシステムをマウントする時に利用可能なオプションはmount(8)のmanページを参

照してください。

XFSはジャーナリング・ファイルシステムであるため、ファイルシステムをマウントする前に

未完了のトランザクションのためにファイル・システムトランザクション・ログをチェック

し、最新のファイルシステムにします。

ダイレクト・ディスクI/O8

普通は、ファイルの読み書きはファイル・システム・キャッシュ・バッファを通り抜けま

す。データベース・プログラムのようないくつかのアプリケーションはそれら自身がキャッ

シングすることが必要となる可能性があります。ダイレクトI/Oはデータのカーネルのバッフ

ァリングを回避するバッファがないI/O方式です。ダイレクトI/Oは、ファイルシステムがディ

スクとユーザー提供のバッファとの間で直接データを転送します。

RedHawk Linux はその仮想アドレス空間へディスクからの直接読み取り、ディスクへの直接

書き込みの両方がユーザー・プロセスで有効で、中間オペレーティング・システムのバッフ

ァリングを回避し、ディスクI/O速度を向上します。ダイレクト・ディスクI/Oは転送データの

コピーを排除することによりシステムのオーバーヘッドもまた減らします。

ダイレクトI/O用にディスク・ファイルを設定するためにopen(2)またはfcntl(2)システムコー

ルを使用します。以下の手順のいずれかを使用します：

ファイルシステムとディスク I/O

8-3

• ディスク・ファイルの名称パスを指定、arg 引数の中にO_DIRECTビットを設定してプロ

グラムからのopenシステムコールを呼び出します。

• 開いているファイルに対して開いているファイル記述子を指定、F_SETFLコマンを指

定、arg 引数の中にO_DIRECTビットを設定してfcntlシステムコールを呼び出します。

ダイレクト・ディスクI/O転送は以下の要求の全てを満足する必要があります：

• ユーザー・バッファは_PC_REC_XFER_ALIGN pathconf(3)変数の整数倍のバイト・バウ

ンダリに整列されている必要があります。

• 現在のファイル・ポインタの設定が次のI/O操作を開始するファイル内のオフセットに位

置します。この設定は_PC_REC_XFER_ALIGN pathconf(3)変数が返す値の整数倍である

必要があります。

• I/O操作で転送されるバイト数は_PC_REC_XFER_ALIGN pathconf(3)変数が返す値の整

数倍である必要がります。

ダイレクトI/Oをサポートしていないファイルシステム上のファイルに対してダイレクトI/Oを

有効にするとエラーを返します。ファイルシステム固有のsoftオプションでマウントしたファ

イルシステム内のファイルをダイレクト・ディスクI/Oを有効にしようとするとエラーを引き

起こします。softオプションはファイルシステムがアンマウントする直前までキャッシュから

物理ディスクへデータを書き込む必要がないことを指定します。

推奨はしませんが、両方のモードの性能を犠牲にしてダイレクト・モードとキャッシュ(ノン

ダイレクト)・モードの両方で同時にファイルを開くことが可能です。

ダイレクトI/Oの使用する場合、システム障害後にファイルが復旧可能であることを保証しま

せん。そうするためにはPOSIX同期I/Oフラグを設定する必要があります。

プロセスがmmap(2)システムコールでファイルの一部を現在マッピングしている場合はダイ

レクト・モードでファイルを開くことはできません。同様に呼び出しで使われているファイ

ル記述子がダイレクト・モードで開かれている場合、mmapの呼び出しは失敗します。

ダイレクトI/Oがより良いI/Oスループットをタスクに提供するかどうかは、アプリケーション

に依存します：

• 全てのダイレクトI/O要求はどうきしているため、アプリケーションによるI/Oと処理は重

複できません。

• オペレーティング・システムはダイレクトI/Oをキャッシングできないため、read-

ahead(先読み)またはwritebehind(分散書き込み)のアルゴリズムのスループットは向上しま

せん。

しかしながら、他のデータのコピーがなくデータが直接ユーザー・メモリからデバイスへ移

動するため、ダイレクトI/Oはシステム全体のオーバーヘッドを減らします。システム・オー

バーヘッドの削減は、同じプロセッサー・ボード上の内蔵型SCSIディスク・コントローラと

ローカル・メモリ間のダイレクト・ディスクI/Oを行うときに特に顕著です。

RedHawk Linux User’s Guide

8-4

9-1

9
メモリ・マッピング

本章ではプロセスが他のプロセスのアドレス空間の内容をアクセスするためにRedHawk Linux
が提供する方法について説明します。

ターゲット・プロセスのアドレス空間へのマッピングの確立9

各実行中のプロセスにおいて、/procファイルシステムはプロセスのアドレス空間を表すファ

イルを提供します。このファイルの名称は/proc/pid/memで、pid はアドレス空間が表されて

いるプロセスのIDを意味します。プロセスはopen(2)で/proc/pid/memファイルを開き、他の

プロセスのアドレス空間の内容を読むためおよび変更するためにread(2)およびwrite(2)シス

テムコールを使うことが可能です。

libccur_rtライブラリに備わっているusermap(3)ライブラリ・ルーチンは、簡単なCPUの読

み書きを利用して現在実行中のプログラムの場所を効率的に監視および修正する方法をアプ

リケーションに提供します。

このルーチンのための基本的なカーネル・サポートは、プロセスが自分自身のアドレス空間

に他のプロセスのアドレス空間の一部のマッピングを許可する/procファイルシステムの

mmap(2)システム・サービス・コールです。従って、他の実行中のプログラムの監視と修正

は、/procファイルシステムのread(2)およびwrite(2)呼び出しによるオーバーヘッドを負うこ

となく、アプリケーション自身のアドレス空間内での簡単なCPUの読み書きになります。

以降のセクションでこれらのインターフェースの説明およびアプリケーション内でmmap(2)
またはusermap(3)を使うかどうかを決定する時に考慮すべき事項を紹介します。

mmap(2)の利用9

プロセスは/proc/pid/memファイルのアドレス空間の一部をマッピングするためにmmap(2)を
使用することが可能であり、このようにして他のプロセスのアドレス空間の内容を直接アク

セスします。/proc/pid/memファイルへのマッピングを確立したプロセスを以下モニタリン

グ・プロセスと呼びます。アドレス空間をマッピングされたプロセスをターゲット・プロセ

スと呼びます。

/proc/pid/memファイルへのマッピングを確立するため、以下の条件を満足する必要がありま

す：

• ファイルは少なくても読み取り権限で開かれている必要があります。もしターゲット・

プロセスのアドレス空間を修正するつもりならば、ファイルは書き込み権限で開かれて

いる必要があります。

• マッピングを確立するためのmmapの呼び出しに関して、flags 引数はMAP_SHAREDを

指定する必要があり、それ故にターゲット・プロセスのアドレス空間の読み書きはター

ゲット・プロセスとモニタリング・プロセスとの間で共有されます。

RedHawk Linux User’s Guide

9-2

• ターゲットのマッピングはHUGETLB領域内ではない実際のメモリ・ページとする必要が

あります。現在の実装ではHUGETLB領域へのマッピング作成はサポートしていません。

モニタリング・プロセスで生じるmmapマッピングは、現在のレンジ内[offset, offset + length)
にマッピングされたターゲット・プロセスの物理メモリになることに注意することが重要で

す。結果、mmap呼び出しがされた後にターゲットのマッピングが変更された場合、ターゲ

ット・プロセスのアドレス空間へのモニタリング・プロセスのマッピングは無効となる可能

性があります。このような状況では、モニタリング・プロセスは物理ページ下へのマッピン

グを保持しますが、マッピングはターゲット・プロセスとはもはや共有されていません。何

故ならモニタリング・プロセスはマッピングが有効ではないことを検知できないため、モニ

タリング・プロセスとターゲット・プロセス間の関係を制御するためのアプリケーションを

準備する必要があります(表記[start, end]は、start からend への区間(start を含みend を含まな

い)を意味します)。

ターゲット・プロセスのアドレス空間へのモニタリング・プロセスのマッピングが無効にな

る状況は以下のとおり：

• ターゲット・プロセスが終了。

• ターゲット・プロセスがmunmap(2)またはmremap(2)のどちらかでレンジ内[offset, offset

+ length) のページをアンマップ。

• ターゲット・プロセスがmmap(2)で異なるオブジェクトへレンジ内[offset, offset + length)

のページにマッピング。

• ターゲット・プロセスがfork(2)を呼び出し、子プロセスがする前にレンジ内[offset, offset

+ length)のアンロック済み、プライベート、書き込み可能なページへ書き込む。このケー

スでは、ターゲット・プロセスはページのプライベート・コピーを受け入れ、そのマッ

ピングと書き込み操作はコピーされたページへリダイレクトされる。モニタリング・プ

ロセスはオリジナル・ページへのマッピングを保持。

• ターゲット・プロセスがfork(2)を呼び出してから、子プロセスと共有し続けているレン

ジ内[offset, offset + length)のプライベート、書き込み可能な(copy-on-writeにマークされた)
ページをメモリにロック。このケースでは、ロック操作を実行したプロセスは(ページに

最初の書き込みを実行したかのように)ページのプライベート・コピーを受け入れる。も

しこれがページをロックするターゲット(親)・プロセスの場合、モニタリング・プロセス

のマッピングはもはや有効ではない。

• ターゲット・プロセスが子プロセスと共有し続けているレンジ内[offset, offset + length)の

ロック済み、プライベート、読み取り専用の(copy-on-writeにマークされた)ページの書き

込み権限を有効にするためにmprotect(2)を呼び出す。このケースでは、ターゲット・プ

ロセスはページのコピーを受け取る。モニタリング・プロセスはオリジナルのメモリ・

オブジェクトへのマッピングを保持。

もしアプリケーションがモニタリング・プロセスのアドレス空間のマッピングの対象になる

ことを要求されている場合、以下を推奨します：

• ターゲット・プロセスのアドレス空間がモニタリング・プロセスにマッピングされる前

にターゲット・プロセスにてメモリ・ロック操作を実行

• fork(2)を呼び出す前に親プロセスやモニタリング・プロセスによるマッピングが保持さ

れる必要のあるあらゆるページをメモリにロック

もしアプリケーションがアドレス空間のマッピングの対象になることを要求されていない場

合、forkを呼び出した後までメモリ内のページのロックを延期することも可能です。

詳細な情報についてはmmap(2)のmanページを参照してください。

メモリ・マッピング

9-3

usermap(3)の利用9

/procファイルシステムのmmap(2)システム・サービス・コールのサポートに加え、RedHawk
Linux はモニタリング・プロセスの仮想アドレス空間の中へターゲット・プロセスのアドレ

ス空間の一部をマッピングするための代替え方法としてusermap(3)ライブラリ・ルーチンも

提供します。このルーチンはlibccur_rtライブラリの中に備わっています。

usermapライブラリ・ルーチンはターゲット・アドレス空間のマッピングを作成するための

/proc mmapシステムサービスコール・インターフェースを基本に内部的に使用する一方、

usermapは以下の特別な機能を提供します：

• 呼び出し元プロセスは仮想アドレスとターゲット・プロセスのアドレス空間内の当該仮

想空間の長さを指定する必要があります。usermapルーチンは、mmapの呼び出しの前

にこの要求の変換内容を整列した開始アドレスのページとページ・サイズの倍数の長さ

に処理します。

• usermapルーチンは複数のターゲット・プロセスのデータ項目をマッピングするために

使用されることを目的としており、従ってこれは重複するmmapマッピングの作成を回

避するるために書かれました。usermapは既存の全てのマッピングに関するmmap情報

を内部的に保持し、要求されたデータ項目のマッピングが既に存在するマッピングのレ

ンジ内に収まる時、重複する新しいマッピングを作成する代わりにこの既存のマッピン

グを再利用します。

• mmapを呼び出す時、既に開かれているファイル記述子を提供する必要があります。適

切なタイミングでターゲット・プロセスのファイル記述子を開くおよび閉じることは義

務となります。

usermapを使用する時、呼び出し元プロセスはターゲット・プロセスのプロセスID
(pid_t)を指定する必要があります。usermapルーチンは/proc/pid/memファイルを正確

に開く処理をします。同じターゲット・プロセスIDに対して更なるusermap(3)の呼び出

しは、この/procファイル記述子を再度開く必要がないため、このファイル記述子は開い

た状態にしておきます。

ファイル記述子を開いたままにしておくことは全ての場合において適切ではない可能性

が或ことに注意してください。しかしながら、明示的にファイル記述子を閉じて“len”パ
ラメータの値が0でルーチンを呼び出すことによりusermapが使用している内部マッピン

グ情報をフラッシュすることが可能です。呼び出し元プロセスがusermapに組み込まれ

ている最適化機能を続いて利用する可能性があるため、モニタリング・プロセスは全て

のターゲット・マッピングが作成された後にのみこのclose-and-flush 機能を使うことを推

奨します。詳細な情報についてはusermap(3)のmanページを参照してください。

usermapライブラリ・ルーチンもまた同じ/proc/pid/mem mmap(2)システムコール・サポー

トを基に内部的に使用するため、もはや有効ではないモニタリング・プロセスのマッピング

に関して「mmap(2)の利用」で説明した同じ制限をusermapマッピングにも適用されることに

注意してください。

usermap(3)ルーチンの使用に関する詳細な情報についてはusermap(3)のmanページを参照し

てください。

RedHawk Linux User’s Guide

9-4

検討事項9

前述したusermap機能に加えて、アプリケーションの中でusermap(3)ライブラリ・ルーチン

もしくはmmap(2)システム・サービス・コールを使用するのかどうかを決定する時に以下の

残りのポイントもまた検討することを推奨します：

• /proc/pid/memファイルへのマッピングを確立するために使用する機能はConcurrent Real-

Time RedHawk Linuxの拡張ですが、mmap(2)システムコールは標準的なSystem Vです。

usermap(3)ルーチンは完全にConcurrent Real-Time RedHawk Linuxの拡張です。

• mmap(2)はモニタリング・プロセス内のページ保護とマッピングの位置の直接制御を提

供します。usermap(3)はそうではありません。

カーネル構成パラメータ9

/procファイルシステムmmap(2)コールの動作に直接影響を与えるConcurrent Real-Time
RedHawk Linuxカーネル構成パラメータが2つ存在します。usermap(3)もまた/procファイル

システムmmap(2)サポートを使用するため、usermap(3)はこれらの構成パラメータに同様に

影響を受けます。

カーネル構成パラメータは、カーネル構成GUI上の「Pseudo File Systems」項目でアクセス

可能です：

PROCMEM_MMAP もしこのカーネル構成パラメータが有効である場合、/procファイ

ルシステムmmap(2)サポートがカーネルに組み込まれます。

もしこのカーネル構成パラメータが無効である場合、/procファイ

ルシステムmmap(2)サポートはカーネルに組み込まれません。こ

のケースで、usermap(3)と/proc mmap(2)の呼び出しはerrnoの
値がENODEVで返されます。

このカーネル構成パラメータは、全てのConcurrent Real-Time
RedHawk Linuxのカーネル構成ファイルにおいて既定値で有効にな

っています。

PROCMEM_ANYONE もしこのカーネル構成パラメータが有効である場合、モニタリン

グ・プロセスが読み取りまたは読み書きによるopen(2)が成功する

どの/proc/pid/memファイルも/proc mmap(2)またはusermap(3)の
呼び出しのためにターゲット・プロセスとして使用される可能性が

あります。

もしカーネル構成パラメータが無効である場合、モニタリング・プ

ロセスにより現在ptraceを実行されているターゲット・プロセスで

/proc mmap(2)またはusermap(3)を使用することが可能です。更

にptraceを実行されたターゲット・プロセスは/proc mmap(2)シス

テム・サービス・コールが行われた時点で停止した状態である必要

があります(他のプロセスへのptrace実行に関する詳細な情報につい

てはptrace(2)のmanページを参照してください)。

メモリ・マッピング

9-5

このカーネル構成パラメータは、全てのConcurrent Real-Time
RedHawk Linuxのカーネル構成ファイルにおいて既定値で有効にな

っています。

RedHawk Linux User’s Guide

9-6

10-1

10
Non-Uniform Memory Access (NUMA)

最新のIntelおよびAMDのシステムで利用可能なNUMAサポートは、プログラムのページに割

り当てられることになるメモリ場所に影響を及ぼす可能性があります。

NOTE

NUMAはARM64アーキテクチャには対応していません。本章で説明

する機能はNUMA特有であるため、ARM64アーキテクチャではサポ

ートされません。

概要10

不均等メモリ・アクセス(NUMA: Non-Uniform Memory Access)を持つシステムにおいて、他よ

りも一部のメモリ領域へのアクセスに時間がかかります。AMDまたはIntelの最新のマルチ・

プロセッサ・システムはNUMAアーキテクチャを搭載しています。これは各CPUチップがそ

れ自身のメモリ・リソースと一体となっているからです。CPUとそれに対応するメモリはユ

ニークな物理バス上に置かれています。CPUはそのローカル・メモリ・バス上にあるメモリ

領域へは速くアクセスすることが可能ですが、他のCPUはローカルではないCPUのメモリへ

アクセスするために1つ以上の余計な物理バス接続を横断する必要があります。CPU－バス間

の関係を図10-1に示します。

図10-1 NUMAシステム上のCPU/Busの関係

最新のAMDまたはIntelのシステム上のメモリへアクセスする時間は、プログラムが実行され

るCPUとプログラムのページが割り当てられるメモリ領域に依存することを意味します。

NUMAノードは、1つのメモリ領域とNUMAノードのメモリ領域として同じ物理バス上に存在

する全てのCPUとすることを定義します。システムのブート中にカーネルはNUMAメモリ－

CPUレイアウトを決定し、CPUとNUMAノードの関連を定義する仕組みを作成します。

RedHawk Linux User’s Guide

10-2

現在のNUMAシステム上では、メモリ領域に存在する物理バスは1つのCPUにのみ直接接続さ

れています。

最適な性能を得るため、プログラムに利用されているメモリ・ページのローカルCPU上でプ

ログラムは実行される必要があります。本章内で説明されるNUMAインターフェースは、リ

アルタイム・アプリケーションのリモート・メモリ・アクセス量を減らすためにプログラム

のページが割り当てられる場所からプログラムがノードを指定することを可能にします。プ

ロセスのCPUアフィニティを設定するためのメカニズムと組み合わせた時、これらのインタ

ーフェースはプログラムが極めてデターミニスティックなメモリ・アクセス時間を獲得する

ことを可能にします。

NUMAサポートは最新のiHawkシステム上だけで利用可能です。ローカルに少しのメモリも備

えていない一部のCPUのためにNUMAシステムを構成することが可能です。メモリを持たな

いCPUのような状況では、メモリ・リソースなしのNUMAノード(32bitモード)を割り当てる、

もしくはメモリ付きNUMAノード(64bitモード)に人工的に割り当てられます。どちらのケース

でも、全てのCPUからのメモリ・アクセスはリモート・メモリ・アクセスになります。これ

はローカル・メモリなしのCPU上で実行中のプロセスのメモリ性能だけでなくリモート・ア

クセス要求が発生しているNUMAノード上で実行中のこれらのプロセスに影響を与えます。

これはデターミニスティックなプログラム実行のための最適な構成ではありません。構成の

詳細については本章で後述する「構成」セクションを参照してください。メモリ性能の最適

化やデターミニスティックなメモリ・アクセス時間を得るための方法に関する詳細な情報に

ついては「性能ガイドライン」セクションを参照してください。デターミニスティックなメ

モリ・アクセスはデターミニスティックなプログラム実行時間を得るためにも重要であるこ

とに注意してください。

メモリ・ポリシー10

NUMAサポートはメモリ・ポリシーの概念を実装しています。これらのメモリ・ポリシーは

ユーザー単位タスクを基準にしてタスク全体に適用されます。任意のタスク内の仮想アドレ

ス空間の範囲もまたそれら自身にそれらのページに対しタスク全体メモリ・ポリシーを優先

する個別のメモリ・ポリシーを所有する可能性があります。タスク全体および仮想アドレス

空間の両方のメモリ・ポリシーはfork/clone操作中の子タスクに継承されます。

NUMAメモリ・ポリシーは以下のとおり：

MPOL_DEFAULT これは、メモリが利用可能である場合、メモリ・ページはローカ

ル・メモリから現在のCPUへ割り当てられたところがデフォルトに

なります。これはタスクまたはこの子タスクが特定のメモリ・ポリ

シーを割り当てなかった時に使用されるポリシーです。タスク全体

メモリ・ポリシーとして、もしくは異なるタスク全体メモリ・ポリ

シーが設定されているタスク内の仮想メモリ空間のために明示的に

MPOL_DEFAULTポリシーを設定することが可能です。

MPOL_BIND これは、このメモリ・ポリシーが設定される時点でノードマスクに

指定されたノードのみにメモリ割り当てを制限する厳格なポリシー

です。ページは指定されたノードからのみ割り当てられ、ページ割

り当てはバインドしたノードマスクではないほかのノードでメモリ

が利用可能であっても失敗する可能性があります。この種のページ

割り当て失敗が発生する時、プロセスおよび同じアドレス空間を共

有するこの子プロセス全てとスレッド全てはカーネルのSIGKILLシ
グナルにより終了します。このポリシーはどのノードからページが

割り当てられるかに関しては他のメモリ・ポリシーよりもより多く

の確実性を提供します。

Non-Uniform Memory Access (NUMA)

10-3

留意すべきは、プロセスのローカル・メモリになるのために将来の

メモリ割り当て全てを保証する唯一の方法は、シングルCPUまたは

同じNUMAノード内に存在する全てのCPUセットへCPUアフィニテ

ィとMPOL_BINDポリシーの両方を設定することです。

MPOL_PREFERRED このポリシーは割り当てのために優先される(単一の)ノードを設定

します。カーネルは最初にこのノードからページを割り当てようと

し、優先されるノードがメモリ不足の時は他のノードを使用しま

す。

MPOL_INTERLEAVE このポリシーはノードマスクに指定されたノードへの割り当てを

(ラウンド・ロビン方式で)交互に行います。これは遅延の代わりに

処理能力を最適化します。効果的にするためには、メモリ領域を相

当大きくする必要があります。

ユーザー空間ページ割り当てに加えて、カーネル・メモリ割り当て要求の多くもまた現在実

行中タスクのタスク全体メモリ・ポリシーにより決定されます。しかし、全てのカーネル・

ページ割り当てが現在のタスクのメモリ・ポリシーに制御されているわけではありません。

例えば、DMA目的のためにメモリを割り当てる殆どのデバイス・ドライバは、デバイスのI/O
に存在するノード、もしくはそのI/Oバスに最も近いノードからメモリを代わりに割り当てま

す。

既に行われたページ割り当てはタスクのメモリ・ポリシーの変更に影響されません。例え

ば、2つのCPUを搭載したシステムにおいてCPUとノードが1対1に対応しているものと仮定し

ます：

タスクがCPUアフィニティが0x1かつメモリ・ポリシーがMPOL_DEFAULTでCPU 0上で

しばらくの間実行している状況で、その後、そのCPUアフィニティが0x2、メモリ・ポリ

シーがノードマスク値が0x2のMPOL_BINDへ変更すると、大抵は一旦そのタスクがCPU
1上で実行を開始したらタスクに対して非ローカルにあるそのアドレス空間内のページと

なります。

以下のセクションでNUMA管理のための利用可能なシステム・サービス、ライブラリ機能、

ユーティリティについて説明します。

NUMAユーザー・インターフェース10

run(1)コマンドは実行時にタスクのメモリ・ポリシーを固定するもしくは変更するため、指定

したプロセスもしくはスレッドの各NUMAノード内ページのユーザー・ページ数を表示する

ために使用することが可能です。shmconfig(1)は共有メモリ領域のために使用することが可

能です。

ライブラリ機能、システム・サービス、他のユーティリティやファイルもまたNUMA制御に

利用可能です。

このサポートの詳細は以降のセクションで提供します。

run(1)を利用したNUMAサポート(プロセス用) 10

run(1)の“mempolicy”オプションは、関連する情報を表示するだけでなく、実行しようとする

プロセスにタスク全体NUMAメモリ・ポリシーを規定するために使用することが可能です。

概要：

run [OPTIONS] COMMAND [ARGS]

RedHawk Linux User’s Guide

10-4

“mempolicy” は利用可能なOPTIONS の1つで以下の書式があります：

--mempolicy=MEMPOLICY_SPECIFIER
-M MEMPOLICY_SPECIFIER

runで実行された既存のプロセスまたはスレッドを特定するPROCESS/THREAD_SPECIFIER
は、生成されようとするプロセスにだけ影響を与えるmempolicyオプションを使用することは

できません。

MEMPOLICY_SPECIFIER は以下の1つのみを含みます。各々はその最初のユニークな文字に

省略することが可能です。list はカンマ区切りリストまたはCPUの範囲です(例：“0,2-4,6”)。
“active”または“boot”は全てのアクティブなプロセッサまたはブート・プロセッサをそれぞれ

指定するために使用することが可能です。オプションのティルダ[~]はリストの否定ですが、

“active”では否定を使用できません。

NUMAが有効なシステムにおいては、bias(-b)およびmempolicyのbindとinterleaveオプション

へのlistの書式は代わりとなる省略表現も受け付けます。このNUMAの省略表現書式が使用さ

れる場合、bias(-b)およびmempolicyのリストはどちらも各値もしくは範囲値の前に先導する

“n”, “C”, “c”の文字を持つ必要があり、この表記法は以下の意味を含みます：

n[nodeid] 以下の先導する”n”の値はNUMAのノードIDまたはノードIDの範囲となり、こ

の表記は「指定したNUMAノード内の全てのCPU」を意味します。例：

run –M n=n0,n2-3 …

C[cpu] 以下の先導する”C”の値はCPU IDまたはCPU IDの範囲となり、この表記は

「指定したCPUに加え同じNUMAノード内にある全てのCPU」を意味しま

す。例：

run –M i=C2,C4-5,n2 …

c[cpu] 以下の先導する”c”の値はCPU IDまたはCPU IDの範囲となります。例：

run –mempolicy bind=c0-1,n3 …

実行できるMEMPOLICY_SPECIFIER：

[~]list
b[ind]=list

ローカルからlist 内のCPUのメモリを使いMPOL_BINDメモリ・ポリシーを使

って指定されたプログラムを実行します。
b[ind]

ローカルから--biasオプションで指定されたCPUのメモリを使い

CPUMPOL_BINDメモリ・ポリシーを使って指定されたプログラムを実行しま

す。--biasオプションは実行する予定およびこの選択肢を指定する必要のある

プログラムのCPUを定義します。
i[nterleave]=[~]list

ローカルからlist 内のCPUのメモリを使いMPOL_INTERLEAVEメモリ・ポリ

シーを使って指定されたプログラムを実行します。
p[referred]=cpu

ローカルから単一の指定されたCPUの使用を選び、MPOL_PREFERREDメモ

リ・ポリシーを使って指定されたプログラムを実行します。

Non-Uniform Memory Access (NUMA)

10-5

p[referred]
選択されたメモリは、(’local’ 割り当てポリシーで)割り当てを開始するCPUを

含むノード上に置かれ、MPOL_PREFERREDタスク全体NUMAメモリ・ポリ

シーにて指定されたプログラムを実行します。
d[efault]

MPOL_DEFAULTメモリ・ポリシーを使って指定されたプログラムを実行し

ます。これは既定のメモリ・ポリシーです。
n[odes]

各ノード上のトータル・メモリと現在の空きメモリに加えて各NUMAノード

に含まれるCPUを表示します。runのこの呼び出しで指定される他のオプショ

ンやプログラムはありません。
v[iew]

現在のプロセスのメモリ・ポリシー設定を表示します。runのこの呼び出しで

指定される他のオプションやプログラムはありません。

システムに1つ以上のローカル・メモリなしCPUを含む時、これらのCPUはシステム初期化中

にラウンドロビン方式でノードに割り当てられます。ノードへ割り当てられますが、これら

は実際はローカル・メモリを所有しておらず、常に(所有する割り当てられたノードへのメモ

リ・アクセスを含む)非ローカル・メモリ・アクセスが行われます。このタイプの構成下で

は、v[iew]の出力はローカル・メモリを含まない各NUMAノード上のCPUを表示する追加の

“NoMemCpus” 列を含みます。NUMA対応カーネルを使用する時は各CPUにメモリ・モジュー

ルが組み込まれた構成になっているハードウェアを推奨します。

マルチ・ノード・システム上で--mappings/-mオプション付きでrunを指定すると

PROCESS/THREAD_SPECIFIER 引数により指定されたプロセスまたはスレッドのこの各

NUMAノードのユーザー・マッピング・ページ数を表示します。このオプションは実行時に

‘command’パラメータを使用することができません。

runのほかのオプションについては、run(1)のmanページまたは4章の「runコマンド」セクシ

ョンを参照してください。

もしnumactl(8)がシステム上で利用可能である場合、NUMAメモリ・ポリシーを設定するた

めに使用することが可能です。

shmconfig(1)を利用したNUMAサポート(共有メモリ領域用) 10

NUMAポリシーは“mempolicy”オプションによりshmconfig(1)を使用して新しい共有メモリ領

域を割り当てるまたは既存の共有メモリ領域を変更することが可能です。

概要：

/usr/bin/shmconfig -M MEMPOLICY [-s SIZE] [-g GROUP] [-m MODE] [-u USER]
[-o offset] [-S] [-T] {key | -t FNAME}

“mempolicy” オプションは以下の書式があります：

--mempolicy=MEMPOLICY
-M MEMPOLICY

MEMPOLICY は以下の1つのみを含みます。各々はその最初のユニークな文字に省略すること

が可能です。LIST はカンマ区切りリストまたはCPUの範囲です(例：“0,2-4,6”)。“active”また

は“boot”は全てのアクティブなプロセッサまたはブート・プロセッサをそれぞれ指定するため

に使用することが可能です。オプションのティルダ[~]はリストの否定ですが、“active”では否

定を使用できません。

RedHawk Linux User’s Guide

10-6

各ノードに含まれているCPU、各ノードのトータルおよび利用可能な空きメモリを見るには

run -M nodesを使用します。

[~]LIST
b[ind]=LIST

ローカルからLIST 内のCPUのメモリを使い指定された領域をMPOL_BINDメ

モリ・ポリシーに設定します。
i[nterleave]=[~]LIST

ローカルからLIST 内のCPUのメモリを使い指定された領域を

MPOL_INTERLEAVEメモリ・ポリシーに設定します。
p[referred]=CPU

ローカルから単一の指定されたCPUの使用を選び、指定された領域を

MPOL_PREFERREDメモリ・ポリシーに設定します。
p[referred]

選択されたメモリは、(’local’ 割り当てポリシーで)割り当てを開始するCPUを

含むノード上に置かれ、指定された領域をMPOL_PREFERRED NUMAメモ

リ・ポリシーに設定します。
d[efault]

指定された領域をMPOL_DEFAULTメモリ・ポリシーを設定します。これは

既定値です。
v[iew]

指定した領域の現在のメモリ・ポリシー設定を表示します。

mempolicyオプションで使用可能な追加のオプションは以下となります：

--size=SIZE
-s SIZE

領域のサイズをバイトで指定します。
--offset OFFSET
-o OFFSET

既存の領域の先頭からのオフセットをバイトで指定します。この値はペー

ジ・サイズの倍数へ切り上げられます。もし-sオプションも指定された場

合、offset+size の合計値は領域の合計サイズ以下である必要があります。
--user=USER
-u USER

共有メモリ領域の所有者のログイン名を指定します。
--group=GROUP
-g GROUP

領域へのグループ・アクセスが適用可能なグループの名称を指定します。
--mode=MODE
-m MODE

共有メモリ領域へのアクセスを管理するパーミッションのセットを指定しま

す。パーミッションを指定するために8進数を使用する必要があります(既定

値は0644)。
--strict
-S

領域の範囲内のページが指定された現在適用されているメモリ・ポリシーと

一致しない場合はエラーを出力します。

Non-Uniform Memory Access (NUMA)

10-7

--touch
-T

範囲内の各ページへ接触(読み取り)させ、早期にメモリ・ポリシーを適用しま

す。既定値では、アプリケーションがこれらの領域およびページ内(割り当て

たページ)の傷害へアクセスする時にポリシーが適用されます。

key 引数は共有メモリ領域のユーザー選択識別子を意味します。この識別子は整数または既存

のファイルを参照する標準的なパス名のどちらも可能です。パス名が提供される時、

ftok(key,0)はshmget(2)呼び出しのkeyパラメータとして使用されます。

--tmpfs=FNAME / -t FNAME はkeyの代わりにtmpfsファイルシステムのファイル名を指定す

るために使用することが可能です。-u, -g, -mオプションはこの領域のファイル属性を設定ま

たは変更するために使用することが可能です。

shmconfigの他のオプションについては、manページまたは3章内の「shmconfigコマンド」セ

クションを参照してください。

もしnumactl(8)がシステム上で利用可能である場合、それもまたNUMAメモリ・ポリシーを

設定するために使用することが可能です。

システムコール10

以下のシステム・サービス・コールが利用可能です。numaif.hヘッダー・ファイルはこれら

いずれの呼び出しを行うときもインクルードする必要があることに注意してください。

set_mempolicy(2) 現在のプロセスにタスク全体メモリ・ポリシーを設定します

get_mempolicy(2) 現在のプロセスまたはメモリ・アドレスのメモリ・ポリシーを取得

します

mbind(2) 共有メモリを含むアドレス空間の特定範囲にポリシーを設定します

move_pages(2) プロセスのページ・セットを異なるNUMAノードへ移動します

ライブラリ機能10

/usr/lib64/libnuma.soライブラリは、NUMA対応の単純なプログラミング・インターフェー

スを提供します。これはNUMAメモリ・ポリシーやノードをサポートするルーチンの様々な

種類、および基礎となるNUMAシステム・サービス・コールを使用するための代わりのイン

ターフェースを含みます。詳細についてはnuma(3)のmanページを参照してください。

情報提供ファイルおよびユーティリティ10

以降のセクションでは、NUMAノードに関連する情報を表示するために使用可能なファイル

やユーティリティについて説明します。

RedHawk Linux User’s Guide

10-8

ノード統計値10

NUMAがカーネル内で有効である時、各ノードは/sys/devices/system/node/node# サブデ

ィレクトリ内のファイル情報セットを所有します(# はノード番号、例：0, 1, 2...)。このサブ

ディレクトリ内のいくつかのファイルを以下に記載します。

cpumap このノード内のCPUの16進数ビットマップを表示します。例：

cat /sys/devices/system/node/node3/cpumap
08

cpulist このノード内のCPUのリストを表示します。例：

cat cpulist
4-7

numastat ノードのhit/miss統計値を表示します。表示されるフィールドの説

明については次のセクションを参照してください。

meminfo ノードの様々なメモリ統計値を表示します(空き、使用済み、ハ

イ、ロー、全メモリの合計を含みます)。

distance ローカル・ノードから各ノードのメモリの距離を表示します。“10”
の値はメモリがローカルであることを示し、“20”の値はメモリが、

例えば離れた1つのハイパーチャネル接続を示します。

cpu# ノードに関連付けられているCPUデバイス・ファイルです。例：

$ ls -l /sys/devices/system/node/node3/cpu3
lrwxrwxrwx 1 root root 0 jan 21 03:01 cpu3
->../../../../devices/system/cpu/cpu3

マッピングされたページのノードID10

指定したプロセスまたはスレッドに現在マッピングされている各ページのNUMAノードIDに

よりnumapgs(1)は場所を表示します。-aオプションを指定しない限り、物理メモリ・ページ

にマッピングされている場所だけを出力します。

構文：

numapgs [OPTIONS]

OPTIONS は以下のとおり：

--pid=pid, -p pid
プロセスIDまたはスレッドIDのアドレス空間が表示されます。

--start=saddr, -s saddr

表示されるマッピングの範囲を制限するため、このsaddr 16進の仮想アドレス

値未満にマッピングされているノードIDは表示されません。もし--endが指定

されていない場合、saddr からアドレス空間の最後までの全てのノードIDエ

ントリが表示されます。

Non-Uniform Memory Access (NUMA)

10-9

--end=eaddr, -e eaddr
表示されるマッピングの範囲を制限するため、このeaddr 16進の仮想アドレス

値以上にマッピングされているノードIDは表示されません。もし--startが指

定されていない場合、アドレス空間の先頭からeaddr-1までの全てのノードID
エントリが表示されます。

--all, -a

物理メモリへの有効なマッピングを含んでいるこれらの場所だけでなく、プ

ロセスのアドレス内の全仮想アドレス・ページの場所を表示します。出力の

ピリオド(.)はマッピングされていない場所または(I/O空間マッピングのよう

な)メモリ・オブジェクトへのマッピングを表します。このオプションは指定

した範囲内の全てのページの場所を表示するために--startまたは--endと一緒

に使用することが可能です。

--version, -v
numapgsの現在のバージョンを表示して終了します。

--help, -h

利用可能なオプションを表示して終了します。

各出力ラインは最大8個の10進数のノードID値を含みます。

もし(mlock(2)またはmlockall(2)を通して)現在ロックされている場合、“L”がNUMAノードID
値の右側に表示されます。

以下は、各ノードID値の隣のLが示すとおりmlockall(2)を使い全てのページがロックされた

プロセスのnumapgs出力のサンプルの抜粋です。

3a9b000000-3a9b12b000 r-xp /lib64/tls/libc-2.3.4.so
3a9b000000: 0L 0L 0L 0L 0L 0L 0L 0L
3a9b008000: 0L 0L 0L 0L 0L 0L 0L 0L
3a9b010000: 0L 0L 0L 0L 0L 0L 0L 0L

pagemap(1)ユーティリティは指定されたプロセスのアドレス空間に現在マッピングされてい

る各ページのNUMAノードIDも表示します。更にマッピングされている各ページに関連する

様々なページ・フラグも表示します。例：

pagemap –p $$ -s 0x400000 –e 0x404000
00400000-0055b000 default r-xp /bin/ksh93
0x400000: pfn: 0x37dcfb node: 1 mapcnt: 3 flags: ref uptd lru act
map dsk
0x402000: pfn: 0x39ece8 node: 0 mapcnt: 3 flags: ref uptd lru act
map dsk
0x403000: pfn: 0x36c52e node: 2 mapcnt: 3 flags: ref uptd lru act
map dsk

いくつかのページ・フラグはユーザーが適切な特権を持っている場合にのみ表示される事に

注意してください。詳細についてはpagemap(1)のmanページを参照してください。

numastatを利用したNUMA成功/失敗統計値10

numastatは全てのノードの/sys/devices/system/node/node#/numastatファイルから情報を

結合するスクリプトです。

$ numastat
node 3 node 2 node 1 node 0

numa_hit 43674 64884 79038 81643

RedHawk Linux User’s Guide

10-10

numa_miss 0 0 0 0
numa_foreign 0 0 0 0
interleave_hit 7840 5885 4975 7015
local_node 37923 59861 75202 76404
other_node 5751 5023 3836 5239

numa_hit このノードで行われたメモリ割り当てが成功した数

numa_miss このノードで行うことが出来ず、代わりに他のノードへ割り当てた

メモリ割り当ての数

numa_foreign 他のノードでメモリ割り当てに失敗し、代わりにこのノードから割

り当てられた割り当ての数

interleave_hit このノードで行われたインターリーブ・メモリ割り当てが成功した

数

local_node ローカル・ノードから行われたメモリ割り当ての数

other_node 非ローカル・ノードへ行ったメモリ割り当ての数

NUMAバランシング10

標準Linuxで自動的にサポートするNUMAバランシングはRedHawk Linuxのプレビルト・カー

ネル内に含まれていますが、デフォルトで有効化されていません。本オプション機能はgrub
オプションで立ち上げ時に、またはsysctl(8)パラメータを介して起動後に動的に動的に有効

化することが可能です。

アプリケーションは、通常そのタスクが実行中のNUMAノードのローカルにあるメモリへア

クセスしている時に最も機能します。NUMAバランシングはアプリケーションのデータをそ

れを参照するタスクの近くのメモリへ移動します。これはアクセスするメモリの近くのCPU
で実行するようにタスクのスケジューリングも変更する可能性があります。これはNUMAバ

ランシングが有効である場合にカーネルが全て自動的に行います。

カーネルのNUMAバランシング・サポートを有効にする場合、物理メモリにあるプロセスの

仮想アドレス空間の全てまたは一部をロックするためにmlock(2), mlock2(2), mlockall(2)シ
ステムコールおよびRedHawk Linuxのmlockall_pid(2)システムコールを利用することが可能

であることに注意して下さい。さらにカーネルが自動的にメモリを移動するのを防ぐために

mlock2(2), mlockall(2), mlockall_pid(2)システムコールへフラグを渡すことも可能です。回

避することを意図するフラグとカーネルの動作はnoautomigrate(7)で文書化されています。

詳細はmanページを参照して下さい。

NUMAバランシングはマルチNUMAノードのシステムにおいてフェア・スケジューリング・

クラスで実行中のタスクにのみ影響する事に注意して下さい。

NUMAバランシング・ページの移動とタスク・スケジューリングの変更を行うための判断

は、専用に作成されるNUMAバランシング・ページ・フォルトの利用を経て長時間に渡り収

集される統計値に基づいています。有効から無効(違反)への様々なタスクのユーザー・アドレ

ス空間変換の周期的な変更はフェア・スケジューリング・クラスのティック・タイマーから

駆動されます。

Non-Uniform Memory Access (NUMA)

10-11

NUMAバランシング・ページ・フォルトの処理は：

• 統計値がバランシングの決定を行うために集められます。

• 違反ページ変換は修復され、恐らく異なるNUMAノードへ移動されます。

• タスクは異なるCPUセット上で実行されるようスケジュールされる可能性があります。

NUMAバランシングの有効化10

ブート時にNUMAバランシングを有効にするgrubオプションは次のとおり：

numa_balancing=enable

あるいは、/etc/sysctl.confファイルに以下の行を追加する事でNUMAバランシングをシステ

ム起動中に有効にします：

kernel.numa_balancing=1

最後は、手動でsysctlに対応する/procファイルへ書き込みことでONとOFFを切り替える事も

可能です。例えば：

/bin/echo 1 > /proc/sys/kernel/numa_balancing
/bin/echo 0 > /proc/sys/kernel/numa_balancing

シールディングの相互作用10

NUMAバランシングが有効でプロセスまたはローカル・タイマーがシールドされたCPUがな

い場合、NUMAバランシングはシステムの全てのCPUおよびNUMAノードの中で標準的な

Linuxの方法で機能します。

ところが、1つ以上のCPUでプロセスまたはローカル・タイマーがシールドされている場合、

NUMAバランシングの挙動は現在のリアルタイム・シールディング構成に作用して向上する

ように変更します。これらの変更はRedHawk Linuxカーネル特有のものとなります：

• NUMAバランシングは、プロセスがシールドされたCPU上で実行している間はフェア・

スケジューリング・タスクのユーザー・アドレス空間では行われません。これはそうで

はなく発生するランダムなページ・フォルトは除外します。

• NUMAバランシング・ページ・フォルトはローカル・タイマー・シールドされたCPU上

で実行しているフェア・スケジューリング・タスクでは発生しません。これはローカ

ル・タイマーをシールドしているCPUは人為的なNUMAバランシング・ページ・フォル

ト変換を定期的に生成するために使用されるフェア・スケジューラーのティック・タイ

マーを無効にするという事実が原因です。

シールディングの制限10

シールドされたCPUのプロセスにおけるNUMAバランシング障害の制限に関する主な注意事

項はマルチ・スレッド化されたアプリケーションに関係します。

RedHawk Linux User’s Guide

10-12

CPUアフィニティを非シールドCPUおよびシールドCPUに設定したいくつかのスレッドで同

じユーザー・アドレス空間を持つ複数のスレッドが存在する場合、NUMAバランシング処理

は非シールドCPU上で実行している一連のスレッドにおいてそのアドレス空間内で発生しま

す。

結果として、シールドCPUのプロセスが実行しているタスクは、それらのアドレス空間内の

他の非シールドCPUに設定したNUMAバランシング・ページ・フォルトの対象となる可能性

があります。

従って、NUMAバランシングを有効化した環境のシールドCPU内のいくつかのCPUにマル

チ・スレッド・アプリケーションをスケジュールした時、シールドCPUのプロセスのNUMA
バランシング・ページ・フォルトを回避したい場合は、シールドCPUのマルチ・スレッド・

プロセスに属する全てのスレッドを完全にONまたはOFFにすることが最善です。

性能ガイドライン10

アプリケーションを特定NUMAノードへ割り付けおよびバインドするCPUシールディングを

通して、ページの割り当てをNUMAシステム上で最も効率的な方法で行うことが可能です。

タスクや共有メモリ領域を扱うためのガイドラインを以下に示します。

タスク全体のNUMA mempolicy10

MPOL_BINDポリシーはタイム・クリティカル・アプリケーションにとって通常もっとも有用

なポリシーです。ページ割り当てのためにデターミニスティックにノードを指定することを

許可する唯一のポリシーです。もしメモリ割り当てが指定するノードまたは指定するノード

一式から行えない場合、プログラムはSIGKILLシグナルにより終了します。

MPOL_BINDメモリ・ポリシーでCPUシールドとCPU割り付けを組み合わせることにより、シ

ールドCPUが作成され、シールドCPUのNUMAノードからだけ割り当てられるアプリケーシ

ョンのページのあるシールドCPU上でそのアプリケーションが実行されます。書き込みデー

タ・ページ上のコピーは一旦書き込まれるとローカルになりますが、既存の共有テキスト・

ページと書き込みデータ・ページ上のコピーはローカルではない可能性があることに注意し

てください。

run(1)コマンドはMPOL_BINDメモリ・ポリシーによりシールドされたCPU上でアプリケーシ

ョンを起動するために使用することが可能です。あるいは、アプリケーションのアドレス空

間内に既に存在するページがNUMAメモリ・ポリシーのその後の変更により影響されないた

めに、mpadvise(3)やset_mempolicy(2)またはNUMAライブラリ機能の呼び出しで実行を開

始した後直ぐにそのCPUアフィニティとNUMAメモリ・ポリシーをアプリケーションに設定

することが可能です。

以下の例は、run(1)コマンドのバイアスとメモリ・ポリシー・オプションを使い、CPU 2にあ

るNUMAノードだけからメモリを割り当てるMPOL_BINDメモリ・ポリシーのシールドCPU上

でアプリケーションを起動する方法を示します。

$ shield -a 2
$ run -b 2 -M b my-app

シールドCPUおよびshield(1)コマンドに関する詳細な情報は、2章とshield(1)のmanページを

参照してください。

Non-Uniform Memory Access (NUMA)

10-13

共有メモリ領域10

MPOL_BINDメモリ・ポリシーを共有メモリ領域のために使用することも通常は推奨します。

共有領域のNUMAメモリ・ポリシーはmbind(2)システム・サービス・コールまたは

shmconfig(1)ユーティリティにより指定することが可能です。

共有メモリ領域が複数のCPUから参照されることになる場合、メモリ・アクセス性能を最大

にするために共有メモリ領域の異なる部分に異なるMPOL_BINDメモリ・ポリシー属性を指定

することが可能です。

例として、主に共有メモリ領域の下半分へ書き込む“low”アプリケーションと主に共有メモリ

領域の上半分へ書き込む“high”アプリケーションがあると見なします。

1. ‘123’の値をキーとする共有メモリ領域を作成します。ページ割り当てのためにCPU 2の

NUMAノードでMPOL_BINDメモリ・ポリシーを使う領域の下半分、ページ割り当ての

ためにCPU 3のNUMAノードでMPOL_BINDを使う上半分を変更します。

$ shmconfig -s 0x2000 123
$ shmconfig -s 0x1000 -M b=2 123
$ shmconfig -o 0x1000 -M b=3 123

2. CPU 2とCPU 3の両方をシールドします。

$ shield -a 1,2

3. メモリ割り当てのためにCPU 2のNUMAノードを使うMPOL_BINDメモリ・ポリシーの

CPU 2上で “low” アプリケーションを実行開始、メモリ割り当てのためにCPU 3の
NUMAノードを使うMPOL_BINDメモリ・ポリシーのCPU 3上で“high”アプリケーション

を実行開始します。

$ run -b 2 -M b low
$ run -b 3 -M b high

構成10

最新のAMDとIntelプロセッサはNUMAアーキテクチャを搭載しています。以下のカーネル・

パラメータはNUMAノード上の処理に影響を及ぼします。これら全てのパラメータは64bitの
RedHawkプレビルト・カーネルでデフォルトで有効になっています。

NUMAとACPI_NUMA, X86_64_ACPI_NUMAとAMD_NUMA

これらのカーネル・パラメータはNUMAカーネル・サポートのた

めに有効である必要があります。これらはカーネル構成GUIの
「Processor Type and Features」項目でアクセス可能であり、全

てのプレビルトRedHawkカーネルでデフォルトで有効となってい

ます。

numa=off はブート時にNUMAシステム上でNUMAカーネル・サ

ポートを無効にするために指定することが可能なブート・オプショ

ンであることに注意して下さい。これはノードに全CPUが属する単

一ノードのシステムを作成します。NUMAサポートが組み込まれ

ていないカーネルとは異なり、この場合にはノードなしのフラッ

ト・メモリ・システムであり、NUMAユーザー・インターフェー

スが呼ばれた時エラーを返します。

RedHawk Linux User’s Guide

10-14

最新のAMDまたはIntelのシステム上でNUMAが有効なカーネルを

使用する時、以下のハードウェアを推奨します：

• システムの各CPUにメモリ・モジュールが組み込まれている

ことを大いに推奨します。さもなければ、ローカル・メモ

リ・モージュールのないCPUはメモリ・アクセスの度に他の

メモリ・モジュールへ離れてアクセスすることになり、従っ

てシステム性能が低下します。

• いくつかのBIOSがサポートするメモリ・モジュール・インタ

ーリーブ・ハードウェア・サポートはBIOSで無効にする必要

があります。もし無効ではない場合、NUMAが有効なカーネ

ルのNUMAサポートは無効となり、結果、システムの全ての

CPUを含む単一NUMAノードとなります。

NUMA_BALANCING

有効にすると、このパラメータはカーネルに自動NUMAバランシ

ング・サポートを編成します。本パラメータは全てのRedHawk
Linuxプレビルト・カーネルで有効となっています。

NUMA_BALANCING_DEFAULT_ENABLED

有効にした場合、NUMAバランシングはブート時に自動的に有効

となります。このパラメータはRedHawk Linuxプレビルト・カーネ

ルでは有効となっていません。

ZRAM_NUMA

有効にした場合、このパラメータは圧縮RAMディスクに関連する

全てのメモリを特定のNUMAノードの中に含めることを保証する

メカニズムを提供します。詳細については次のファイルを参照して

下さい：/usr/src/linux-*RedHawk*/Documentation/blockdev/zram-
numa.txt

BLK_DEV_RAM_NUMA

有効にした場合、このパラメータはRAMディスクに関連する全て

のメモリを特定のNUMAノード内に含めることを保証するメカニ

ズムを提供します。詳細については次のファイルを参照して下さ

い：/usr/src/linux-
RedHawk/Documentation/blockdev/ramdisknuma.txt

11-1

11
カスタム・カーネルの構成および構築

8

本章ではカスタムRedHawk Linuxカーネルの構成、構築およびインストールの方法に関する情

報を提供します。

また、xconfig、3rdパーティ・ドライバの構築、動的カーネル・モジュール・サポートを最

後に簡単に考察しています。
6
11

序文11

traceカーネルはデフォルトでインストールされるカーネルで、Concurrentは大抵のケースで

推奨しています。standardカーネルはインストール・メディアからインストールすることが

可能です。これはカーネル・トレース機能がないことを除きトレース・カーネルと全く同一

です。

カーネルの構成または再構成は、カーネル構成を再定義する処理で、その結果、新しい定義

に従い新しいカーネルを生成します。

一般に供給されるカーネルは調整可能なパラメータと殆どのシステムに適しているデバイ

ス・ドライバを伴い生成されます。しかしながら、個別の要求のためにいずれかの調整可能

パラメータを変更、ドライバを追加または削除、もしくはパッチを適用したい場合にカーネ

ルの再構成を選択することが可能です。その場合はカーネルの再構築、インストール、再起

動が必要になります。

RedHawkは2つのカーネル(standardとtrace)とカスタム・カーネル・パッケージを構築するた

めの1つのソース・ツリーを提供します。ソース・ツリー内のconfigsディレクトリは

RedHawkのプレビルド・カーネルと一致する2つの構成ファイルを保持します。

カーネル・ソース・パッケージ(ccur-kernel-source)はカスタム・カーネルを作成するためだ

けに必要とされることに注意して下さい。これはデフォルトではインストールされません。

これはインストール・メディアで提供されますので、そこからインストールすることが可能

です。

カーネル・パッケージの構築手順11

本項ではカスタム・カーネル・パッケージを構成、構築、インストールする手順について説

明します。

以降の手順は次に示す順番で実行する必要があります。手順はまずRockyと同種のシステム向

け、続いてUbuntuが動作中のシステム向けに提供します。手順は非常に似ていますが、コマ

ンドやファイル名称が異なります。

xconfigの実行とカスタム・カーネル・パッケージの作成にはパッケージ依存があることに注

意して下さい。依存のリストはRelease Notesの「既存の問題」項で見つけることが可能です。

後続のコマンドが正常に終了した場合、警告は安全に無視することが可能です。

RedHawk Linux User’s Guide

11-2

Rocky互換システムの手順11

カーネル・ソース・パッケージをインストールした際、次の手順内で言及されるkern-nameは
/usr/srcツリー以下に生成されるディレクトリで使用される名称で引用します。名称の例が

linux-6.12.33-RedHawk-9.6である場合、6.12.33はkernel.orgのバージョンで9.6はRedHawkの
バージョンとなります。従って、このディレクトリ名称はRedHawkのリリース毎に変化しま

す。

kern-idはパッケージが生成された日付を含んでいます。

RockyまたはRocky互換のいずれかのシステム上でカスタム・カーネル・パッケージを構築す

るには、次の手順に従って下さい：

1. ccur-kernel-sourceパッケージがシステムにインストールされていることを確認して下

さい。ない場合、パッケージはRedHawkのインストール・ディスク、アップデート・デ

ィスク、またはRedHawkのネットワーク・リポジトリからインストールすることが可能

です。

rpm -q ccur-kernel-source

2. RedHawk Release Notesの「既知の問題」項にある「カスタム・カーネル構築に必要な追

加パッケージ」を探して下さい。必要なパッケージが表示されたら、それらをすぐにイ

ンストールして下さい。入力を指示されたら次の手順へ移りそれらをインストールする

ことを選択することも可能です。

dnf install packages

3. ソース・ディレクトリにディレクトリを変更して下さい。

cd /usr/src/linux-kern-name-source

4. configsディレクトリ内にある構成ファイルの1つから.configファイルを生成して下さ

い。この構成ファイルはカスタム・カーネルを構築するために変更するベースとなるカ

ーネル構成となります。選択肢はstandardもしくはtraceです。

cp configs/x86_64/configfile .config

5. 構成を変更するには次のコマンドのいずれかを実行して下さい。GUIの使用に関するヘ

ルプは「xconfig」項を参照して下さい。

make menuconfig (テキスト・ベースのメニュー) もしくは
make xconfig (グラフィック)

6. 次を実行してパッケージを作成して下さい：

make binrpm-pkg

7. カーネル・パッケージがあるディレクトリへ移動してインストールして下さい：

cd /usr/src/linux-kern-name-source/rpmbuild/RPMS/x86_64
sudo dnf install ccur-kernel-custom-kern-id.x86_64.rpm

オプションで次のカーネル・パッケージもインストールすることが可能です：

ccur-kernel-custom-devel-kern-id.x86_64.rpm
(サード・パーティ・ドライバの構築が必要)

カーネルの構成および構築

11-3

ccur-kernel-custom-debuginfo-kern-id.x86_64.rpm
(クラッシュ・ダンプの調査が必要)

8. カスタム・カーネルをデフォルト・カーネルとして起動させることが望ましい場合、デ

フォルトとして構成するためにblscfgの-dオプションを使用して下さい。kern-id-noを見

つけるにはオプションなしでコマンドを実行して下さい。その後、再起動して下さい。

blscfg -d kern-id-no
reboot

Ubuntuベース・システムの手順11

カーネル・ソース・パッケージをインストールした際、次の手順内で言及されるkern-dirname
は/usr/srcツリー以下に生成されるディレクトリで使用される名称で引用します。名称の例が

linux-6.12.33-RedHawk-9.6である場合、6.12.33はkernel.orgのバージョンで9.6がRedHawkの
バージョンとなります。従って、このディレクトリ名称はRedHawkのリリース毎に変化しま

す。

Ubuntuシステムで使用されるkern-nameはkern-dirnameと同じになりますが、全て小文字になり

ます。例： linux-6.12.33-redhawk-9.6

kern-idはパッケージが生成された日付を含んでいます。

Ubuntuオペレーティング・システムを使用している場合にカスタム・カーネル・パッケージ

を構築するには、次の手順に従って下さい：

1. ccur-kernel-sourceパッケージがシステムにインストールされていることを確認して下

さい。システムにない場合、パッケージはRedHawkのインストール・ディスク、アップ

デート・ディスク、またはRedHawkのネットワーク・リポジトリからインストールする

ことが可能です。

apt list ccur-kernel-source

2. RedHawk Release Notesの「既知の問題」項にある「カスタム・カーネル構築に必要な追

加パッケージ」を探して下さい。必要なパッケージが表示されたら、それらをすぐにイ

ンストールして下さい。入力を指示されたら次の手順へ移りそれらをインストールする

ことを選択することも可能です。

apt install packages

3. ソース・ディレクトリにディレクトリを変更して下さい。

cd /usr/src/linux-kern-dirname

4. configsディレクトリ内にある構成ファイルの1つから.configファイルを生成して下さ

い。この構成ファイルはカスタム・カーネルを構築するために変更するベースとなるカ

ーネル構成となります。選択肢はstandardもしくはtraceです。

cp configs/x86_64/configfile .config

5. 構成を変更するには次のコマンドのいずれかを実行して下さい。GUIの使用に関するヘ

ルプは「xconfig」項を参照して下さい。

make menuconfig (テキスト・ベースのメニュー) もしくは
make xconfig (グラフィック)

6. 次を実行してパッケージを作成して下さい：

RedHawk Linux User’s Guide

11-4

make bindeb-pkg

7. カーネル・パッケージがあるディレクトリへ移動してインストールして下さい：

cd /usr/src/linux-kern-dirname/debian-pkgs
apt install ccur-linux- image-kern-name-custom_kern-id_amd64.deb

オプションで次のカーネル・パッケージもインストールすることが可能です：

ccur-linux-headers-kern-name-custom_kern-id_amd64.deb
(サード・パーティ・ドライバの構築が必要)

ccur-linux-headers-kern-name-custom-dbg_kern-id_amd64.deb
(クラッシュ・ダンプの調査が必要)

8. カスタム・カーネルをデフォルト・カーネルとして起動させることが望ましい場合、デ

フォルトとして構成するためにccur-grub2の-dオプションを使用して下さい。kern-id-no
を見つけるにはオプションなしでコマンドを実行して下さい。その後、再起動して下さ

い。

ccur-grub2 -d kern-id-no
reboot

xconfig11

カスタム・カーネルの構築手順の1つの中で、カーネルの構成を変更するオプションが提供さ

れ、RedHawk Linuxカーネルの多くの異なる側面をカスタマイズすることが可能なxconfigと
いう名称のグラフィカル構成インターフェースが現れます。

カーネルの構成および構築

11-5

カーネル構成GUIの例については下のイメージを参照して下さい。

図11-1 カーネル構成GUI

「File」メニューから「Save」の選択は、変更を保存しプログラムを終了するために選択す

る必要があります。たとえ構成パラメータを変更していなくても、カーネル構成ファイルを

適切に更新するために「Save」をやはり選択する必要があることに注意してください。

「Save」がグレー表示の場合、「Save As」オプションを使用して.configファイルの上書き

を選択することが可能です。

グラフィカル構成ウィンドウを経て利用可能な設定と構成オプションの完全なリストはこの

文書の範疇を超えていますが、ユニークなRedHawkの機能とリアルタイム性能に関連する多

くのチューニング・パラメータは本マニュアルの至る所で明文化され、また、付録Bに一覧表

となっています。

更に、パラメータが選択された時、そのパラメータに関する情報はGUIの別ウィンドウ内に表

示されます。

3rdパーティ・ドライバ・モジュールの構築11

3rdパーティ・ドライバ・モジュールを構築するには、システムにたった1つのカーネル・パッ

ケージをインストールする必要があります：Rocky互換システムにはccur-kernel-trace-
devel-kern-id.x86_64、Ubuntuシステムにはccur-kernel-headers-trace-kern-id_amd64です。

RedHawk Linux User’s Guide

11-6

3rdパーティ・ドライバを構築するには、適切なカーネル・パッケージが前述のとおりシステ

ムにインストールされていることを確認し、ベンダーの指示に従って下さい。

動的カーネル・モジュール・サポート11

動的カーネル・モジュール・サポート(DKMS: Dynamic Kernel Module Support)は、いつカーネ

ルがアップグレードされてもモジュールの構築、インストール、更新の処理を自動化しま

す。インストールされていない場合、dkmsパッケージはRockyについてはEPELリポジトリか

ら、Ubuntuについては標準リポジトリからインストールすることが可能です。

将来的には、RedHawkで生成される全てのRedHawkの3rdパーティ・ドライバ・ディスクは

DKMSのサポートを含むようになります。(DKMS構成ファイルを提供する)DKMSをサポート

する全ての3rdパーティ・ドライバは、新しいカーネルがインストールされる時に構築、イン

ストールされます。

利用可能なオプションやdkms.config構成ファイルの書式に関する更なる情報については

dkmsのmanページを参考にすることが可能です。DKMSプロジェクトは

https://github.com/dell/dkmsにあります。

https://github.com/dell/dkms

12-1

12
カーネル・デバッギング

本章はRedHawk Linuxが提供するカーネル・デバッギングやクラッシュ・ダンプ解析のための

ツールについて説明します。

概要12

標準的なkexec-toolsユーティリティは、システム・クラッシュ・ダンプの生成をサポートす

るkexecベースのvmcore kdumpを提供します。カーネル・バージョンと一致するcrash(8)ユー

ティリティはvmcoreクラッシュ・ファイルおよび動作中のシステムを解析するために提供さ

れます。

NOTE

本章内で説明する標準的なkexec-toolsユーティリティはARM64アー

キテクチャではサポートされません。1つの例外が実行中のシステム

を解析するために使用可能なcrashツールです。後述の「実行中シス

テムの解析」を参照して下さい。

クラッシュ・ダンプを調査するにはccur-kernel-trace-
debuginfo(Ubuntuではccur-kernel-trace-dbg)のカーネル・パッケー

ジがシステムにインストールされている必要があります。もしシステ

ム上にない場合、RedHawkインストール・ディスクかアップデート・

ディスクまたはRedHawkのネットワーク・リポジトリからインストー

ルが可能です。

VMcore生成イベント12

kdumpサポートが構成され有効化されている場合、vmcoreクラッシュ・ファイルは以下の理由

のいずれかで生成されます：

• カーネル・パニック。

• sysctl(1)のkdump発生イベントの1つに遭遇した。後述の「sysctl(1) kdumpオプション」セ

クションを参照して下さい。

• /proc/sys/kernel/sysrqが設定され、Alt-Sysrq-cがキーボードから入力された。

• /proc/sys/kernel/sysrqが設定され、以下のコマンドが実行された。

echo c > /proc/sysrq-trigger

RedHawk Linux User’s Guide

12-2

vmlinuxネームリスト・ファイルの保存12

vmcoreのkdumpファイルが生成されシステムがオリジナル・カーネルでリブートした後、

vmcoreクラッシュ・ファイルを解析するためにvmlinuxネームリスト・ファイルがcrashで必

要になるため、vmlinuxファイルへのソフト・リンクの生成またはそれをvmcoreファイルがあ

るディレクトリへのコピーのどちらかを推奨します。例：

cd /var/crash/127.0.0.1-2014.12.11-10:28:57

そして、ネームリスト・ファイルをこのディレクトリへコピー：

cp /var/vmlinux/vmlinux-`uname -r` vmlinux

もしくは、将来これを削除する予定がないのであれば、ネームリスト・ファイルへのソフ

ト・リンクを作成：

ln -s /var/vmlinux/vmlinux-`uname -r` vmlinux

VMcore構成12

RedHawkカーネルはデフォルトでvmcoreクラッシュ・ファイルを生成するように構成されて

いません。メモリを予約するため、crashkernel=…のgrub起動オプションをカーネル起動オプ

ションに付け加える必要があります。

殆どのシステムでgrubオプションcrashkernel=256Mは動作します。しかしながら、一部のシス

テムにおいてこれは無駄である可能性がある一方、他のシステムではそれが十分ではなく

kdumpの操作に失敗する可能性があります。

次の表は、システムのRAMサイズに応じて予約する推奨のcrashkernelメモリを示します。

表12-1 推奨のクラッシュ・カーネル・サイズ

RAM
(GB)

crashkernelメモリ
(MB)

1 - 4 192
4 - 64 256
64 - 512

推奨のcrashkernelメモリ・サイズは十分ではない可能性があります。確認する唯一の方法は、

それを試すことです。十分ではない場合、更にメモリを予約して再度試して下さい。

次のコマンドはcrashkernel用にメモリが予約されたことを確認するために使用することが可能

です：

dmesg | grep Reserving

crashkernel=…のgrubオプションは次のように追加することが可能です：

カーネル・デバッギング

12-3

1. /etc/default/grubファイルのGRUB_CMDLINE_LINUX行にcrashkernel=…行を全体的に

付加。これはシステムインストールされた全てのカーネルに作用し、本オプションはカ

ーネルrpmが更新された場合でも存続します。

2. 特にblscfg(1)コマンド経由。crashkernel=…オプションを1つ以上のカーネルに追加する

ことが可能です。本grubオプションは更新用のカーネルrpmをシステムにインストールす

る際に上書きされることに注意して下さい。

変更を有効にするにはこの後にシステムを再起動する必要があります。

パニックまたは他のクラッシュ状態に直面しているカーネル用にgrubオプションが指定された

場合、vmcoreクラッシュ・ファイルは/var/crash以下に収納されます。

以下のコマンドのいずれかまたは両方を実行する事で現在起動したカーネルのkdump構成の状

態を確認する事が可能です：

systemctl -l status kdump.service
kdumpctl status

既定のvmcore kdump構成が殆どのシステムおよび状況で十分である一方、2つのシステム構成

ファイルおよびシステム管理者がデフォルト設定の変更が可能なsystemd kdump.service
が存在します：

• /etc/sysconfig/kdumpファイル

本構成ファイルはkexec kdumpカーネル設定の構成を制御する様々な変数を含んでいま

す。

KDUMP_KERNELVER変数は、kexecを実行するvmcore kdumpファイルを使用するカーネ

ルを表示するために使用することが可能です。デフォルトでKDUMP_KERNELVER変数

の文字列はccur-kernel-kdump RPMのインストール中にRedHawk Linuxのkdumpカーネル

に設定されます。この変数の変更は通常は必要ではないはずですが、カスタム・ビルト

kdumpカーネル等の他のkdumpカーネルを試したい場合は本変数を変更する事が可能で

す。

KDUMP_COMMANDLINE_APPEND変数は、kdumpカーネルをkexec実行時に使用する追

加のGRUBオプションを含みます。通常これらのオプションは殆どのシステムに適用され

るはずですが、kdumpカーネルの実行で問題がある場合には本変数の修正やGRUBオプシ

ョンの追加または削除する事も可能です。

• /etc/kdump.confファイル

本構成ファイルはkdumpカーネルを使用するための様々なkexec実行後の命令を含みま

す。これらの命令はkdumpサービスにより生成されたinitramfsファイル内に格納されま

す。kdump.conf(5)のmanページは本構成ファイルに関する更なる情報を含んでいます。

ローカルのルート・ファイルシステム内にvmcore kdumpファイルを生成するためのシス

テムを構成する場合、本ファイル内に有用な2つの命令オプションが存在します：

- path /var/crash

vmcoreファイルは「path」ディレクトリ下のサブディレクトリに生成されます。デフ

ォルトで、たとえこの行がコメント・アウトされていても/var/crashディレクトリは使

用されます。通常はこの値を変更する必要はありません。

RedHawk Linux User’s Guide

12-4

しかしながら、指定した「path」の値はルート「/」ファイルシステム内にあるディレ

クトリとする必要があります。

- core_collector makedumpfile -l --message-level 1 -d 31

この行は実際のvmcore kdumpファイルを生成するために使用されるコマンドを定義し

ます。デフォルトで、makedumpfile(8)ユーティリティがlzo圧縮(-l)でダンプ・レベ

ル31(-d 31)のvmcoreファイルを生成するために使用されます。

makedumpfile(8)のmanページはcore_collector呼出し命令行に指定可能な様々な

オプションを記述しています。

ダンプ・レベルはvmcoreファイルに含まれないページの形式を制御するので、ファイ

ルを生成するために必要となるサイズと時間を削減します。ダンプ・レベル値31は
vmcoreファイルが生成される時に保存する最も大きいページの形式を飛ばします。代

わって、ダンプ・レベル値0はvmcoreファイルに全ての物理ページを保存します。ユー

ザー空間のページを調査する必要があるケースでは、crash(8)解析中にこれらのペー

ジを見るためにダンプ・レベル0が使用される必要があります。

Makedumpfileは生成されるvmcoreファイルのサイズを減らすために設計された3つの

圧縮形式(lzo(-l), snappy(-p), zlib(-c))をサポートします。あるいは、vmcoreファイル

はELF形式(-E)で生成する事が可能です。しかしながら、ELF形式が使用される場合、

圧縮は不可能です。RedHawk Linux 7.0のcrashユーティリティは、ファイルを最初に解

凍する必要なく圧縮されたvmcoreファイルを直接読む機能がありことに注意して下さ

い。

• systemctlの利用

vmcore kdumpファイルの生成を完全に停止したい場合、次のコマンドを実行する事が可

能です：

systemctl disable kdump.service
systemctl stop kdump.service

後にkdumpサービスを再度有効にしたい場合は次のコマンドを実行して下さい：

systemctl enable kdump.service
systemctl start kdump.service

kdump構成の更新12

/etc/sysconfig/kdumpまたは/etc/kdump.conf構成設定のどちらかを修正する場合、次に起

こりうるkdumpイベントに対して新しい設定を再構成させるためにkdumpサービスの再起動が

必要となります。kdump構成を再設定するためにシステムを再起動するまたは以下のコマンド

を実行するのどちらかが可能です。作成した新しい構成に問題があるかどうかをすぐに判断

できるように一般的には手動でkdumpサービスを再起動することと推奨します。

2つの方法のいずれかでkdump構成を変更する事が可能です：

touch /etc/kdump.conf
systemctl restart kdump.service

カーネル・デバッギング

12-5

または：

touch /etc/kdump.conf
kdumpctl restart

構成の問題に遭遇した場合、各々の方法は若干異なる出力およびエラー情報を提供します。

以下の2つのコマンドは現在のkdump構成に関するステータス情報を取得するために使用する

ことが可能です：

systemctl -l status kdump.service
kdumpctl status

NOTE

RedHawk Linuxカーネルが動作した時にsystemctlおよびkdumpctlコマ

ンドにより出力される以下のメッセージは無視して構いません。

cat: /sys/kernel/security/securelevel: No such file
or directory

scp VMcore生成の構成12

ローカルのルート・ファイルシステム上のvmcore kdumpファイルを生成する代わりにリモー

ト・システムにvmcore kdumpファイルを作成するセキュア・コピー(scp)を利用する事が可能

です。

NOTE

CentOSのkexec-toolsユーティリティは、NFSルート・ベース・ファイ

ルシステムで起動したシステムでは現在この機能をサポートしません

以下の方法はリモートでscp kdumpを行うためのシステムを構成します：

• リモートkdumpサーバー・システムでsshdサービスを有効とし、sshとscpを介したroot

のログインを許可して下さい。詳細についてはsshd(8)およびsshd_config(8)のmanペー

ジを参照して下さい。

• /etc/kdump.confファイルを編集し、次の項目を修正して下さい：

1. sshの行をコメント・アウトし次の値に変更して下さい：

ssh root@ip_address

ip_addressはサーバー・システムのIPアドレスにする必要があります。例：

ssh root@192.168.1.10

NOTE

kdumpサーバー・システムのシンボル名称ではなく実際のIPアドレス

を使用する必要があります。

RedHawk Linux User’s Guide

12-6

2. core_collector行を編集し-Fオプションをmakedumpfileオプションに追加して下さい。

-Fオプションはscp vmcoreの生成用にkexec-toolsユーティリティが必要としていま

す。-Fオプションを使用した場合、生成されたvmcoreの名称はkdumpサーバー・シ

ステム上でvmcore.flatとなります。RedHawk Linux 7.xのcrashユーティリティはこの

vmcoreフォーマットを読んで解析する事が可能です。

例：

core_collector makedumpfile -F -l –messagelevel 1 -d 31

NOTE

kdumpサーバー・システムをRedHawk Linux 7.xベースのシステムにす

ることを推奨します。RedHawk Linux 7.x0のcrashユーティリティだけ

が圧縮されたvmcoreフォーマットを読んで解析する機能があります。

kdumpサーバー・システムとしてRedHawk Linuxの古いバージョンを

使う必要がある場合、上記-l lzo圧縮オプションに対して-E ELF非圧

縮のmakedumpfileオプションに置き換えて下さい。

• リモート・サービス・システムへのssh/scpアクセスで促されるパスワードが不要のroot

ユーザーを設定して下さい：

kdumpctl propagate

上記コマンド実行後、パスワードのプロンプト無しでリモート・サーバー・システムに

ログインできることを手動で確認して下さい。例：

ssh -i /root/.ssh/kdump_id_rsa root@kdumpserver

• vmcore kdump構成を再設定するためにkdumpサービスを再起動して下さい：

kdumpctl restart

または：

systemctl restart kdump.service

vmcoreイメージの保存に成功後、ローカルのvmlinuxファイル(/var/vmlinux/vmlinux-
`uname -r`)をリモート・システムのvmcoreイメージが存在するディレクトリにコピーする

ことは良策である事に留意して下さい。

NFS VMcore生成の構成12

ローカルのルート・ファイルシステムにvmcore kdumpファイルを作成する代わりに、リモー

トkdumoサーバー・システム上にあるNFSマウントされたファイルシステムにvmcore kdumpフ
ァイルを作成する事が可能です。

カーネル・デバッギング

12-7

NOTE

CentOSのkexec-toolsユーティリティは、NFSルート・ベース・ファイ

ルシステムで起動したシステムでは現在この機能をサポートしませ

ん。

以下の方法はリモートでNFS kdumpを行うためのシステムを構成します：

• リモートNFSサーバーにお手持ちのシステムをNFSマウントしてリモート・ファイルシス

テムを利用可能として下さい：

- リモート・システムの/etc/exportsへのエントリを追加してください。

- 次のコマンドを実行して下さい：

systemctl restart nfs

- 新しいファイルシステムがマウントされているリモートNFSで利用可能であること

を確認するために/usr/sbin/exportfsを実行して下さい。

詳細についてはexports(5)およびexportfs(8)のmanページを参照して下さい。

• ローカルの/etc/fstabファイルへエントリを追加し、vmcoreイメージを保存したいリモー

ト・ファイルシステムをNFSマウントするローカルのマウント・ディレクトリを作成して

下さい。

/etc/fstabのエントリはシンボル名称ではなくサーバー・システムの実際のIPアドレスを使

用する必要があります。例：

192.168.1.3:/kdumps /server/kdumps nfs \
rw,rsize=8192,wsize=8192,timeo=10,retrans=5 0 0

• これが正しく機能していることを確認するためにリモートNFSファイルシステムを手動で

マウントして下さい。例：

mount /server/kdumps
/bin/df

• ファイルを編集しサーバー・システムのIPアドレスとディレクトリを含めるためにファ

イルの最後部付近のnfs行を変更して下さい。例：

nfs 192.168.1.3:/kdumps

/etc/kdump.confのpath命令変数は、使用するリモート・システムのNFSマウントされ

る位置の下のディレクトリを特定することに注意して下さい。例えば、path値のデフォ

ルト/var/crashが前述の例を使用する場合、crash vmcoreファイルはサーバー・システム

の/kdumps/var/crashディレクトリ内に置かれます。

次の黒丸項目内のkdumpctlまたはsystemctlコマンドを発行する前にサーバー・システ

ム上でこの対象となるcrashディレクトリを生成する必要があります。例えば、サーバ

ー・システムにおいてrootで次のコマンドを発行します：

mkdir -p /kdump/var/crash

• NFSマウントされたファイルシステムを介してvmcoreファイルの保存を再構成するために

kdumpサービスを再開して下さい：

kdumpctl restart

または：

systemctl restart kdump.service

RedHawk Linux User’s Guide

12-8

vmcoreイメージの保存に成功後、ローカルのvmlinuxファイル(/var/vmlinux/vmlinux-
`uname -r`)をリモート・システムのvmcoreイメージが存在するディレクトリにコピーする

ことは良策である事に留意して下さい。

sysctl(1) kdumpオプション12

sysctl.conf(5)の構成ファイル/etc/sysctl.confを介して構成することが可能なkdump vmcoreク
ラッシュ処理に直接関連している様々な構成可能なカーネル・パラメータがあります。

/etc/sysctl.confファイル内のエントリを追加または変更する場合、システムを再起動または

次のコマンドを入力する必要があります：

systemctl restart systemd-sysctl

kdumpの挙動を変更するために以下のパラメータを/etc/sysctl.confファイルに任意に追加す

る事が可能です：

kernel.panic_on_oops = 1

カーネルのoopsイベントが発生した場合にkdumpを誘発します。

vm.panic_on_oom = 1

メモリ不足の状況が発生した場合にkdumpを誘発します。

kernel.unknown_nmi_panic = 1

不明なNMIが発生またはNMIボタンが押された場合にkdumpを誘発します。詳細につい

ては後述の「NMIウォッチドッグ」を参照して下さい。

kernel.panic_on_io_nmi = 1

カーネルがIOエラーに起因するNMIを受信した場合にkdumpを誘発します。

kernel.panic_on_unrecovered_nmi = 1

カーネルが訂正不可能なパリティ/ECCメモリ・エラーのような既知の復旧不可能な

NMI割り込みに遭遇した場合にkdumpを誘発します。

crashを利用したダンプの解析12

RedHawk Linuxのcrashユーティリティは/usr/ccur/bin/crashに配置されています。vmcoreま
たはRedHawk Linuxカーネルを使用している動作中のシステムを解析する場合はcrashのこのバ

ージョンを使用することを推奨します。

NOTE

クラッシュ・ダンプを調査するにはccur-kernel-trace-
debuginfo(Ubuntuではccur-kernel-trace-dbg)のカーネル・パッケー

ジがシステムにインストールされている必要があります。もしシステ

ム上にない場合、RedHawkインストール・ディスクかアップデート・

ディスクまたはRedHawkのネットワーク・リポジトリからインストー

ルが可能です。

カーネル・デバッギング

12-9

crashはダンプ・ファイル上または動作中のシステム上で実行することが可能です。crashコ
マンドは、特定のカーネル・サブシステムに及ぶ調査を行う様々なコマンドと一緒に全プロ

セス、ソース・コード逆アセンブル、フォーマット済みカーネル構造と変数の表示、仮想メ

モリ・データ、リンク先リストのダンプ等のカーネル・スタック・バック・トレースのよう

な共通カーネル・コア分析ツールで構成されます。関連するgdbコマンドは入力することも可

能ですが、実行するために組み込まれたgdbクラッシュ・モジュールへは順番に渡されます。

ダンプ・ファイルの解析12

vmcoreダンプ・ファイル上でcrashを実行するには、少なくても2つの引数が必要となりま

す：

• カーネルnamelist と呼ばれるカーネル・オブジェクト・ファイル名称。

• ダンプ・ファイルはvmcoreを指名します。

カーネル・パニックの場合、以下で示すようにcrashを呼び出します。引数は任意の順序で提

供することが可能です。例：

cd /var/crash/127.0.0.1-2014.12.11-10:28:57
ls
vmcore vmcore-dmesg-incomplete.txt
ln -s /var/vmlinux/vmlinux-`uname -r` vmlinux
/usr/ccur/bin/crash vmlinux vmcore

------KERNEL: vmlinux

----DUMPFILE: vmcore [PARTIAL DUMP]
--------CPUS: 8
--------DATE: Thu Dec 11 10:28:47 2014
------UPTIME: 00:06:32
LOAD AVERAGE: 1.32, 0.91, 0.44
-------TASKS: 175
----NODENAME: ihawk
-----RELEASE: 3.16.7-RedHawk-7.0-trace
-----VERSION: #1 SMP PREEMPT Sun Nov 30 20:30:19 EST 2014
-----MACHINE: x86_64 (2199 Mhz)
------MEMORY: 8 GB
-------PANIC: "Oops: 0002 [#1] PREEMPT SMP " (check log for
details)
---------PID: 14527
-----COMMAND: "echo"
--------TASK: ffff8800ce6c5730 [THREAD_INFO: ffff8800ca4f8000]
---------CPU: 1
-------STATE: TASK_RUNNING (PANIC)

crash>

DUMPFILE行のPARTIAL DUMPは、生成されたvmcoreファイルからページの特定の形式をフ

ィルタで除くためにmakedumpfile –dオプションが使用されたことを示している事に注意し

て下さい。詳細については前述の12-2ページ「VMcore構成」を参照して下さい。

実行中システムの解析12

実行中のシステム上でcrashを実行するため、引数なしで指定します。crashはvmlinuxファ

イルを検索し、メモリ・イメージとして/dev/memを開きます：

/usr/ccur/bin/crash

RedHawk Linux User’s Guide

12-10

------KERNEL: /boot/vmlinux-3.16.7-RedHawk-7.0-trace
----DUMPFILE: /dev/mem
--------CPUS: 8
--------DATE: Thu Dec 11 10:37:04 2014
------UPTIME: 00:07:24
LOAD AVERAGE: 1.08, 0.89, 0.46
-------TASKS: 170
----NODENAME: ihawk
-----RELEASE: 3.16.7-RedHawk-7.0-trace
-----VERSION: #1 SMP PREEMPT Sun Nov 30 20:30:19 EST 2014
-----MACHINE: x86_64 (2200 Mhz)
------MEMORY: 8 GB
---------PID: 4550
-----COMMAND: "crash"
--------TASK: ffff8800caaf26c0 [THREAD_INFO: ffff8800cde38000]
---------CPU: 2
-------STATE: TASK_RUNNING (ACTIVE)

crash>

ヘルプの入手12

crashのオンライン・ヘルプは以下の動作を通して利用可能です：

• crashコマンドのリストを表示するには「crash>」プロンプトでhelpまたは?を指定して

下さい。その後、特定のコマンドに関するヘルプ情報を見るためにhelp commandを指定

して下さい。

• 利用可能なオプション全てを一覧表示するヘルプ画面を表示するには

/usr/ccur/bin/crash -hを指定して下さい。

• cmdで指定されたコマンドに関するヘルプ・ページを見るにはシステム・プロンプトで

/usr/ccur/bin/crash -h cmdを指定して下さい。

• RedHawk Linuxのcrash(8)のmanページを見るにはman -M /usr/ccur/man crashを実行し

て下さい。

NMI割り込み12

RedHawk Linuxでは、発生する各NMI (Non-maskable Interrupt)は既知または不明のいずれかで

す。NMIを引き起こす機能を持つマザーボード上の各デバイスのステータス・ビットを検索

している時、NMIハンドラがNMIを引き起こしているステータスを伴うデバイスを見つけた

場合はNMIは既知となります。NMIハンドラがそのようなデバイス見つける事ができない場

合は、そのNMIは不明であると宣言します。

NMIウォッチドッグはそのようなステータスを可視化しないため、その割り込みは不明とな

ります。これはシステム上に存在する可能性のある如何なるNMIボタンについても同様とな

ります。

従って、お手持ちのシステムがNMIボタンを持っておりそれを使用したい場合、NMIウォッ

チドッグを停止する必要があり、そして不明NMIが発生した時にそのシステムをパニックに

させる構成ではないことを確認する必要があります。

カーネル・デバッギング

12-11

これは/etc/grub2.cfgにあるカーネル・コマンド行にnmi_watchdog=nopanicオプションを

追加する事で保証することが可能となります。

カーネル・コマンド行にnmi_dumpオプションもまた存在する場合、不明NMIはカーネル・ク

ラッシュ・ダンプに取り込まれます。これはその後にシステムの自動再起動を行います。

NMIウォッチドッグ12

RedHawkはデバッグ・カーネルを除く全てのカーネルでNMIウォッチドッグが無効となって

います。NMIウォッチドッグが通常無効となっているのは、それが有効であると全てのCPU
上で約10秒毎に1回のNMI割り込みを生成してしまうためで、これらの割り込みはRedHawkの
保証する割り込みシールド機能を妨害する事になります。

従って、デバッグ・カーネルは、システムがハングするまたはアプリケーションがハングす

る問題のデバッグを可能とするためにRedHawkのリアルタイム割り込みシールド機能の例外

を許可しています。このケースでのNMIウォッチドッグは(割り込みがCPU上で長時間ブロッ

クされる)ハード・ロックアップと(実行待ちアプリケーションのいるCPU上でコンテキスト・

スイッチが長時間発生しない)ソフト・ロックアップの両方を検出するために使用されます。

NMIウォッチドッグは、nmi_watchdog=0またはnmi_watchdog=panicカーネル・コマンド

行オプションを介してデバッグ・カーネルにおいても無効にすることが可能です

(/etc/grub2.cfgを編集しどちらかのオプションをデバッグ・カーネルのコマンド行に追加し

て下さい)。nmi_watchdog=0オプションはNMIウォッチドッグを停止して発生する不明NMI
を無視させますが、一方nmi_watchdog=panicオプションは発生する如何なる不明NMIでもシ

ステムをパニックにします。

RedHawk Linux User’s Guide

12-12

13-1

13
PAMケーパビリティ

9
12

Pluggable Authentication Modules(PAM)は認証とセキュリティ用のフレームワークを提供しま

す。ベースLinuxディストリビューションはPAMモジュール一式を提供する一方、RedHawkオ
ペレーティング・システムはケーパビリティ・モジュールの独自バージョンをインストール

します。

本章ではRedHawkのケーパビリティ・モジュールを使ってケーパビリティを割り当てる構成

ファイルおよび手順を取り扱います。

序文13

Pluggable Authentication Modulesを表すPAMは、認証プログラムの再コンパイルを必要としな

い認証ポリシーの設定方法を提供します。

モジュールはいつでも生成または追加して利用することが可能です。PAMを使用するプログ

ラムは再コンパイルを必要とせずに新しいモジュールを即時使用することが可能です。

認証が必要なプログラムはそのサービス名称を定義し、/etc/pam.dディレクトリに自身の

PAM構成ファイルをインストールする責務があります。

PAMはベースLinuxオペレーティング・システムの一部としてインストールされます。

RedHawkオペレーティング・システムは、独自のpam_capability.soモジュールと独自の

capability.confファイルをpam_capability(8)とcapability.conf(5)のmanページと共にインス

トールします。結果として、ケーパビリティに関するInternet上の説明や情報は当てにできな

いことに注意して下さい。RedHawkは独自のよりシンプルで使い易いケーパビリティの実現

を提供します。

RedHawkバージョンはexec()システムコール全体でケーパビリティを継承するためにカーネ

ルも変更しています。本機能はカーネル構成GUIの「General Setup」以下でアクセス可能な

INHERIT_CAPS_ACROSS_EXEC構成オプションを介して利用可能です。全てのRedHawk
Linuxカーネルはデフォルトで本オプションが有効化されていることに注意して下さい。

本章はPAMサービス・ファイルおよびcapability.confファイルへの必要な変更を取り扱いま

す。最後にリアルタイム・ケーパビリティを持つリアルタイム・ユーザーに割り当てる例を

章の最後で提供します。

RedHawk Linux User’s Guide

13-2

PAMサービス・ファイル13

/etc/pam.d以下の各ファイルはユーザーがシステムにログインするために利用可能なサービ

スに対応しています。各アプリケーションまたはサービスは対応するファイルを持ってお

り、大抵は対応するサービスと同じような名前になっています。例えば、loginファイルは

loginサービスを定義し、sshdファイルはsshサービスを定義します。

ケーパビリティをユーザーに割り当てる場合、/etc/pam.d以下のファイルを変更する必要が

あります。ユーザーが変更されていないサービスを使用してシステムにログインする場合、

特別なケーパビリティの割り当ては行われません。

PAM構成ファイル13

このファイルについてここでは簡単に説明します。詳細についてはpam.d(5)のmanページを

参照して下さい。

PAM構成ファイル内の行の項目は次の書式を使用します：

module-types module-control module-path module-arguments

PAM標準で定義される4種類のmodule-types が存在します：

auth 例えばパスワードの要求およびチェックによりユーザーのIDを確

認します。

account アカウントの期限切れやログイン制限時間等に関するチェックのよ

うな非認証ベースのアカウント管理を実行します。

password パスワードを更新するために使用します。

session セッションの開始および終了時に実行する動作(例えば、ユーザー

のホーム・ディレクトリをマウント)を定義します。

module-control フラグはサービスに対するユーザーの認証を全体的な目的とする成功も

しくは失敗の重要性を決定します。

module-path は'/'で始まる場合はPAMモジュールの完全なファイル名称、そうではない場

合はデフォルト(/lib64/security)のモジュール位置からの相対パスのいずれかです。

module-arguments は任意のPAMの特定の動作を変更するために使用可能なスペース区切

りのトークンのリストです。次のRedHawkのpam_capability.soモジュールについては同じ行

に指定することが可能です。

conf=conf_file 構成ファイルの位置を指定します。本オプションが指定されてい

ない場合はデフォルト位置は/etc/security/capability.confとなり

ます。

debug syslogを介してデバッグ情報を記録します。デバッグ情報は

syslog authprivクラスに記録されます。通常、本ログ情報は

/var/log/secureファイルに集約されます。

Pluggable Authentication Modules (PAM)

13-3

NOTE

ケーパビリティが使用されている場合、/etc/pam.d/suファイルはsu
-l nobody daemonのような呼び出しがnobodyユーザーにリストされ

たケーパビリティだけをdaemon に与え、呼び出しユーザーからは余

分なケーパビリティを与えないことを確実に行うセキュリティ措置と

して変更される必要があります。

/etc/security/capability.confファイルに定義されたロールをシステムにログインするユーザ

ーに割り当てるには、次の行を/etc/pam.d/sshdにディレクトリ以下の各々の適切なPAM対応

アプリケーションに追加する必要があります：

session required pam_capability.so

ユーザーがシステムに入ることが可能な方法は沢山ありますので、いくつかのサービスは通

常変更する必要があります。以下は通常使用されるPAM対応ファイルのリストの一部です：

• gdm-passwd: GNOMEディスプレイ・マネージャーにログイン。本機能は最近のLinuxデ

ィストリビューションではもう動作しません：Red Hat互換ディストリビューションでは

8.2以降、Ubuntuでは20.04以降。下のNOTEを参照して下さい。

• login: システムにログイン(非グラフィカル・ログイン)。

• sshd: リモートからログイン。

• suおよびsudo: あるユーザーから他のユーザーへ切り替え。

ご使用のアプリケーション次第で他も必要となる可能性があります。例えば、VNC (Virtual
Network Computing)を実行するには次も必要です：

• runuser-l: 代わりのユーザーとグループIDでコマンドを実行し、ログイン・シェルとし

て(-lオプションで)シェルを開始。

NOTE

systemdとXサーバーのセキュリティ変更に起因して、最近のどの

Linuxディストリビューションに含まれるグラフィカルloginにおいて

もはやケーパビリティは自動的に許可されません。ユーザーはsshま
たはグラフィックでログインを利用するか、ケーパビリティなしで再

度同じユーザーになるためにsuを利用のどちらかが可能です。

セッション行をユーザーが必要とする各PAM対応アプリケーションに追加すること、または

通常使用されるPAM対応アプリケーションの殆どに含まれる重要なPAM対応アプリケーショ

ンにそれを追加することが可能です。本章最後の実例は後者の方式を使用しています。13-5ペ
ージの「実例：リアルタイム・ユーザー向けPAMケーパビリティの構成」を参照して下さ

い。

デフォルトのケーパビリティ構成ファイルの代わりにセッション行に他のファイルを指定す

ることが可能です。本例では、/etc/security/capability.confの代わりに/root/ssh-
capability.conf構成ファイル使用しています。

session required pam_capability.so \
conf=/root/ssh-capability.conf

RedHawk Linux User’s Guide

13-4

ロール・ベース・アクセス制御13

RedHawk Linuxのロール・ベース・アクセス制御はPAMを使って実行されます。

/etc/security/capability.confファイルはユーザーやグループへ定義および割り当てが可能な

ロールに関する情報を提供します。

capability.conf(5)ファイルは3種類のエントリ(ロール、ユーザー、グループ)を認識します。

ロール13

ロールは有効なLinuxケーパビリティの定義一式です。現在有効な全Linuxケーパビリティ一式

は/usr/include/linux/capability.hカーネル・ヘッダー・ファイルの中、または

_cap_names[]文字配列を使うことで見る事が可能です。これらは付録Cの中でも詳細に説

明されています。

尚、次のケーパビリティのキーワードは予め定義されています：

all (cap_setcapを除く)全ケーパビリティ
cap_fs_mask ファイルシステムに関する全ケーパビリティ
none 如何なるケーパビリティもなし

名前が示すとおり、様々なシステムのユーザーおよびグループが実行する必要のある職務に

準じて、異なるロールが定義されることが求められます。

capability.confファイル内のロール・エントリの書式は以下となります：

role rolename capability_list

必要最小限のケーパビリティはアプリケーション次第です。最小の設定を見つけ出すのはテ

ストと時間が必要になります。1つの戦略は全てのケーパビリティを削除してから必要に応じ

てそれらを戻すことです。

ケーパビリティ・リストのエントリは以前定義されたロールを参照することが可能です。例

えば、ファイル内でbasic と呼ばれるロールを定義して、それに続くロールのケーパビリテ

ィ・リストにケーパビリティの1つとしてそのロールを追加することが可能です。ケーパビリ

ティ・リストは、空白またはカンマで区切ったユーザーの継承設定をONにするケーパビリテ

ィのリストであることに注意してください。

次の例ではrootとほぼ同等の管理用ロール’admin’を設定します：

role admin all

本例ではリアルタイム・ユーザー・ロール'rtuser'を設定します：

role rtuser cap_ipc_lock \
 cap_sys_rawio \
 cap_sys_admin \
 cap_sys_nice \
 cap_sys_resource

Pluggable Authentication Modules (PAM)

13-5

ロールを定義したら、capability.confファイルでユーザーまたはグループに割り当てること

が可能です。

グループ13

グループは、現在のシステムで定義される有効なグループに一致する標準Linuxのグループ名

です。(getgrnam(3)による確認で)現在のシステムで有効なグループと一致しないグループ・

エントリは無視されます。

capability.confファイル内のグループ・エントリの書式は以下となります：

group groupnam rolename

例えば、poweruserロールをグループに割り当てるには、capability.confファイルの

GROUPSセクションに次を入力して下さい：

group hackers poweruser

ユーザー13

ユーザーは、現在のシステムのログインが有効なユーザーに一致する標準Linuxユーザーのロ

グイン名です。(getpwnam(3)による確認で)現在のシステムで有効なユーザーと一致しないユ

ーザー・エントリは無視されます。

capability.confファイル内のユーザー・エントリの書式は以下となります：

user username rolename

特殊なユーザー名’*’は、リストにあるユーザーと一致しないユーザーまたはリストにあるグ

ループのメンバーシップを持つユーザーにデフォルトのロールを割り当てることが可能で

す：

user * default_rolename

例えばユーザー'joe'にdesktopuserロールを割り当てるには、capability.confファイルの

USERSセクションに次を入力して下さい：：

user joe desktopuser

実例：リアルタイム・ユーザー向けPAMケーパビリティの構成13

本例では、通常使用されるPAMサービスのグループにケーパビリティ・サポートを割り当て

る方法を示します。リアルタイム用ケーパビリティをロールに定義してそのロールをユーザ

ーに割り当てます。

RedHawk Linux User’s Guide

13-6

通常使用されるサービスの割り当て13

ケーパビリティ・モジュールを持つセッション行は、ユーザーがシステムにログインする必

要のある各PAM対応アプリケーションに追加する必要があります。各サービス・ファイルに

個々にまたは通常使用されるサービスのグループとして追加することが可能です。

/etc/pam.dディレクトリ内の主要なファイルは通常使用されるサービスに含まれているの

で、これらのサービスにセッション行を追加すると実質的にこれらの2つのファイルを含む全

ての通常使用されるサービスに追加したことになります。そのファイルはUbuntuオペレーテ

ィング・システムとRHELベース・ディストリビューションとでは異なります。

Ubuntuの主要ファイルは次のとおり：

common-session
common-session-noninteractive

RHELベース・ディストリビューションの主要ファイルは次のとおり：

system-auth
passwd-auth

これらの主要ファイルを使用するには、最初に更新の場合に備えてそれらを保存するため次

のとおりそれらをコピーおよびリンクして下さい。keyf1とkeyf2を上述の適切なディストリビ

ューション固有名称に置き換えて下さい。

cd /etc/pam.d
cp ${keyf1} ${keyf1}-local
cp ${keyf2} ${keyf2}-local
ln -sf ${keyf1}-local ${keyf1}
ln -sf ${keyf2}-local ${keyf2}

次のセッション行は、上述の手順で生成・リンクされたファイルの-localバージョンの両方に

追加することが可能です。

session required pam_capability.so

VNC (Virtual Network Computing)を利用したいユーザーは更にrunuser-lサービスに上記セッシ

ョン行を追加する必要があることに注意して下さい。

リアルタイム・ロールの割り当て13

本例では'rtuser'ロールにリアルタイムで通常必要となるケーパビリティが割り当てられます。

全てのケーパビリティのリストは/usr/include/linux/capability.hの中にあります。

殆どのケースにおいて、本例で使用されるケーパビリティで十分事足ります。しかしなが

ら、多かれ少なかれケーパビリティはアプリケーション次第で必要となる可能性がありま

す。

/etc/security/capability.confファイルのROLESセクションに次のような行を追加して下さ

い。

role rtuser cap_ipc_lock \
 cap_sys_rawio \

Pluggable Authentication Modules (PAM)

13-7

 cap_sys_admin \
 cap_sys_nice \
 cap_sys_resource

リアルタイム・ユーザーの割り当て13

リアルタイム・ロールを定義した後、ユーザーをそのロールに割り当てることが可能です。

次の例ではリアルタイム・ユーザー’joe’と’ami’が/etc/security/capability.confファイルの

USERSセクションに追加されています：

user joe rtuser
user ami rtuser

リアルタイム・ケーパビリティの確認13

上記手順に従ったら、変更されたPAMサービスの1つ(このケースはsu)を介してシステムにロ

グインし/proc/self/statusファイルを観察することでケーパビリティが承諾されたことを確認

することが可能です。

例：

$ cat /proc/self/status | grep Cap
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: 0000003fffffffff
CapAmb: 0000000000000000

$ su - ami
$ cat /proc/self/status | grep Cap
CapInh: 0000000001a24000
CapPrm: 0000000001a24000
CapEff: 0000000001a24000
CapBnd: 0000003fffffffff
CapAmb: 0000000000000000

capsh(1)コマンドはケーパビリティを出力するまたは/proc/self/statusで示される数字をデコ

ードするために利用することが可能です：

$ capsh --print | grep Current
Current:=cap_ipc_lock,cap_sys_rawio,cap_sys_admin,
cap_sys_nice,cap_sys_resource+eip

$ capsh --decode=1a24000
0x0000000001a24000=cap_ipc_lock,cap_sys_rawio,cap_sys_admin,
cap_sys_nice,cap_sys_resource

RedHawk Linux User’s Guide

13-8

14-1

14
デバイス・ドライバ

12

本章は、RedHawk Linux下のユーザー・レベルおよびカーネル・レベルのデバイス・ドライバ

に関する問題点に対応します。これはリアルタイム性能の問題に加えてデバイス・ドライバ

の書き方を容易にする追加機能に関する情報も含まれています。Linuxベースのデバイス・ド

ライバを記述する方法の予備知識を前提とします。ユーザー空間I/O(UIO)ドライバも説明しま

す。

PCI-to-VMEブリッジ・デバイスのRedHawkサポートに関する情報は15章の「PCI-to-VMEサポ

ート」で見ることが可能です。

デバイス・ドライバの種類の理解14

RedHawk Linuxの下ではユーザー・レベル・デバイス・ドライバを簡単に書く事が可能です。

ユーザー・レベル・ドライバはデバイス・レジスタを読み書きする、つまりプログラムI/O操

作を開始するため、I/O空間にアクセスすることが可能です。カーネル・ドライバ・スケルト

ンの支援により、ユーザー・レベル・ドライバは割り込みの受信と同時に処理を開始するこ

とも可能になります。これは割り込みルーチンに付随するユーザー・レベル・ドライバの中

でシグナル・ハンドラを許可する機能をサポートすることにより得られます。割り込みのハ

ンドリングやユーザー・レベル・プロセスへシグナルを送信するためのサンプルのカーネ

ル・ドライバ・テンプレートの場所については、本章で後述する「カーネル・スケルトン・

ドライバ」セクションを参照して下さい。

Linuxの下でDMA I/O操作をするユーザー・レベル・ドライバを書くことは現実的ではありま

せん。ユーザー・レベルからDMA操作を禁止するいくつかの問題(例えば、ユーザー空間バッ

ファの物理アドレスを決定する方法が現在のところサポートされていない)が存在します。カ

ーネルレベル・デバイス・ドライバはI/O操作にDMAを利用するデバイスのために使用する必

要があります。

ユーザー空間I/O(UIO)は、複数のI/Oボードに対してユーザー・レベル・デバイス・ドライバ

を記述するために使用することが可能です。UIOは、(ユーザー空間に記述されるドライバの

主要部分で)ユーザー空間アプリケーションに使用される一般的なツールやライブラリを利用

する小規模なデバイス単位のカーネル・モジュールが必要です。14-14ページの「ユーザー空

間I/Oドライバ(UIO)」を参照して下さい。

ユーザー・レベル・デバイス・ドライバの開発14

後述のセクションで、ユーザー・レベル・デバイス・ドライバの記述に影響を及ぼす

RedHawk Linuxオペレーティング・システムの詳細について説明します。

PCIリソースへのアクセス14

ブート処理中、PCIバス上のデバイスは自動的に構成され、割り込みが割り当てられて、デバ

イス・レジスタがメモリ・マップドI/O操作を通してアクセス可能なメモリ領域にレジスタが

マッピングされます。これらのメモリ領域はベース・アドレス・レジスタ(BAR: Base Address
Register)として知られています。デバイスは最大6個のBARを持つことが可能です。BARの内

容はデバイスによって異なります。この情報についてはデバイスのマニュアルを参考にして

ください。

RedHawk Linux User’s Guide

14-2

RedHawk Linuxは、PCIデバイスのレジスタをマッピングするために必要となるコードを単純

化する/proc/busにあるPCIリソース・ファイル・システムをサポートします。このファイル

システムは、プログラムのアドレス空間へマッピング可能なメモリ領域を表すBARファイル

を提供し、デバイスに関わる物理アドレスを知る必要なしにデバイスへのアクセスを提供し

ます。PCI BARファイルシステムは、デバイスのPCI構成空間の読み書きに使用可能な config-
space ファイルもまた提供します。config-space ファイルの先頭64バイトはPCIの仕様により

定義されています。残りの192バイトはデバイス・ベンダー固有となります。

各PCIハードウェア・デバイスはベンダーIDとデバイスIDが関連付けられています。これらは

時間経過またはシステム間で変化しない固定値です。ブート時にPCIデバイスの動的構成のた

め、一旦システムがブートするとドメイン、バス、スロット、機能番号は固定されたままで

すが、各システムの同じPCIバス・スロットに差し込まれているように見えるボードでも基礎

をなすハードウェアに応じてシステム間で異なる可能性があります。/proc/bus/pciとBARフ
ァイルシステム内のパスは、カーネルによって割り当てられたドメイン、バス、スロット、

機能番号から生成され、ホスト・システムの物理ハードウェア・レイアウトに影響を受けま

す。例えば、物理的に異なるスロットにボードを差し込む、システムへデバイスを追加す

る、またはシステムBIOSの変更のような変更は、特定のデバイスに割り当てられたバスおよ

び/またはスロット番号を変更することが可能となります。

後述するPCI BARスキャン・インターフェースは、特定デバイスに関連するBARファイルを

見つけるための方法を提供します。ドライバはBARファイルへのアクセスを得るために適切

なデバイスのスロット・アドレスを突き止める必要があるため、これらのインターフェース

がなければ、これらBARファイル・パスのハードウェア依存性質はユーザー・レベル・デバ

イス・ドライバのプログラミングの仕事を若干不便にします。

BARファイルシステム用ライブラリ・インターフェース、固定ベンダーIDとデバイスIDの値

を使用して、PCIデバイスに関連する現在の他の値を獲得することが可能です。これらはデバ

イスへのBARファイル・ディレクトリのパスの他にそのディレクトリ内の各BARファイルに

関する情報も含みます。これは各デバイスに関連するベンダーID、デバイスID、クラスID、

サブクラスID、(割り当てられていれば)IRQ番号、ドメイン、バス、スロット、機能番号を返

します。

このサポートは、カーネル構成GUIの「Bus options」項目にあるPROC_PCI_BARMAPカーネ

ル・パラメータを通して全てのRedHawkプレビルト・カーネルでデフォルトで有効となって

います。

PCI BARインターフェース14

次のセクションでPCI BARインターフェースを説明します。

ライブラリのスキャン機能は反復します。もしシステムが求めるデバイス・タイプのインス

タンスを複数持っている場合、これらのライブラリ機能は複数回呼び出される必要がありま

す。ある関数はシステム内の一致するデバイス全ての数を返します。その他の関数は検索基

準に一致するデバイスに関する情報を反復的に返します。デバイス情報は

/usr/include/pcibar.hで定義されるbar_context型に返されます。この構造体は

bar_scan_openの呼び出しで作成されます。複数スキャンは、各々が持っているユニークな

bar_contextを同時にアクティブにすることが可能です。

インターフェースを以下に簡単に説明します：

bar_scan_open PCIデバイスの新しいスキャンを開始します
bar_scan_next 次に一致するPCIデバイスを取得します
bar_device_count アクティブ・スキャンに残る一致するデバイスの数を返します

デバイス・ドライバ

14-3

bar_scan_rewind スキャンを再開します
bar_scan_close アクティブ・スキャンを閉じて関連するメモリを解放します
free_pci_device 見つけたデバイスに関する割り当てられたメモリ全てを解放します
bar_mmap 適切なページに整列したBARファイルをmmapします
bar_munmap bar_mmapでマッピングしたBARファイルをmunmapします

これらのインターフェースを使用するため、アプリケーションにlibccur_rtライブラリをリン

クする必要があることに注意してください。

gcc [options] file -lccur_rt ...

これらの機能の使用を解説する例は、/usr/share/doc/ccur/examples/pci_barscan.cに提供

されます。

bar_scan_open(3) 14

この機能は、PCIデバイスの検索のために初期コンテキストを作成するために使用します。返

されたbar_contextは、反復子(イテレータ)インターフェースの状況データを指定する

/usr/include/pcibar.hに定義された不透明なポインタ型です。この値はその後の

bar_scan_next, bar_device_count, bar_scan_rewind, bar_scan_closeの呼び出しに提供さ

れる必要があります。

概要

#include <ccur/linux/pci_ids.h>
#include <pcibar.h>

bar_context bar_scan_open(int vendor_id, int device_id);

引数は以下のように定義されます：

vendor_id /usr/include/ccur/linux/pci_ids.hに定義されたベンダーIDの値または特殊な

値ANY_VENDOR。ANY_VENDORはホスト・システム上の全てのデバイスに

対する全てのvendor_id の値と適合します。

device_id /usr/include/ccur/linux/pci_ids.hに定義されたデバイスIDの値または特殊な

値ANY_DEVICE。ANY_DEVICEはホスト・システム上の全てのデバイスに対

する全てのdevice_id の値と適合します。

エラー状態についてはmanページを参照して下さい。

bar_scan_next(3) 14

この機能は、検出した次に一致するPCIデバイスのpci_device構造体オブジェクトへのポイ

ンターを返します。

概要

#include <ccur/linux/pci_ids.h>
#include <pcibar.h>

struct pci_device * bar_scan_next(bar_context ctx);

引数は以下のように定義されます：

RedHawk Linux User’s Guide

14-4

ctx bar_scan_openより返されるアクティブなbar_context。

これ以上利用可能なデバイスが一致しない時、この機能はNIL_PCI_DEVICEを返し、errno に
ゼロを設定します。エラー状態についてはmanページを参照して下さい。

bar_device_count(3) 14

この機能は、アクティブ・スキャンの中に残っている未処理デバイスの数を返します。

bar_scan_openまたはbar_scan_rewindの呼び出しの直後に呼び出した時、これは指定した

vendor_id とdevice_id に対して一致するデバイスの総計となります。この値は

bar_scan_nextの呼び出しごとに1ずつへ減少します。

概要

#include <ccur/linux/pci_ids.h>
#include <pcibar.h>

int bar_device_count(bar_context ctx);

引数は以下のように定義されます：

ctx bar_scan_openより返されるアクティブなbar_context。

成功すると、この機能はその後のbar_scan_nextの呼び出しによって返される報告されない

デバイスの数を負ではない数で返します。エラー状態についてはmanページを参照して下さ

い。

bar_scan_rewind(3) 14

この機能は、最初のbar_scan_openの呼び出し後に直ぐの状況へ指定されたbar_context
をリセットします。

概要

#include <ccur/linux/pci_ids.h>
#include <pcibar.h>

void bar_scan_rewind(bar_context ctx);

引数は以下のように定義されます：

ctx bar_scan_openより返されるアクティブなbar_context。もし値が

NIL_BAR_CONTEXTまたは有効なbar_contextオブジェクトを指定しない

場合、この呼び出しは効果がありません。

bar_scan_close(3) 14

この機能は、指定したbar_contextに関連する割り当てられた全てのメモリを解放します。

NIL_BAR_CONTEXTの値はbar_contextオブジェクトに割り当てられ、この呼び出しの後

はもう使用することはできません。

概要

#include <ccur/linux/pci_ids.h>
#include <pcibar.h>

void bar_scan_close(bar_context ctx);

デバイス・ドライバ

14-5

引数は以下のように定義されます：

ctx bar_scan_openより返されるアクティブなbar_context。

free_pci_device(3) 14

この機能は、指定したpci_device構造体オブジェクトに関連する割り当てられた全てのメ

モリを解放します。

概要

#include <ccur/linux/pci_ids.h>
#include <pcibar.h>

void free_pci_device(struct pci_device * dev);

引数は以下のように定義されます：

dev bar_scan_next.から獲得した有効なpci_device構造体

bar_mmap(3) 14

この機能は、指定したBARファイルをメモリへマッピングするために使用することが可能で

す。これはmmapされた領域の先頭ではなくmmapされたBARデータの開始位置に小さなBAR
ファイルを整列するmmap(2)のラッパーです。この機能を使いマッピングされたファイルを

アンマップするためにはbar_munmap(3)を使用してください。

概要

#include <ccur/linux/pci_ids.h>
#include <pcibar.h>

void * bar_mmap(char * barfilepath, void * start, size_t length, int prot,
int flags, int fd, off_t offset);

引数は以下のように定義されます：

barfilepath mmapするBARファイルのパス

他のパラメータの説明についてはmmap(2)を参照して下さい。

bar_munmap(3) 14

この機能は、bar_mmap(3)を使いマッピングされたファイルをアンマップするために使用す

る必要があります。

概要

#include <ccur/linux/pci_ids.h>
#include <pcibar.h>

int bar_munmap(void * start, size_t length);

パラメータの説明についてはmunmap(2)を参照して下さい。

RedHawk Linux User’s Guide

14-6

カーネル・スケルトン・ドライバ14

デバイス・ドライバで処理される必要のある割り込みをデバイスが出すとき、Linuxではユー

ザー・レベル・ルーチンを割り込みに結合する方法がないため、完全にユーザー・レベルで

デバイス・ドライバを構築することは出来ません。しかしながら、ユーザー・レベル・ドラ

イバを実行中のユーザー・レベル・アプリケーションへデバイスの割り込みとシグナルの発

行を処理する簡易カーネル・デバイス・ドライバを構築することは可能です。シグナルは実

行プログラムへ非同期で配信されるため、およびシグナルはコードがクリティカル・セクシ

ョン中はブロックすることが可能であるため、シグナルはユーザー・レベル割り込みのよう

に振舞います。

後述のスケルトン・カーネルレベル・ドライバの例は、デバイス割り込みの発生とシグナル

をトリガーにする割り込みサービス・ルーチン用のコードへシグナルを結合する方法を示し

ます。このスケルトン・ドライバの関する全てのコードは、RedHawkがインストールされた

システムの/usr/share/doc/ccur/examples/driverディレクトリで見つけることが可能です。

割り込み処理とユーザー・レベル・プロセスへのシグナル送信を行う簡易カーネルレベル・

ドライバを記述するためのテンプレートとしてサンプル・ドライバ(sample_mod)を使用する

ことが可能です。

サンプル・ドライバの機能の理解14

サンプル・ドライバは、割り込みを生成するハードウェア・デバイスとしてリアルタイム・

クロック(rtc)0を使用します。rtc0は、Concurrent Real-TimeのReal-Time Clock and Interrupt
Module (RCIM)上のリアルタイム・クロックの1つです。このクロックは、所定の分解能で0ま
でカウントダウンし、その後初めからやり直します。カウントが0に到達する度に割り込みが

生成されます。リアルタイム・クロック0用の設定の一部は、ドライバがデバイス・レジスタ

にアクセスするため、それらのレジスタがメモリ空間へマッピングされるモジュールの「初

期化」ルーチン内で実行されます。モジュールの「初期化」ルーチンとして示すコードの最

後の部分は、割り込みベクタに割り込みルーチンを結合するコードです。

**
**
int sample_mod_init_module(void)
{
...

// find rcim board (look for RCIM II, RCIM I, and finally RCIM I old rev)
dev = pci_find_device(PCI_VENDOR_ID_CONCURRENT,
PCI_DEVICE_ID_RCIM_II,dev);
if (dev == NULL) { //try another id

dev = pci_find_device(PCI_VENDOR_ID_CONCURRENT_OLD,
PCI_DEVICE_ID_RCIM, dev);

}
if (dev == NULL) { //try another id

dev = pci_find_device(PCI_VENDOR_ID_CONCURRENT_OLD,
PCI_DEVICE_ID_RCIM_OLD, dev);

}
if (dev == NULL) { //no rcim board, just clean up and exit

unregister_chrdev(major_num,"sample_mod");
return -ENODEV;

}
...

if ((bd_regs = ioremap_nocache(plx_mem_base, plx_mem_size)) == NULL)
return -ENOMEM;

...
if ((bd_rcim_regs = ioremap_nocache(rcim_mem_base, rcim_mem_size)) ==
NULL)

return -ENOMEM;
...

sample_mod_irq = dev->irq;
res = request_irq(sample_mod_irq, rcim_intr, SA_SHIRQ, "sample_mod",
&rtc_info);

デバイス・ドライバ

14-7

rtc0デバイスの完全な初期化は、モジュールの“open”メソッドで実行されます。この例では、

デバイスは割り込みがデバイスにより生成されるように自動的に設定されます。デバイスが

オープンされる時、rtc0に関連する割り込みは有効となり、そのデバイスは1μ秒の分解能に

より10000から0へカウントするようにプログラムされ、クロックのカウントを開始します。

カウントが0に達する時に割り込みを生成します。

int rcim_rtc_open(struct inode *inode, struct file *filep)
{

u_int32_t val;
if (rtc_info.nopens > 0) {

printk(KERN_ERR “You can only open the device once.\n”);
return -ENXIO;

}
rtc_info.nopens++;
if (!rtc_info.flag)

return -ENXIO;

writel(0, &bd_rcim_regs->request);
writel(ALL_INT_MASK, &bd_rcim_regs->clear);
writel(RCIM_REG_RTC0, &bd_rcim_regs->arm);
writel(RCIM_REG_RTC0, &bd_rcim_regs->enable);
writel(RTC_TESTVAL, &bd_rcim_regs->rtc0_timer);//rtc data reg
val = RCIM_RTC_1MICRO | RCIM_RTC_START|RCIM_RTC_REPEAT;
writel(val, &bd_rcim_regs->rtc0_control);
return 0;

}
**

ユーザー・レベル・ドライバは、カーネルレベル・ドライバが割り込みを受信した時に送信

されるべきシグナルを指定する必要があります。ユーザー・レベル・ドライバは、カーネル

レベル・ドライバのioctlメソッドにより処理されるioctl()呼び出しを行います。ユーザー・レ

ベル・ドライバがこのioctl()機能を呼び出すと、ユーザー・レベル・プロセスが指定したシグ

ナルのためのシグナル・ハンドラを既に構成したカーネルレベル・ドライバに知らせ、ユー

ザー・レベル・ドライバは直ぐにシグナルを受信できるようになります。

呼び出し元のユーザー空間プロセスは、モジュールから受信したいシグナルの番号を指定し

ます。ドライバは“current” 構造体を使用することにより要求されたシグナル番号に関連する

プロセスIDを記憶します。「シグナルID/プロセスID」のペアは、モジュールのrtc_info構
造体の中に格納され、その後、後述する“notification”メカニズムにより使用されます。

**
int rcim_rtc_ioctl(struct inode *inode, struct file *filep, unsigned int cmd,
unsigned long arg)
{

if (!rtc_info.flag)
return (-ENXIO);

switch (cmd)
{
// Attach signal to the specified rtc interrupt
case RCIM_ATTACH_SIGNAL:

rtc_info.signal_num = (int)arg;
rtc_info.signal_pid = current->tgid;
break;

default:
return (-EINVAL);

}
return (0);

}
**

RedHawk Linux User’s Guide

14-8

実際の通知はモジュールの割り込みハンドラ内で実施されます。割り込みをrtc0から受信した

時、この割り込みサービス・ルーチンはそれを要求したプロセスへシグナルを送信するかど

うかを判断します。もしrtc_info構造体内に「シグナルID/プロセスID」のペアが登録され

ている場合、指定されたシグナルはkill_proc()関数を使い対応するプロセスへ送信されま

す。

**
int rcim_intr(int irq, void *dev_id, struct pt_regs *regs)
{

u_int32_t isr;
isr = readl(&bd_rcim_regs->request);
writel(0, &bd_rcim_regs->request);
writel(ALL_INT_MASK, &bd_rcim_regs->clear);

/* Use isr to determine whether the interrupt was generated by rtc 0 only if
“rcim” module is not built into the kernel. If “rcim” is active, its
interrupt handler would have cleared “request” register by the time we
get here. */

// if (isr & RCIM_REG_RTC0) {
// Send signal to user process if requested

if (rtc_info.signal_num && rtc_info.signal_pid &&
(kill_proc(rtc_info.signal_pid, rtc_info.signal_num, 1) == -ESRCH))
{

rtc_info.signal_pid = 0;
}

// }
return IRQ_HANDLED;

}
**

デバイスがクローズされた時、rtc0はシャット・ダウンされます。カウント値は0へリセット

され、クロックは停止されます。さらに割り込みを受信した場合にシグナルがこれ以上送信

されないように割り込み/シグナルの結合はクリアされます。

int rcim_rtc_close(struct inode *inode,struct file *filep)
{

if (!rtc_info.flag)
return (-ENXIO);

rtc_info.nopens--;
if(rtc_info.nopens == 0) {

writel(~RCIM_RTC_START, &bd_rcim_regs->rtc0_control);
writel(0, &bd_rcim_regs->rtc0_timer);
rtc_info.signal_num = 0;
rtc_info.signal_pid = 0;

}
return 0;

}

デバイス・ドライバ

14-9

ドライバのテスト14

サンプル・カーネル・モジュールをテストする最良の方法は、RCIMドライバなしのカーネル

を構築し、サンプル・ドライバをロードすることです。しかしながら、このモジュールはカ

ーネルに既に組み込まれたRCIMドライバの有無に関わらず動くように設計されています。

RCIMカーネル・モジュールとサンプル・カーネル・モジュールは同じ割り込みラインを共有

します。割り込みが発生した時、RCIMの割り込みハンドラが最初に起動し、RCIM上のハー

ドウェア割り込みレジスタはクリアされます。その後、サンプル・モジュールの割り込みハ

ンドラが呼び出されます。

もし両方のモジュールがロードされた場合、もう1つのハンドラはクリアされた割り込みレジ

スタを見つけ、もし「割り込みソース」のチェックが実行されるとハンドラは割り込みがrtc0
とは異なるデバイスから来たと思い込みます。RCIMとサンプル・モジュールの両方がロード

される時にこの障害を克服するため、サンプル・モジュールの割り込みハンドラの以下の行

をコメント・アウトしました：

// if (isr & RCIM_REG_RTC0) { .

次のコードは、RCIMスケルトン・ドライバの割り込み発生でいつでもこのルーチンが呼び出

されるようにどのような方法でユーザー・レベル・ドライバをルーチンと結合するかをデモ

する簡易ユーザー・レベル・プログラムです。このルーチン“interrupt_handler”は、RCIMの

rtc0の割り込み発生時に呼び出されるルーチンです。このプログラムはプログラムが実行され

ている端末で「Ctrl-C」の入力することにより終了します。このサンプル・コードは

/usr/share/doc/ccur/examples/driver/usersample.cでも入手できることに注意してくださ

い。

サンプル・モジュールをロードして正常にユーザー・サンプル・プログラムを実行するに

は、RCIMドライバを使用する全てのアプリケーションを停止する必要があります。

以下がusersampleプログラムです。

RedHawk Linux User’s Guide

14-10

#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
#include <errno.h>
#include "sample_mod.h"

static const char *devname = "/dev/sample_mod";
static int nr_interrupts = 0;
static int quit = 0;

void interrupt_handler (int signum)
{

nr_interrupts++;
if ((nr_interrupts % 100) == 0) {
printf (".");
fflush(stdout);

}

if ((nr_interrupts % 1000) == 0)

printf (" %d interrupts\n", nr_interrupts);
}

void ctrl_c_handler (int signum)
{

quit++;
}

int main()
{

int fd;
struct sigaction intr_sig = { .sa_handler = interrupt_handler };
struct sigaction ctrl_c_sig = { .sa_handler = ctrl_c_handler };

sigaction (SIGUSR1, &intr_sig, NULL);
sigaction (SIGINT, &ctrl_c_sig, NULL);

if ((fd = open (devname, O_RDWR)) == -1) {

perror ("open");
exit(1);

}

if (ioctl (fd, RCIM_ATTACH_SIGNAL, SIGUSR1) == -1) {

perror ("ioctl");
exit(1);

}

printf ("waiting for signals...\n");
while (! quit)

pause();

printf ("\nhandled %d interrupts\n", nr_interrupts);
close(fd);
exit(0);

}

デバイス・ドライバ

14-11

カーネル・レベル・デバイス・ドライバの開発14

後に続くセクションで、カーネル・レベル・デバイス・ドライバの記述とテストに影響する

RedHawk Linuxオペレーティング・システムの詳細について説明します。

ドライバ・モジュールの構築14

既存のRedHawkカーネルまたはカスタム・カーネルのどちらかで使用するドライバ・モジュ

ールの構築に関する説明は、11章の「カスタム・カーネルの構成および構築」で提供されま

す。

カーネルの仮想アドレス空間14

カーネル・サポート・ルーチンvmalloc()とioremap()の動的マッピングが引き当てたカーネ

ル仮想アドレス空間の量が、デバイスの要求に対応するには十分ではない時にいくつかのケ

ースが存在します。32bitカーネルののデフォルト値128MBは、ioremapされることになると

ても大きなオンボード・メモリを持つI/Oボードを除く全てのシステムに対しては十分です。

一例は、128MBメモリが搭載されるiHawkシステムにインストールされたVMICのリフレクテ

ィブ・メモリ・ボードです。

128MBの予約カーネル仮想アドレス空間が十分ではない時、この値はブート時に指定される

カーネル・ブート・パラメータ(vmalloc=)を使うことにより増やすことが可能となります。こ

のオプションに関する詳細な情報は、付録-H「RedHawkの起動コマンド・ライン・パラメー

タ」を参照して下さい。

リアルタイム性能の問題14

カーネル・レベル・デバイス・ドライバはカーネル・モードで実行され、カーネル自身の拡

張です。従ってデバイス・ドライバは、リアルタイム性能に影響を与える可能性のあるカー

ネル・コードと同様にシステムのリアルタイム性能に影響を及ぼす能力を持っています。後

に続くセクションで、デバイス・ドライバとリアルタイムに関連するいくつかの問題のハイ

レベルな概要を提供します。

Linuxで利用可能な多くのオープン・ソース・デバイス・ドライバが存在する一方、それらの

ドライバは、特にリアルタイム・システムに対する適合性に関しては広範囲にわたる品質が

存在することに注意する必要があります。

割り込みルーチン14

割り込みルーチンは高優先度タスクを実行するためにプリエンプトできないため、割り込み

ルーチンの継続時間はリアルタイム・システムではとても重要です。非常に長い割り込みル

ーチンは割り込みが割り当てられているCPU上で実行しているプロセス・ディスパッチ・レ

イテンシーに直接影響を与えます。用語「プロセス・ディスパッチ・レイテンシー」は、割

り込みにより示される外部イベントの発生から、外部イベントを待っているプロセスがユー

ザー・モードで最初の命令を実行するまでの経過時間を意味します。割り込みがプロセス・

ディスパッチ・レイテンシーに影響を与える方法の詳細については、「リアルタイム性能」

章を参照して下さい。

RedHawk Linux User’s Guide

14-12

もしリアルタイム製品環境でデバイス・ドライバを使用している場合は、割り込みレベルで

実行される仕事量を最小限に抑える必要があります。RedHawk Linuxは、割り込みレベルで実

行される必要のない処理を遅らせるためのいくつかの異なるメカニズムをサポートしていま

す。これらのメカニズムは、プログラム・レベルでカーネル・デーモンのコンテキストで実

行される処理をトリガーすることを割り込みルーチンに認めます。これらのカーネル・デー

モンの優先度は変更可能であるため、延期される割り込み処理よりも高い優先度レベルで高

優先度リアルタイム・プロセスを実行することが可能です。これはリアルタイム・プロセス

が、通常割り込みレベルで実行される可能性のあるいくつかの活動よりも高い優先度になる

ことを許可します。このメカニズムを使用することで、リアルタイム・タスクの実行は延期

された割り込み動作により遅延することはありません。割り込みの遅延に関する詳細につい

ては「割り込み機能の遅延(ボトム・ハーフ)」セクションを参照して下さい。

通常、デバイスの割り込みルーチンは、以下のタイプのタスクを実行するためにデバイスと

相互作用することが可能です。

• 割り込みに応答
• その後ユーザーへ転送するためデバイスから受信したデータを保存
• 前の操作の完了を待っているデバイス操作を開始

デバイスの割り込みルーチンは以下のタイプのタスクを実行してはいけません。

• ある内部バッファから他へデータをコピー
• デバイスへバッファを割り当てまたは補充
• デバイスに使用されているほかのリソースを補充

これらのタイプのタスクは、遅延割り込みメカニズムの1つを介してプログラム・レベルで実

行する必要があります。例えば、デバイスのためのバッファをプログラム・レベルで割り当

てて、ドライバへの内部フリー・リスト上に保持されるようにデバイス・ドライバを設計す

ることが可能です。プロセスが読み書き操作を実行する時、利用可能なバッファの数が入っ

てくる割り込みトラフィックに対して十分であるかどうかを判断するためにドライバはフリ

ー・リストをチェックします。割り込みルーチンは、実行時間の面ではとても高くつくカー

ネル・バッファ・割り当てルーチンの呼び出しをこのようにして回避することが可能です。

デバイスがリソースを使い果たして割り込みレベルでこれを通知するだけである場合、新し

いリソースは割り込みレベルではなく遅延割り込みルーチンの一部として割り当てられる必

要があります。

割り込み機能の遅延(ボトム・ハーフ) 14

Linuxは機能の実行を遅らせることが可能ないくつかのメソッドをサポートしています。直接

機能を呼び出す代わり、その後に機能が呼び出されるように「トリガー」が設定されます。

ボトム・ハーフと呼ばれるこれらのメカニズムは、割り込みレベルで行われた処理を遅延す

るためにLinux下の割り込みルーチンによって使用されます。割り込みレベルからこの処理を

削除することにより、システムは上述されているようにより良い割り込み応答時間を実現す

ることが可能となります。

割り込みを遅延するためにソフトIRQ、タスクレット、ワーク・キューの3つの選択が存在し

ます。タスクレットはソフトIRQ上に構築されており、従ってそれらの動作はよく似ていま

す。ワーク・キューは異なった動作でカーネル・スレッド上に構築されます。ボトム・ハー

フを使用する上での判断は重要です。表14-1は、以降のセクションで詳細に説明されているタ

イプの要約です。

デバイス・ドライバ

14-13

表14-1 ボトム・ハーフのタイプ

ボトム・ハーフ・タイプ コンテキスト シリアル化

ソフトIRQ 割り込み なし

タスクレット 割り込み 同じタスクレットに対して

ワーク・キュー プロセス なし(プロセス・コンテキストとし

てスケジュール)

ソフトIRQとタスクレット14

割り込み処理を遅延するための2つのメカニズムは、遅延されるコードが再入可能である必要

があるかどうかについては異なる要件があります。これらの遅延機能のタイプはソフトIRQと

タスクレットです。ソフトIRQの単一インスタンスは同時に複数のCPU上で実行可能であるた

め、「ソフトIRQ」は完全に再入可能である必要があります。「タスクレット」はソフトIRQ
の特殊なタイプとして実装されます。この違いは特定のタスクレット機能は常にそれ自身に

対してシリアライズ(順番に並べられる)されるということです。言い換えると、2つのCPUは

同時に同じタスクレットを決して実行しません。タスクレット内のコードはそれ自身に対し

て再入可能である必要がないため、この特性はデバイス・ドライバにおいてよりシンプルな

コーディング・スタイルを可能にします。

標準Linuxにおいて、ソフトIRQとタスクレットは通常、割り込みからプログラム・レベルへ

の割り込みハンドラ移行の直後に割り込みコンテキストから実行されます。時折、標準Linux
はカーネル・デーモンにソフトIRQとタスクレットを譲ります。両方のメソッドは割り込みを

有効にして実行することをソフトIRQとタスクレットに許可しますが、これらは通常割り込み

コンテキストから実行されるため、ソフトIRQとタスクレットはsleepできません。

RedHawkは、ソフトIRQとタスクレットがカーネル・デーモンのコンテキスト内で実行される

ことを保証するオプション(デフォルトでON)により機能強化されました。これらのカーネ

ル・デーモンの優先度とスケジューリングのポリシーはカーネル構成パラメータを介して設

定することが可能です。これは、高優先度リアルタイム・タスクが遅延された割り込み機能

の動作をプリエンプトすることが可能になるように構成することをシステムに許可します。

ソフトIRQとタスクレットはksoftirqdデーモンにより両方実行されます。これは論理CPU毎

に1つのksoftirqdデーモンが存在します。ソフトIRQまたはタスクレットはこの実行をトリガ

ーにしたCPU上で実行されます。従って、もしハード割り込みが特定のCPUへのアフィニテ

ィ・セットを持っている場合、対応するソフトIRQまたはタスクレットはそのCPU上でも実行

されます。

ksoftirqdのスケジューリング優先度は、grub行のブート・オプション「softirq.pri=」を使って

変更することが可能です。リアルタイム・システムでは、デフォルトの優先度は高い値が設

定されており変更すべきではありません。これはリアルタイムに最適化されたシステムでは

デーモンは全てのsoftirq処理を実行するためです。非リアルタイムのシステムではそうではな

くデフォルトでゼロが設定されています。

ワーク・キュー14

「ワーク・キュー」はもう1つの遅延実行メカニズムです。ソフトIRQとタスクレットとは異

なり、標準Linuxは常にカーネル・デーモンのプロセス・コンテキスト内でワーク・キューが

処理される結果、ワーク・キュー内のコードはsleepが許可されています。

ワーク・キューを処理するカーネル・デーモンはワーカー・スレッドと呼ばれます。ワーカ

ー・スレッドは常に単一CPUへバインドされた各スレッドとCPU毎に一組のスレッドとして

作成されます。ワーク・キュー上の仕事はCPU毎に保持され、そのCPU上のワーカー・スレ

ッドとして処理されます。

RedHawk Linux User’s Guide

14-14

カーネルはデフォルトでドライバを使用する可能性のあるワーク・キューを提供します。デ

フォルトでワーク・キューを処理するワーカー・スレッドはevents/cpu と呼ばれ、cpu はス

レッドがバインドされているCPUです。

任意にドライバはプライベート・ワーク・キューとワーカー・スレッドを作成する可能性が

あります。これはキューイングされた仕事がプロセッサ負荷が高いまたはパフォーマンスが

重要である場合、ドライバに有利となります。これはデフォルト・ワーカー・スレッドの負

荷も軽減し、デフォルト・ワーク・キューの他の仕事がなくなるのを防ぎます。

ワーカー・スレッドは、ワーク・キュー上に仕事がセットされた時にCPU上で実行します。

従って、ハード割り込みが特定CPUへのアフィニティ・セットを持ち、割り込みハンドラが

仕事をキューイングした場合、対応するワーカー・スレッドもそのCPU上で実行されます。

通常のワーカー・スレッドはナイス値0で作成され、高優先度ワーカー・スレッドはナイス値-
20で作成されますが、その優先度はrun(1)コマンドで変更することが可能です。

優先度の理解14

リアルタイム・プロセスが遅延割り込みデーモンよりも高い優先度で実行することが可能な

システムを構成する時、それらのリアルタイム・プロセスがデーモンより提供されるサービ

スに依存するかどうかを理解することが重要です。もし高優先度リアルタイム・タスクが遅

延割り込みデーモンよりも高いレベルでCPUにバインドされた場合、CPU実行時間を受信し

ないようにデーモンを空にすることが可能です。もしリアルタイム・プロセスも遅延割り込

みデーモンに依存する場合、デッドロックが生じる可能性があります。

マルチ・スレッディングの問題14

RedHawk Linuxは単独のシステムで複数CPUをサポートするために構築されています。これ

は、全てのカーネル・コードとデバイス・ドライバがそれらのデータ構造体を1つ以上のCPU
で同時に変更されることから保護するために記述されている必要があることを意味します。

データ構造体への全ての変更がシリアル化されるようにマルチ・スレッド・デバイス・ドラ

イバの処理はそれらのデータへのアクセスの保護を必要とします。一般的にLinuxではこれら

の種類のデータ構造体アクセスを保護するためにスピン・ロックを使用することにより実現

されます。

スピン・ロックをロックすることは、プリエンプションおよび/または割り込みが無効になる

原因となります。どちらのケースでも、これらの機能が無効であるCPU上で実行中のプロセ

スにとってプロセス・ディスパッチ・レイテンシーの最悪のケースは、どれくらいそれが無

効であるかによって直接影響を受けます。それは、プリエンプションおよび/または割り込み

が無効である時間に影響するスピン・ロックが保持される時間を最小化するためにデバイ

ス・ドライバを記述する時に重要となります。スピン・ロックをロックすることは暗黙のう

ちにプリエンプションまたは割り込みが(スピン・ロック・インターフェースの使用に応じて)
無効になる原因となることを覚えてください。このトピックに関する詳細については「リア

ルタイム性能」章を参照して下さい。

ユーザー空間I/Oドライバ(UIO) 14

UIOはユーザー・レベル・ドライバを記述するために標準化されたメソッドです。これはやは

り小さなドライバ単位のカーネル・モジュールを必要としますが、ドライバの主要部分は使

い慣れたツールやライブラリを使用してユーザー空間で記述します。

UIOを使用すると、標準的なPCIカードの取り込みや任意の目的のために簡単なユーザー空間

ドライバを作ることが可能となります。これらのドライバは実装やテストが容易でありカー

ネルのバージョン変更から分離されています。そのドライバのバグはカーネルをクラッシュ

することはなく、ドライバのアップデートはカーネルの再コンパイルなしに行うことが可能

です。

デバイス・ドライバ

14-15

現在、UIOドライバはキャラクタ・デバイス・ドライバだけに使用することが可能でユーザー

空間からDMA操作を提供するために使用することは出来ません。

小さなドライバ単位のカーネル・モジュールは次が必要となります：

• ボードのデバイスIDとベンダーIDが一致
• 低レベルでの初期化を実行
• 割り込みの応答

一旦所有ハードウェア用に動作するカーネル・モジュールを所有してしまえば、ユーザー･ア

プリケーションを記述するために通常使用されるツールやライブラリを使用してユーザー空

間ドライバを記述することが可能となります。lsuio(1)ツールはUIOデバイスとその属性をリ

ストアップするために使用することが可能です。

各UIOデバイスはデバイス・ファイル/dev/uio0, /dev/uio1などを介してアクセスします。変

数の読み書きをするために使用されるドライバの属性は、/sys/class/uio/uioX ディレクトリ

の下にあります。メモリ領域はmmap(1)を介してサクセスされます。

UIOデバイス・ドライバを記述するための完全な説明書は本章では扱いませんが、ヘルプは

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.htmlで見ることが可能です。

Concurrent Real-TimeのRCIMボードとPMC-16AIOボード両方のためのUIOカーネルとユーザ

ー・ドライバの例は、/usr/share/doc/ccur/examples/driver/uioで提供されています。両方

ともドライバがどのような機能を実行するかを説明するコメントを含みます。

RedHawkは、カーネル構成GUIの「Userspace I/O」項目にあるUIOカーネル・チューニン

グ・パラメータを通してプレビルトカーネルの中でデフォルトでUIOサポートが有効となって

います。

性能の解析14

Concurrent Real-Timeが提供するグラフィカル解析ツールのNightTrace RTは、アプリケーショ

ンやカーネル内の重要なイベントに関する情報をグラフィカルに表示することが可能で、そ

してアプリケーションの動作でパターンや例外を特定するために使用することが可能です。

変化する状況下でコードを対話的に分析するための能力は、デバイス・ドライバのリアルタ

イム性能をチューニングするために非常に有益です。

ユーザー・レベル・コードのトレース・ポイントの提供、トレース・データのキャプチャ

ー、結果表示の処理は「NightTrace RT User’s Guide (文書番号：0890398)」の中で全て説明さ

れています。ユーザー/カーネルのトレース・イベントは、解析するために記録および表示す

ることが可能です。

カーネル・トレースは、トレース・カーネルおよびデバッグ・カーネルの中に含まれている

事前に定義されたカーネル・トレース・イベントを利用します。ユーザー定義イベントは事

前に定義されたCUSTOMトレース・イベントを使用して記録する、または動的に作成するこ

とが可能です。全ては解析のためにNightTrace RTにより表示されます。カーネルのトレー

ス・イベントに関する詳細についてはNightTraceの資料を参照して下さい。

https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html

RedHawk Linux User’s Guide

14-16

15-1

15
PCI-to-VMEサポート

本章では、RedHawk LinuxがサポートするPCI-to-VMEバス・ブリッジについて説明します。

NOTE

PCI-to-VMEバス・ブリッジはARM64アーキテクチャではサポートさ

れていません。

概要15

PCI-to-VMEバス・アダプターは、PCIベースのiHawkシステムとVMEバス・システムを接続す

るために使用することが可能です。これは、あたかもiHawkのPCIバックプレーンに直接装着

されたかのように全VMEメモリ空間への透過的なアクセス、VMEカードへの割り込みレベル

での制御や応答を可能にします。

RedHawk Linuxは、SBS Technologies社のPCI-to-VMEバス・アダプター Model 618-3と620-3の
サポートを含みます。このアダプターを使用することで、メモリが2つのシステム間で共有さ

れます。メモリ・マッピングとダイレクト・メモリ・アクセス(Direct Memory Access : DMA)
の2つのメソッドが利用されています。メモリ・マッピングはどちらのシステムからの双方向

ランダム・アクセス・バス・マスタリングをサポートします。これはVMEバスRAM、デュア

ルポート・メモリ、VMEバスI/OへのプログラムI/Oアクセスを可能にします。各システム上

のバス・マスターは、それぞれのアドレス空間内のウィンドウから他のシステムのメモリに

アクセスすることが可能です。マッピング・レジスタは、PCIデバイスが最大32MBのVMEバ
スのアドレス空間へのアクセス、VMEバス・デバイスが最大16MBのPCI空間へのアクセスを

可能にします。

コントローラ・モードDMAとスレーブ・モード・DMAの2つのDMA技術がサポートされてい

ます。コントローラ・モードDMAは、あるシステムのメモリから直接他のシステムのメモリ

への高速データ転送を提供します。データ転送はどちらのプロセッサでも最大35MB/秒および

最大16MB/転送の速度により両方向で開始することが可能です。

自身のDMAコントローラを持つVMEバス・デバイスは、コントローラ・モードDMAの代わ

りにスレーブ・モードDMAを使用することが可能です。これはVMEバス・デバイスが15MB/
秒を越えるデータ転送速度で直接PCIメモリへデータ転送することを可能にします。

アダプターは、PCIアダプター・カード、VMEバス・アダプター・カード、光ファイバー・ケ

ーブルの3つのパーツで構成されます。

PCIアダプター・カードはブート時に自分自身で構成します。A32メモリとI/Oアクセスに対応

および生成し、D32, D16, D8のデータ幅をサポートします。

VMEバス・アダプター・カードはジャンパーを介して構成されます。VMEバス・アダプタ

ー･カードはA32, A24, A16アクセスに対応および生成し、D32, D16, D8のデータ幅をサポート

します。

アダプターをサポートするソフトウェアは、RedHawk Linux下で実行および最適化のために改

良されたSBS Linuxモデル 1003 PCIアダプター・サポート・ソフトウェアVer.2.2を含みます。

RedHawk Linux User’s Guide

15-2

このソフトウェアはデュアル・ポートおよび/またはアプリケーションからリモート・メモリ

空間をアクセスすることが可能なデバイス・ドライバ、アダプターおよびシステム構成と共

にアプリケーション・プログラマーに役立つプログラム例を含みます。

文書15

本章ではRedHawk下で本サポートを構成および使用するために必要な情報を提供します。

本章の範囲を超える情報については、RedHawk Linuxの文書に含まれている以下の文書を参照

して下さい：

• SBS Technologies Model 618-3, 618-9U & 620-3 Adapters Hardware Manual

(sbs_hardware.pdf)

• SBS Technologies 946 Solaris, 965 IRIX 6.5, 983 Windows NT/2000, 993 VxWorks & 1003 Linux
Support Software Manual (sbs_software.pdf)

ハードウェアのインストール15

アダプターは、PCIアダプター・カード、VMEバス・アダプター・カード、光ファイバー・ケ

ーブルの3つのパーツで構成されます。それらをインストールするための手順を以下のとおり

です。

通常、ハードウェアの取り付けと構成はConcurrent Real-Time社により行われます。この情報

は、PCI-to-VMEブリッジが製造後のシステムへ追加されるような状況のために提供されま

す。

開梱15

輸送箱から装置を開梱するとき、内容明細書を参照し全てのアイテムがあることを確認して

下さい。梱包材料は装置の保管および再出荷のために残しておいて下さい。

NOTE

もし輸送箱が受領時に破損している場合、開梱および装置の検品中は

運送業者が立ち会うよう要請して下さい。

システムにカードを取り付けようとする前に以下を読んでください：

PCI-to-VME サポート

15-3

CAUTION

静電気の放電が回路に損害を与える可能性があるため、集積回路面に

触れることは避けて下さい。

プリント基板を取り付けおよび取り外す時は静電気防止のリスト・ス

トラップと導電フォーム・パッドを使用することを強く推奨します。

アダプター・カードの設定15

PCIアダプター・カード上に設定するためのジャンパーはありません。

VMEアダプター・カードのジャンパーの設定は、VMEアダプター・カードを取り付ける前、

またはVMEアダプター・カードのジャンパーにより制御されているVMEバス属性の現在の設

定を変更する必要になった時に行う必要があります。

VMEバス・アダプター・カードの構成に関する情報については、「SBSテクノロジー・ハー

ドウェア・マニュアル」の10章を参照して下さい。以下の追加情報は役に立つかもしれませ

ん：

• このVMEアダプター・カードがスロット1でシステム・コントローラとして、または他の

VME
スロットで非システム・コントローラとして使用されているのかどうかに基づき、シス

テムのジャンパーは適切に設定される必要があります。

•

VMEバス上のデバイスにVMEスレーブ・ウィンドウを通してiHawkシステムのメモリへ

アクセスさせるbt_bind()バッファ・サポートもしくはローカル・メモリ・デバイス・サポ

ート(BT_DEV_LM)を使用するために、リモートREM-RAM HIおよびLOジャンパーは

VMEバス上のVMEバス・ベース・アドレスとVMEスレーブ・ウィンドウ出力の範囲を知

らせるために設定する必要があります。

ベース・アドレスは16MB境界に置く必要があり、そしてこの領域のサイズはSBSハード

ウェア(例えば、0xC0000000から0xC1000000の範囲のA32アドレスを設定するためジャン

パーを以下の設定に構成する必要があります)でサポートされている領域の総量を利用す

るために一般的には16MB(を超えないサイズ)に設定される必要があります。

A32アドレス範囲を設定するため、REM-RAMの下部のジャンパーは次のように設定する

必要があります：

A32ジャンパー：IN
A24ジャンパー：OUT

開始アドレス0xC0000000を指定するため、LOアドレスREMRAMジャンパーの列は次の

ように設定する必要があります：

31, 30ジャンパー：OUT
他全てのLOジャンパー：IN (16-29)

終了アドレス0xC1000000を指定するため、HIアドレスREMRAMジャンパーの列は次のよ

うに設定する必要があります：

31, 30, 24ジャンパー：OUT
他全てのHIジャンパー：IN (29-25, 23-16)

RedHawk Linux User’s Guide

15-4

PCIアダプター・カードのインストール15

お手持ちのiHawkシステムにPCIアダプターを取り付けるために以下の手順を使用して下さ

い：

1. iHawkシステムがパワー・ダウンされていることを確認して下さい。
2. バス・マスターをサポートする筐体内の空いているPCIカード・スロットを確認しま

す。
3. 筐体背面のケーブル出口を覆う金属板を取り外します。
4. コネクタにPCIアダプター・カードを差し込みます。
5. アダプター・カードを取り付けねじで所定の位置に固定します。
6. カバーを元の位置に戻します。

VMEバス・アダプター・カードのインストール15

NOTE

VMEバス・バックプレーンはデイジー・チェーン、バス・グラン

ト、未使用カード一周辺の割り込みACK信号を接続するためのジャン

パーを持っています。これらのジャンパーはアダプター・カードが差

し込まれるスロットから取り外されていることを確認して下さい。

1. VMEバス筐体がパワー・ダウンされていることを確認して下さい。
2. VMEバス・アダプター・カードがシステム・コントローラかどうかを決定します。もし

VMEバス・アダプター・カードがシステム・コントローラの場合、スロット1へ差し込

む必要があります。

もしアダプター・カードがシステム・コントローラではない場合、そのアダプター用に

VMEバス・カード・ケージで未使用の6Uスロットを決めて下さい。

3. 選択したスロットのコネクタへカードを差し込みます。

アダプター・ケーブルの接続15

NOTE

光ファイバー・ケーブルの端はきれいな状態にしておいて下さい。塵

や埃のような小さな汚染物質を取り除くためにアルコール・ベースの

光ファイバ・ワイプを使用して下さい。

光ファイバー・ケーブルはガラスで作られていますので、半径2イン

チ以下のループに潰すまたは曲げた場合はそれらは破損する可能性が

あります。

1. iHawkコンピューター・システムとVMEバス筐体がパワーOFFであることを確認して下

さい。
2. 光ファイバー・トランシーバのゴム製ブーツ、同様に光ファイバー・ケーブルのそれも

取り外します。ケーブルが使用されていない時はそれらのブーツを確実に元に戻して下

さい。

PCI-to-VME サポート

15-5

3. 光ファイバー・ケーブルの一端をPCIアダプター・カードのトランシーバへ接続しま

す。
4. 光ファイバー・ケーブルのもう片方をVMEバス・アダプター・カードのトランシーバへ

接続します。
5. PCIとVMEバス・システムの両方の電源を入れて下さい。
6. 両アダプター・カードのREADYのLEDが点灯していることを確認して下さい。アダプタ

ーを操作するためにON である必要があります。

ソフトウェアのインストール15

ソフトウェアはRedHawk Linuxと一緒に納品されるオプションのプロダクトCDに収納されて

います。これはinstall-sbsvmeインストール・スクリプトを使いインストールします。

ソフトウェアをインストールするため、以下の手順を実行します：

1. RedHawkバージョン2.1以降が動作しているiHawkシステム上に、ルートでログインし、

シングル・ユーザー・モードへシステムをダウンして下さい：

a. デスクトップ上で右クリックし、「New Terminal」を選択します。
b. システム・プロンプトで「init 1」と入力します。

2. “RedHawk Linux PCI-to-VME Bridge Software Library”というラベルのディスクを見つ

け、CD-ROMドライブへ挿入します。

3. CDROMデバイスをマウントするため、以下のコマンドを実行します：

NOTE: 以下の例では/media/cdromが使用されています。お手持ちのシステムに取り付

けられたドライブの型式に応じて、実際のマウント・ポイントは異なる可能性がありま

す。正しいマウント・ポイントについては/etc/fstabを確認して下さい。

mount /media/cdrom

4. インストールするため、以下のコマンドを実行して下さい：

cd /media/cdrom
./install-sbsvme

インストール・スクリプトが完了するまで画面上の指示に従ってください。

5. インストールが完了したら、以下のコマンドを実行して下さい：

cd /
umount /media/cdrom
eject

6. CD-ROMドライブからディスクを取り出し、保管して下さい。シングル・ユーザー・モ

ードを抜けます(Ctrl-D)。

RedHawk Linux User’s Guide

15-6

構成15

後述のセクションでRedHawk Linux下のモジュール構成およびシステム初期化時に確立される

可能性のある他の属性について説明します。

btpモジュール15

事前に定義されたRedHawkカーネルは、デフォルトのモジュールとして構成されたSBSテクノ

ロジーのPCI-to-VMEバス・ブリッジを持っています。もし望むのであれば、カーネル構成

GUI上の「Device Drivers -> SBS VMEbus-to-PCI Support」項目においてSBSVMEオプション

を通してこれを無効にすることが可能です。このモジュールは“btp”と呼ばれています。

デバイス・ファイルおよびモジュール・パラメータ仕様15

/dev/btp*デバイス・ファイルは、/etc/init.d/sbsvmeを介して初期化時に作成されます。これ

らのファイルの属性は、/etc/sysconfig/sbsvmeの中で定義されています。更に、以下のモジ

ュール・パラメータの仕様はこのファイルで作ることが可能です。既定値ではパラメータは

ありません。

btp_major=num
メジャー・デバイス番号(num)を指定します。デフォルトは、カー

ネルが選択することが可能な0(ゼロ)となります。もしゼロ以外の

デバイス番号を提供する場合、それは既に使用中であってはいけま

せん。/proc/devicesファイルは、どのデバイスが現在使用されて

いるかを判断するために調べることが可能です。

icbr_q_size=size

割り込みキューに割り当てられるICBRエントリの数(size)を指定し

ます。一旦設定すると、この値はbtpドライバのアンロードおよび

リロードなしに変更することは出来ません。既定値は割り込みキュ

ー空間から1KBです。

lm_size=size1, size2, ...

システムに存在する各SBS PCI-to-VMEコントローラ(unit)に対しロ

ーカル・メモリ(BT_DEV_LM)・サイズの配列をバイトで指定しま

す。もしこの値に0(ゼロ)が設定された場合、ローカル・メモリは

それを指定したユニットだけ無効にされます。既定値はローカル・

メモリから64KBで最大値が4MBとなります。詳細については本章

の「ローカル・メモリ」セクションを参照して下さい。
trace=flag_bits

デバイス・ドライバのトレース・レベルを指定します。これはどの

トレース・メッセージをbtpドライバが表示するかを制御するため

に使用されます。使用可能なビットは/usr/include/btp/btngpci.h
にあるBT_TRC_xxxの値です。トレースは性能に影響を及ぼすた

め、この機能はbtpドライバの問題をデバッグするためだけに使用

すべきです。

PCI-to-VME サポート

15-7

既定値はトレース・メッセージなしの0(ゼロ)です。

以下はbtpモジュール・パラメータ仕様の例です：

BTP_MOD_PARAMS=’bt_major=200 trace=0xff lm_size=0’
BTP_MOD_PARAMS=’icbr_q_size=0x1000 lm_size=0x8000,0x4000’

VMEバス・マッピング15

PCI-to-VMEバス・マッピングの自動的な作成および削除のサポートは/etc/init.d/sbsvme初期

化スクリプトに含まれています。マッピングが/etc/sysconfig/sbsvme-mappingsに定義され

ている場合、“/etc/init.d/sbsvme start”の処理中に作成され、“stop”の処理中に削除されます。

/etc/sysconfig/sbsvme-mappingsファイルはVMEバス・マッピング作成のためのヘルプ情

報とコマンド出力テンプレートを含みます。必要であれば、テンプレートの例はカスタマイ

ズされたVMEバス・マッピングを作成するために使用することが可能です。sbsvme-
mappingsファイル内のコメントおよび本章で後述する「/procファイル・システム・インター

フェース」セクションで説明されている/proc/driver/btp/unit/vme-mappingsファイルに書き

込まれている値により、マッピングは作成されます。

システム初期化中にPCI-to-VMEバス・マッピングを作成するためにsbsvme-mappingsファ

イルを使用することで、VMEバス空間へバインドするグローバル・ビジブル共有メモリ領域

を作成するshmconfig(1)を呼び出すために/etc/rc.d/rc.localスクリプトへ追加の行をセット

することが可能です。これを説明するサンプル・スクリプトが提供されています。詳細につ

いては「アプリケーション例」セクションを参照して下さい。

ユーザー・インターフェース15

標準サポートソフトウェアへのいくつかの修正がRedHawk Linux用に行われました。インスト

ールの変更に加え、以下が追加されました。

• 複数の様々なサイズのバッファのバインドをサポート。複数のユーザー・レベル・ドラ

イバを持つシステムで、この機能は各ドライバが複数のデバイス間で共通のバインド・

バッファを共有する代わりにそれぞれのバインド・バッファを割り当てることを可能に

します。この機能は複数の大きなバインド・バッファ(ハードウェアでサポートされてい

るVMEバス・スレーブ・ウィンドウ空間から合計16MBの領域)を割り当てることにより

利用できることも意味します。詳細については「バインド・バッファの実装」セクショ

ンを参照して下さい。プログラム例は、VMEバス空間へ複数のバッファの割り当ておよ

びバインドする手順が追加されています(「アプリケーション例」セクションを参照して

下さい)。

• 特定のプロセスと結びついていないVMEバス空間マッピングの作成と削除、および共有

メモリのバインドを許可するためにそのマッピングのPCIバス・アドレス開始位置の取得

をサポート。これは次の2つのいずれかで達成することが可能です：

- bt_hw_map_vme/bt_hw_unmap_vmeライブラリ関数の使用
- /proc/driver/btpファイルシステムへの書き込み

RedHawk Linux User’s Guide

15-8

詳細については「VMEバス空間へのマッピングおよびバインド」セクションを参照して

下さい。プログラム例は、両方の方法を使いVMEバス・マッピングの作成、表示、削除

の手順を示しています(「アプリケーション例」セクションを参照して下さい)。

API関数15

表15-1はlibbtpライブラリに含まれているAPI関数を記載しています。修正されたもしくは追

加された関数は後に続くセクションで言及および説明されています。残りの関数はRedHawk
Linuxの文書に含まれているSBSテクノロジー・ソフトウェアのマニュアルに記載されていま

す。

表15-1 PCI-to-VMEライブラリ関数

関数 概要
bt_str2dev
bt_gen_name
bp_open
bt_close
bt_chkerr
bt_clrerr
bt_perror
bt_strerror
bt_init Initialize
bt_read
bt_write
bt_get_info
bt_set_info
bt_icbr_install
bt_icbr_remove
bt_lock
bt_unlock
bt_mmap
bt_unmmap
bt_dev2str
bt_ctrl
bt_bind
bt_unbind
(次ページに続きます)

文字列から論理デバイスへ変換
デバイス名を生成
アクセス用に論理デバイスをオープン
論理デバイスをクローズ
ユニット上のエラーをチェック
ユニット上のエラーをクリア
エラー・メッセージをstderrに出力
エラー・メッセージの文字列を作成
ユニットの初期化
論理デバイスからデータの読み取り
論理デバイスへデータの書き込み
デバイスの構成設定を取得 (以下のNote 1を参照)
デバイスの構成設定を設定 (以下のNote 1を参照)
割り込みコール・バック・ルーチンをインストール
割り込みコール・バック・ルーチンを削除
ユニットのロック
以前ロックしたユニットをアンロック
論理デバイスへメモリ・マッピングしたポインタを作成
メモリ・マッピングした場所をアンマップ
論理デバイス・タイプを文字列へ変換
ドライバI/O制御関数を直接呼出し
アプリケーション提供バッファをバインド(以下のNote 1を参照)
バインドしたバッファをアンバインド (以下のNote 1を参照)

Note:
1. 複数の様々なサイズのバッファはこれらの関数を通してサポートされています：「バイ

ンド・バッファの実装」セクションを参照して下さい。
2. このPCI-to-VME のマッピング/バインドのサポートはユニークです：本章の「VMEバ

ス空間へのマッピングおよびバインド」セクションを参照して下さい。

PCI-to-VME サポート

15-9

表15-1 PCI-to-VMEライブラリ関数(続き)

関数 概要
bt_reg2str
bt_cas
bt_tas
bt_get_io
bt_put_io
bt_or_io
bt_reset
bt_send_irq
bt_status
bt_hw_map_vme
bt_hw_unmap_vme

レジスタを文字列へ変換
アトミック処理の比較とスワップ
アトミック処理のテストおよび設定
アダプターのCSRレジスタの読み取り
アダプターのCSRレジスタの書き込み
レジスタへ1回書き込み
リモートでVMEバスをリセット
離れたVMEバスに割り込みを送信
デバイスのステータスを返す
PCI-to-VMEバス・マッピングの作成 (以下のNote 2を参照)
PCI-to-VMEバス・マッピングを削除 (以下のNote 2を参照)

Note:
1. 複数の様々なサイズのバッファはこれらの関数を通してサポートされています：「バイ

ンド・バッファの実装」セクションを参照して下さい。
2. このPCI-to-VME のマッピング/バインドのサポートはユニークです：本章の「VMEバ

ス空間へのマッピングおよびバインド」セクションを参照して下さい。

バインド・バッファの実装15

RedHawk sbsvmeのバインド・バッファのサポートは、VMEバス空間に同時に複数、サイズが

異なるカーネルのバインド・バッファを割り当てるため、bt_mmap()およびbt_bind()を許可し

ます。このセクションでは、SBSテクノロジー・ソフトウェア・マニュアルのバインド・バッ

ファに関する資料とはサポートがどのように異なるかを含め、このバインド・バッファのサ

ポートに関する情報を提供します。

SBSの資料とRedHawkバインド・バッファの実装との間で唯一ユーザー・インターフェースが

異なるのは、後述されているbt_set_info() BT_INFO_KFREE_BUF呼び出しにおける‘value’パラ

メータの使い方であることに注意して下さい。他のユーザー・インターフェース全てはSBSテ
クノロジー・ソフトウェア・マニュアルで示すのと同じとなります。

bt_get_info BT_INFO_KMALLOC_BUF15

概要

bt_error_t bt_get_info(bt_desc_t btd, BT_INFO_KMALLOC_BUF,
bt_devdata_t *value_p)

複数のbt_get_info() BT_INFO_KMALLOC_BUFコマンドの呼び出しは、それぞれが返すバッフ

ァのアドレス、value_pパラメータの位置に格納されている複数のカーネル・バッファを割り

当てることが可能となり、VMEバスへそのバッファをマッピングおよびバインドするために

その後bt_mmap()やbt_bind()の呼び出しを使用することが可能になります。

BT_INFO_KMALLOC_BUF呼び出しは、最後に成功したbt_set_info()
BT_INFO_KMALLOC_SIZ呼び出しで設定した最後の値と等しいサイズのカーネル・バイン

ド・バッファを割り当てます。

RedHawk Linux User’s Guide

15-10

(もしBT_INFO_KMALLOC_BUF呼び出しがされた時にそのような呼び出しがされなかった場

合、64KBのデフォルト・サイズが使用されます。)

最大BT_KMALLOC_NBUFS (16)のカーネル・バッファは、BT_INFO_KMALLOC_BUFコマン

ドの呼び出しにより同時に割り当てることが可能です。もしこれらが既に16個のバインド・

バッファを割り当てられていた場合、このBT_INFO_KMALLOC_BUF呼び出しは失敗して

BT_EINVALのエラー値を返します。

もしbt_set_info() BT_INFO_KMALLOC_SIZ呼び出しがバインド・バッファのサイズをゼロへ

設定するために使用される場合、新しいバインド・バッファのサイズがbt_set_info()
BT_INFO_KMALLOC_SIZ呼び出しを介して非ゼロの値に設定されるまで、その後に続く

BT_INFO_KMALLOC_BUF呼び出し全てはBT_EINVALのエラー値と共に返されることに注意

して下さい。

もしカーネルが新しいカーネル・バインド・バッファ用に十分な空間を割り当てることが出

来ない場合、このBT_INFO_KMALLOC_BUF呼び出しは失敗し、BT_EINVALのエラー値を返

します。

bt_set_info BT_INFO_KMALLOC_SIZ15

概要

bt_error_t bt_set_info(bt_desc_t btd, BT_INFO_KMALLOC_SIZ,
bt_devdata_t value)

bt_set_info() BT_INFO_KMALLOC_SIZコマンドが新しいバインド・バッファのサイズを設定

するために使用される場合、そのコマンドは将来のbt_get_info() BT_INFO_KMALLOC_BUFコ
マンドの呼び出しに影響を及ぼすだけです。異なるバインド・バッファのサイズで既に割り

当てられたどのカーネル・バインド・バッファも新しいBT_INFO_KMALLOC_SIZにより影響

を受けることはありません。

このようにして、異なるサイズのカーネル・バインド・バッファは1回以上のbt_get_info()
BT_INFO_KMALLOC_BUF呼び出しを行った後、異なるBT_INFO_KMALLOC_SIZ ’value’パラ

メータを使用することによって割り当てることが可能となります。

2のべき乗の’value’ パラメータでバインド・バッファのサイズを使用することを推奨します

が、必須ではありません。カーネル・バインド・バッファ割り当ては2のべき乗に切り上げる

ため、2のべき乗の’value’パラメータ値の指定および使用は割り当てられたカーネル・バイン

ド・バッファの使用されていない領域を排除します。カーネル・バインド・バッファのサイ

ズの初期既定値は64KBです。

通常、bt_get_info() BT_INFO_KMALLOC_BUF呼び出しで割り当てに成功することが可能なカ

ーネル・バインド・バッファの最大サイズは4MBです。しかしながら、システムの物理メモ

リ量およびシステム・メモリの使用状況に依存しますので、4MBのカーネル・バインド・バ

ッファを正常に割り当てることが常に可能ではない場合があります。この場合、複数のより

小さなサイズのバインド・バッファを割り当てること、あるいは、システム・メモリを他に

使用してメモリ・リソースを使い果たす前に4MBのカーネル・バインド・バッファを割り当

てることが可能です。

bt_set_info BT_INFO_KFREE_BUF15

概要

bt_error_t bt_set_info(bt_desc_t btd, BT_INFO_KFREE_BUF,
bt_devdata_t value)

PCI-to-VME サポート

15-11

bt_set_info() BT_INFO_KFREE_BUFコマンドのインターフェースは、SBSテクノロジー・マニ

ュアルに記述されていることとRedHawkの下ではわずかに異なります。

具体的には、’value’ パラメータはSBSの実装では使用されませんが、RedHawkの実装では以

下の方法でそのパラメータを使用します：

’value’ パラメータがゼロの場合：

この呼び出しは、現在ユーザー空間からbt_mmap()されていない全ての カーネル・バイ

ンド・バッファをアンバインドおよび解放します。

もしアンバインドよび解放数r事が可能なバインド・バッファが見つからない場合、この

呼び出しは失敗し、呼び出し元へBT_EINVALが返されます。

’value’ パラメータがゼロではない場合：

この呼び出しは特定のカーネル・バインド・バッファを1つだけアンバインドおよび解放

するためのものです。この場合、呼び出し元の’value’パラメータは、以前のbt_get_info()
BT_INFO_KMALLOC_BUF呼び出しで’value_p’パラメータに返されたカーネル・バッファ

のアドレスと同じである必要があります。

もしこの呼び出しの’value’パラメータに指定したバッファのアドレスが有効なカーネル・

バインド・バッファと一致しない場合、この呼び出しは失敗してBT_EINVALのエラー値

を返します。

もしこの呼び出しの’value’パラメータが有効なカーネル・バインド・バッファと一致して

いても現在そのバッファがユーザー空間からbt_mmap()されている場合、この呼び出しは

失敗してBT_EFAILの値が返されます。この場合、この呼び出しが成功する前にそのバッ

ファをまずbt_unmmap()する必要があります。

バインド・バッファの追加情報15

以降のセクションではバインド・バッファのサポートがRedHawkの下で影響を及ぼす更なる

領域について説明します。

bigphysareaパッチ15

SBSテクノロジー・ソフトウェア・マニュアルに明記されているbigphysareaパッチは、

RedHawk sbsvme btpデバイス・ドライバでサポートされていないもしくは必要とされていませ

ん。複数の大きなバインド・バッファを使用することによって、VMEバスからiHawkのメモ

リへアクセスするためにVMEバス・スレーブ・ウィンドウ空間の16MB全てをサポートするこ

とが可能です。

btpモジュールのアンロード15

sbsvme ’btp’カーネル・モジュールは、現在プロセスのアドレス空間にbt_mmap()されたどのカ

ーネル・バインド・バッファも存在する間はアンロードすることが出来ません。カーネル・

ドライバ・モジュールがアンロードされる前にプロセスはまずbt_unmmap()呼び出しにてカー

ネル・バインド・バッファへのマッピングを削除する必要があります。

現在ユーザー空間からbt_mmap()されたバインド・バッファが存在しない場合、btpカーネル・

モジュールは“/etc/init.d/sbsvme stop”コマンドにてアンロードすることが可能で、現在割り当

てられているどのカーネル・バインド・バッファも(現在バインドされている場合は)ハードウ

ェアVMEバス・スレーブ・ウィンドウ空間から暗黙のうちにアンロードされ、将来のカーネ

ル・メモリ割り当てのために解放されます。

RedHawk Linux User’s Guide

15-12

bt_bind rem_addr_pパラメータ15

bt_bind()呼び出しの’rem_addr_p’パラメータは呼び出し元がカーネル・バインド・バッファを

バインドしたい遠隔のVMEバス・スレーブ・ウィンドウ内のオフセットを指定します。この

値はオフセットであり、絶対的なVMEバスの物理アドレスではないことに注意して下さい。

このオフセット値は、SBS VMEアダプター・カード上にあるREM-RAM LOのジャンパー設定

により定義されたVMEバス・アドレスの基点からとなります。

実際の’rem_addr_p’オフセット値を指定、もしくは’rem_addr_p’パラメータに

BT_BIND_NO_CARE値を使用してbtpドライバに適切なバインド・アドレス位置を見つけさせ

ることのどちらでも可能です。この値が使われる場合、bt_bind()呼び出しから正常に戻った時

の’rem_addr_p’メモリ位置はカーネルbtpドライバがバインド・バッファにバインドしたオフセ

ット値を含みます。

例として、もしREM-RAM LOのジャンパー設定が0xC0000000の値に設定されオフセット値が

0x10000の場合、VMEバスからアクセス可能なこのバッファの実際のバインド・アドレスは

0xC0010000となるでしょう。

ローカル・メモリ15

カーネル・バインド・バッファのサポートとは別に、btpドライバもまたローカル・メモリの

コンセプトをサポートします。バインド・バッファ機能のために通常使用される

BT_DEV_A32, BT_DEV_A24, 他のVMEバス・デバイス・タイプの変わりにBT_DEV_LMデバ

イス・タイプの使用を通じてこの機能が利用可能となります。

ローカル・メモリ・バッファは、btpドライバがロードされた時にVMEバス・スレーブ・ウィ

ンドウ領域へ割り当たられバインドされたローカルiHawkメモリから構成されます。このメモ

リの割り当てとバインドはbtpドライバがロードされている限り実施されたままとなります。

もしbtpドライバが“/etc/init.d/sbsvme stop”コマンドによりアンロードされた場合、このローカ

ル・メモリ・バッファはVMEバス空間からアンロードされ、他のカーネルで使用するために

解放されます。

ローカル・メモリ・バッファは、VMEアダプター・カード上のREM-RAM LOジャンパー設定

にて定義されたとおりに常にVMEバス・スレーブ・ウィンドウの底辺領域にバインドしま

す。例えば、もしローカル・メモリのサイズが64KB、REM-RAM LOジャンパー設定が

0xC0000000の値へ設定された場合、ローカル・メモリ・バッファは物理VMEバス・アドレス

の0xC0000000から0xC0000FFFまでのVMEバスへバインドされます。

ローカル・メモリ・バッファは常にVMEバス・リモート・スレーブ・ウィンドウの底辺領域

を占有するため、カーネル・バインド・バッファはローカル・メモリ・サポートが有効の時

はいつでもこの領域へバインドされるとは限らないことに注意して下さい。既定値で、ロー

カル・メモリ・サポートは、(REM-RAM LOジャンパー設定が16MBをカバーする範囲に設定

されていると仮定して)バインド・バッファ用に16 MB - 64 KB のVMEバス・スレーブ・ウィ

ンドウ空間を残して、64KBのローカル・メモリ・バッファ・サイズで有効となっています。

ローカル・メモリ・バッファのサイズは、/etc/sysconfig/sbsvme構成ファイル(本章の「構

成」セクションを参照して下さい)内の’lm_size’パラメータを変更することにより増やすこと

が可能です。サポートされる’lm_size’の値の最大は4MBであることに注意して下さい。もしよ

り大きな値が指定された場合、btpドライバのバッファ割り当ては成功せず、ローカル・メモ

リ機能はbtpドライバのロード時に無効となります。

ローカル・メモリ・サポートは、’lm_size’ btpモジュール・パラメータをゼロへ設定すること

により無効にすることが可能です。ゼロへ設定した場合、btpドライバはローカル・メモリ・

バッファは割り当てず、VMEバス・スレーブ・ウィンドウ領域全体はカーネル・バインド・

バッファを使用するために解放されます。

PCI-to-VME サポート

15-13

ローカル・メモリ・サポートは、バインド・バッファ・サポートととてもよく似ています：

• ローカル・メモリとバインド・バッファの両方が、スレーブ・ウィンドウ領域を通して

VMEバスからアクセスが可能です。

• ローカル・メモリとバインド・バッファの両方のバッファ領域は、bt_read(), bt_write(),

bt_mmap()関数を使用する時に適切なデバイス・タイプを指定することによってアクセス

することが可能となります。

ローカル・メモリとバインド・バッファの各サポートでの主な違いは：

• 1つのローカル・メモリ・バッファ領域だけが存在する可能性があります。このバッファ

はbtpドライバのロード時に設定され、ドライバがアンロードされるまで割り当ておよび

バインドされたままとなります。

対照的に複数の異なるサイズのバインド・バッファは動的に割り当ておよびバインド、

動的にアンバインドおよび解放することが可能です。

• ローカル・メモリ・バッファは常にVMEバス・スレーブ・ウィンドウ領域の底辺を占有

します。

対照的にバインド・バッファのためにユーザーがVMEバス空間へバインドさせる各バイ

ンド・バッファの位置/オフセットのどちらも指定すること、またはカーネルに動的に使

用する次の空いている位置/オフセットを見つけさせることが可能です。

VMEバス空間へのマッピングおよびバインド15

RedHawkは特定のプロセスとは関係なく、マッピングを作成したプロセスが終了した後もそ

のまま残るVMEバス空間マッピングを作成する方法を提供します。このマッピングは単独で

作成および削除することが、bt_hw_map_vmeとbt_hw_unmap_vmeライブラリ機能を通して、

または/procファイル・システム・インターフェースへ書き込むことでどちらも可能となりま

す。

I/O空間の領域へこのセグメントをバインドするためにshmbind(2)またはshmconfig(1)を使

い、アクティブVMEバス空間マッピングに対応する一意のPCIバス開始アドレスを取得および

使用することが可能となります。

この機能は以下のセクションで説明されています。

bt_hw_map_vme15

この関数は新しいPCI-to-VMEバス・マッピングを作成します。

概要

bt_error_t bt_hw_map_vme(bt_desc_t btd, void **phys_addr_p,
bt_devaddr_t vme_addr, size_t map_len, bt_swap_t swapping)

引数

btd 成功したbt_open()関数呼び出しから返されたデバイス記述子。

phys_addr_p このマッピングのためのローカルPCIバス開始/ベース・アドレスが

返されるユーザー空間の位置。

RedHawk Linux User’s Guide

15-14

vme_addr 開始/ベース・ターゲットVMEバスの物理アドレス。このアドレス

は4KBの境界線上に揃えられている必要があります。

map_len 作成されるハードウェア・マッピングのサイズ。この値は4KBの倍

数に切り上げれられます。

swapping ハードウェア・マッピングに使用するバイト・スワッピング方式。

/usr/include/btp/btngpci.hヘッダー・ファイルに含まれている

BT_SWAP_xxx 定義を使用することが可能です。

戻り値

成功した場合、BT_SUCCESSの値が返されます。phys_addr_p位置に返されたPCIバスのア

ドレスは、リモートVMEバス・アドレスのこの範囲へアクセスするために使用可能な共有メ

モリ領域を作成するためshmbind(2)またはshmconfig(1)を使用することが可能です。

失敗した場合、失敗の原因を示す適切なbt_error_tの値が返されます：

BT_EDESC 無効なbtd記述子が指定された。記述子はデバイス・タイプ

BT_DEV_A32, BT_DEV_A24, BT_DEV_A16のbt_open()呼び出しか

ら返された記述子である必要があります。

BT_EINVAL 無効なvme_addr, map_len, phys_addr_p, スワッピング・パラ

メータが指定された。

BT_ENXIO sbsvmeハードウェアがオンラインではない、または正しく接続され

ていない。

BT_ENOMEM sbsvmeハードウェア・マッピング・レジスタが必要とする数を割り

当てることが出来なかった。

BT_ENOMEM このマッピングの追跡に使用されるカーネルデータ構造体用のメモ

リを割り当てることができなかった。

bt_hw_unmap_vme15

この関数はbt_hw_map_vme関数で既に作成されたまたは/proc/driver/btp/unit/vmemappings
ファイルへの書き込みによるPCI-to-VMEバス・マッピングを削除します。

概要

bt_error_t bt_hw_unmap_vme(bt_desc_t btd, void *phys_addr)

パラメータ

btd 成功したbt_open()関数呼び出しから返されたデバイス記述子。

phys_addr 削除するVMEバス・マッピングのPCIバス開始アドレス。

PCI-to-VME サポート

15-15

戻り値

成功した場合、BT_SUCCESSの値が返されます。

失敗した場合、失敗の原因を示す適切なbt_error_tの値が返されます：

BT_EDESC 無効なbtd記述子が指定された。記述子はデバイス・タイプ

BT_DEV_A32, BT_DEV_A24, BT_DEV_A16のbt_open()呼び出しか

ら返された記述子である必要があります。

BT_ENOT_FOUND phys_addrパラメータで指定されたマッピングが存在しない。

/procファイル・システム・インターフェース15

sbsvme btpカーネル・モジュールがロードされた時、以下の/procファイルが作成されます：

/proc/driver/btp/unit/vme-mappings

unit はsbsvme PCIブリッジ・カードのユニット番号です。最初のカードはユニット番号が0と
なります。複数のブリッジを持つシステム上では、2番目のカードはユニット番号1となりま

す。

既存のPCI-to-VMEバス・マッピングはそのファイルの読み取りにより見ることが可能です。

マッピングはそのファイルへの書き込みにより作成および削除が可能となります。これらの

テクニックは以下で説明します。

VMEバス・マッピングの表示15

cat(1)を使ったvme-mappingsファイルの読み取りは、現在確立された全てのVMEバス・マ

ッピングを表示します。以下の出力は2つのPCI-to-VMEバス・マッピングを示します：

$ cat /proc/driver/btp/0/vme-mappings

pci=0xf8019000 vme=0x00008000 size=0x0001000 space=A16 admod=0x2d swap=5
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0

pci= マッピングが開始されるローカルPCIバス・アドレスを示します
vme= 開始VMEバス・アドレスを示します
size= マッピングのサイズ/長さを示します
space= VMEバス・アドレス空間のマッピングのタイプを示します
admod= /usr/include/btp/btdef.hに定義されるBT_AMOD_xxx で記述されたVMEバ

ス・アドレス・モディファイアを示します
swap= /usr/include/btp/btngpci.h.に定義されるBT_SWAP_xxx で記述されたビッ

ト・スワップ方式を示します

VMEバス・マッピングの生成15

VMEバス空間へのマッピングはvme-mappingsファイルへの書き込みにより作成することが

可能です。このファイルへ書き込むためにはCAP_SYS_ADMIN権限を持っている必要がある

ことに注意して下さい。マッピングを作成するためには、以下の3つのパラメータをここで定

めた順番で指定する必要があります：

RedHawk Linux User’s Guide

15-16

vme= マッピングするためにページに揃えられた開始VMEバス・アドレスを指定し

ます(例： 0xfffff000)。

size= マッピングのサイズ(ページの倍数であること)を指定します(例：0x1000)。

sbsvmeハードウェアはマッピングが合計で32MBのVMEバス空間に制限され

ていることに注意して下さい。

space= VMEバス・アドレス空間のマッピングのタイプ(A32, A24, A16)を指定しま

す。

以下のオプション・パラメータは、上述の必須パラメータに続いて任意の順番で与えること

も可能です：

admod= /usr/include/btp/btdef.hに定義されるBT_AMOD_xxx で記述されたVMEバ
ス・アドレス・モディファイアを指定します。もし指定しない場合、以下の

デフォルト値が使用されます：

BT_AMOD_32 0x0d
BT_AMOD_24 0x3d
BT_AMOD_16 0x2d

swap= /usr/include/btp/btngpci.hに定義されるBT_SWAP_xxx で記述されるビッ

ト・スワッピング方式を指定します。もし指定しない場合、デフォルト値の

BT_SWAP_DEFAULTが使用されます。

以下の例は、vmemappingsファイルへの書き込みによる2つのVMEバス・マッピングの作成

を示します。

$ echo “vme=0xe1000000 size=0x10000 space=A32” > /proc/driver/btp/0/vme-mappings
$ echo “vme=0xc0000000 size=0x1000 space=A32 swap=7 admod=0x9” >
/proc/driver/btp/0/vme-mappings

sbsvme btpカーネル・ドライバが“/etc/init.d/sbsvme stop” (「VMEバス・マッピング」を参照し

て下さい)にてアンロードされる時、現在の全てのVMEバス・マッピングはドライバがアンロ

ードされる前に削除されることに注意して下さい。もしマッピングが存在し、“modprobe -r
btp”がドライバをアンロードするために使われた場合、アンロードは全てのVMEバス・マッ

ピングが削除されるまで失敗します。

VMEバス・マッピングの削除15

VMEバス空間へのマッピングは、vme-mappingsファイルにマッピングのローカルPCIバス位

置を書き込むことにより策することが可能です。このファイルへ書き込むためには

CAP_SYS_ADMIN権限を持っている必要があることに注意して下さい。PCIバスの位置は

bt_hw_map_vme()およびvme-mappingsファイルのcatにより返されます。
例：

$ cat /proc/driver/btp/0/vme-mappings
pci=0xf8019000 vme=0x00008000 size=0x0001000 space=A16 admod=0x2d swap=5
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0

$ echo “pci=0xf8019000” > /proc/driver/btp/0/vme-mappings

$ cat /proc/driver/btp/0/vme-mappings
pci=0xf8011000 vme=0x00fe0000 size=0x0008000 space=A24 admod=0x39 swap=0

PCI-to-VME サポート

15-17

アプリケーション例15

プログラム例は、sbsvme btpデバイス・ドライバの機能の実演を提供しその利用を促進しま

す。それらは/usr/share/doc/ccur/examples/sbsvmeで見つけることが可能です。そのプロ

グラムは次のために便利なツールです：

• デバッギング
• バイナリ・データのアップロードおよびダウンロード
• プログラム化した割り込みの受信をよび集計
• ハードウェアのテスト
• VMEバス・マッピングの作成および共有メモリ領域へのバインド

表15-2はプログラム例を記載しています。アスタリスク(*)はRedHawk Linuxに加えられたプロ

グラムを示し、続くセクションで説明されています。他のプログラムはSBSテクノロジー・ソ

フトウェア・マニュアルで説明されています。

表15-2 PCI-to-VMEプログラム例

名称 概要 使用される関数
bt_bind リモートVMEバスへローカル・バッファをバインドし、ユーザー入力を

待って、バインドしたバッファの先頭256byteを出力します。
bt_bind()
bt_unbind()

bt_bind_mult * リモートVMEバスへ複数のローカル・バッファをバインドする方法を示

します。任意でユーザー入力待機の前にローカル・バッファに値を書き

込みます。ユーザー入力発生後、各ローカル・バッファの各ページの先

頭16byteを出力します。

bt_bind()
bt_unbind()

bt_bind_multsz * 複数の異なるサイズのバインド・バッファを作成する方法を示します。 bt_bind()
bt_unbind()

bt_cat 'cat' プログラムに似ています。リモートVMEバスからの読み取りを標準

出力(stdout)へ、または標準入力(stdin)からリモートVMEバスへのデータ

書き込みを可能にします。

bt_read()
bt_write()

bt_datachk 特定のパターンを使いデバイスからの読み書きおよびデータまたはステ

ータスのエラーが発生していないことを検証します。
bt_read()
bt_write()

bt_dumpmem リモートVMEバスのデータ256byteを読み取り標準出力へ出力します。 n/a
bt_getinfo 全ドライバのパラメータを取得しそれらの値を標準出力へ表示するスク

リプト。

bt_hwmap * VMEバス・マッピングを作成します。 bt_hw_map_vme()
bt_hwunmap * VMEバス・マッピングを削除します。 bt_hw_unmap_vme()
bt_icbr 任意の割り込みタイプの登録および割り込みを受信します。 bt_icbr_install()

bt_icbr_remove()
bt_info ドライバのパラメータの取得または設定を行います。 bt_get_info()

bt_set_info()
bt_readmem リモートVMEバスのデータ256byteを読み取って標準出力へ表示します。 bt_read()
bt_reset リモートVMEバスをリセットします。 bt_reset()

(次ページへ続く)

RedHawk Linux User’s Guide

15-18

表15-2 PCI-to-VMEプログラム例 (続き)

名称 概要 使用される関数
bt_revs ドライバのバージョンおよびハードウェアのファームウェア・バージョ

ン情報を標準出力へ出力します。
bt_open()

bt_sendi リモート・バスへ割り込みを送信します。 bt_send_irq()
readdma * CPUに代わりカーネル・ドライバで使用されるDMAハードウェアがデー

タをコピーすることになるこのプログラムがより大きいなデータを読み

取ることを除いては、readmemと同じです。

bt_read()

shmat * アタッチするために共有メモリ・キー・パラメータを利用し、共有メモ

リ領域から読み取ります。shmconfig-scriptプログラムで使用されます。
shmconfig(1)
shmat(2)

shmbind * PCI-to-VMEバス・マッピングにマップされた共有メモリ領域を作成しア

タッチしてそれを読み書きします。
shmget(2)
shmbind(2)
shmat(2)

shmconfig-script * /procファイルシステムを介してPCI-to-VMEバス・マッピングを作成

し、VMEバス領域へバインドする共有メモリ領域を作成するスクリプト

です。

shmconfig(1)

vme-mappings * /procファイルシステムを介してPCI-to-VMEバス・マッピングを作成、

表示、削除する方法を示すスクリプトです。
n/a

writemem * リモートVMEバスへ256byteのデータを書き込み、リモートVMEバスか

ら256byteのデータを読み戻して、そのデータを標準出力へ出力します。
bt_read()
bt_write()

writedma * CPUがデータをコピーする代わりにカーネル・ドライバでDMAハードウ

ェアが使用されることになり、このプログラムがより大きいなデータを

書き込むことを除いては、writememと同じです。この例はリモートVME
バスへデータを書き込むだけで、リモートVMEバスからのデータ読み戻

しはしません。

bt_write()

bt_bind_mult15

bt_bind_multサンプル・アプリケーションは、複数の同じサイズのバッファをリモート・バス

へバインドするためにbt_bind()関数を使用します。これはユーザー入力を待機し、バインドさ

れた各バッファの各ページの最初の4ワードを出力します。任意で待機前にバッファへデータ

の書き込みも行います

使用方法：bt_bind_mult -[natulws]

オプション 機能
-n <nbufs> 割り当ておよびバインドするバッファの数。既定値は2。
-a <vmeaddr> バッファをバインドするVMEアドレス。既定値はBT_BIND_NO_CARE。
-t <logdev> 論理デバイス(BT_DEV_MEM, BT_DEV_IO, BT_DEV_DEFAULT等)。

既定値はBT_DEV_DEFAULT。
-u <unit> オープンするユニット番号。既定値は0。
-l <len> バインドするバッファの長さ。既定値は1ページ(0x1000)。
-w <value> 最初にバッファの各ページの先頭4ワードにこの値を書き込みます。
-s <swapbits> bt_bind()を呼び出すためにスワップ・ビット値を設定します。シンボリッ

ク名は認識されないことに注意して下さい。

PCI-to-VME サポート

15-19

bt_bind_multsz15

bt_bind_multszサンプル・アプリケーションは、様々なサイズの複数のバッファをリモート・

バスへバインドするためにbt_bind()関数を使用します。これはユーザー入力を待機し、バイン

ドされた各バッファの各ページの最初の4ワードを出力します。任意で待機前にバッファへデ

ータの書き込みも行います。

使用方法：bt_bind_multsz -[atuws]

オプション 機能
-a <vmeaddr> バッファをバインドするVMEアドレス。既定値はBT_BIND_NO_CARE。
-t <logdev> 論理デバイス(BT_DEV_MEM, BT_DEV_IO, BT_DEV_DEFAULT等)。

既定値はBT_DEV_DEFAULT。
-u <unit> オープンするユニット番号。既定値は0。
-w <value> 最初にバッファの各ページの先頭4ワードにこの値を書き込みます。
-s <swapbits> bt_bind()を呼び出すためにスワップ・ビット値を設定します。シンボリッ

ク名は認識されないことに注意して下さい。

bt_hwmap15

bt_hwmapサンプル・アプリケーションは、VMEバス空間の領域へハードウェア・マッピング

を作成するためにbt_hw_map_vme関数を使用します。

使用方法：bt_hwmap -a[ltus]

オプション 機能
-a <addr> VMEバスの物理アドレス。この引数は必須です。
-l <len> PCIバス上にマッピングするVMEバス領域の長さ。既定値は1ページ

(0x1000)。
-t <logdev> アクセスする論理デバイス (BT_DEV_A32, BT_DEV_A24, BT_DEV_A16,

BT_DEV_IO, BT_DEV_RR)。既定値はBT_DEV_A32。
-u <unit> オープンするユニット番号。既定値は0。
-s <swapbits> bt_bind()を呼び出すためにスワップ・ビット値を設定します。シンボリッ

ク名は認識されないことに注意して下さい。
既定値はBT_SWAP_DEFAULT。

bt_hwunmap15

bt_hwmapサンプル・アプリケーションは、VMEバス空間の領域からハードウェア・マッピン

グを削除するためにbt_hw_unmap_vme関数を使用します。

使用方法：bt_hwunmap -p[tu]

オプション 機能
-p <pciaddr> 削除するマッピングのローカルPCIバスの物理アドレス。この引数は必須

です。
-t <logdev> 論理デバイス(BT_DEV_A32, BT_DEV_A24, BT_DEV_A16, BT_DEV_IO,

BT_DEV_RR) 。既定値はBT_DEV_A32。
-u <unit> オープンするユニット番号。既定値は0。

RedHawk Linux User’s Guide

15-20

readdma15

CPUに代わりカーネル・ドライバで使用されるDMAハードウェアがデータをコピーすること

になるこのプログラムがより大きいなデータを読み取ることを除いては、このサンプル・プ

ログラムはbt_readmemと同じです。

使用方法：readdma -[atulo]

オプション 機能
-a <addr> データ転送を開始するアドレス。デフォルト値＝0x00000000
-t <logdev> アクセスする論理デバイス。既定値はBT_DEV_A32。
-u <unit> オープンするユニット番号。既定値は0。
-l <length> 読み取るバイト数。ページ・サイズへ切り捨てます。既定値は0x1000。
-o <outlen> 各ページ境界線の先頭に出力するバイト数。既定値は16byte。この値は

409以下であること。

shmat15

このサンプル・プログラムはshmconfig-scriptスクリプトにより呼び出されます。これは共有メ

モリの'key' 値を利用してアタッチし、VMEバス空間にバインドされた共有メモリ領域から読

み出します。

使用方法：shmat -k shmkey -s size [-o outlen]

オプション 機能
-k <shmkey> 10進数、または'0x' か'0X' で始まる16進数の共有メモリのキー値。
-s <size> 共有メモリ領域のサイズ(byte)。
-o <outlen> 標準出力へ出力する各共有メモリ・ページの先頭からのバイト数(16進

数)。既定値は32byte。

shmbind15

このプログラム例は、PCI-to-VMEバス・マッピングへ共有メモリ領域をアタッチするために

shmget(2), shmbind(2), shmat(2)を使用します。共有メモリにアタッチされた領域を使い

VMEバス空間の読み書きが可能となります。PCI-to-VMEハードウェア・マッピングは既に作

成されている必要があります。

使用方法：shmbind -p pci_addr -s size [-r | -w value] [-o len]

オプション 機能
-p <pci_addr> VMEマッピングが置かれているローカルPCIバス・アドレス(16進数)。
-s <size> 作成する共有メモリ領域のサイズ(byte, 16進数)。
-r 共有メモリ領域からの読み取り(既定値)。
-w <value> 指定された値を使い、共有メモリ領域へ書き込み(16進数)
-o <len> 標準出力へ出力する各共有メモリ・ページの先頭からのバイト数(16進

数)。既定値は32byte。

PCI-to-VME サポート

15-21

shmconfig-script15

これはPCI-to-VMEバス・マッピングによる特定のVMEバス領域へバインドされた共有メモリ

領域を作成するためにshmconfig(1)を使用する方法のサンプル・スクリプトです。このスク

リプトは共有メモリ領域が作成された後にshmatサンプル・プログラムを呼び出します。

vme-mappings15

これは/proc/driver/btp/unit/vme-mappingsファイルを使いPCI-to-VMEバス・マッピングを作

成、調査、削除する方法を示すサンプル・スクリプトです。

writemem15

このサンプル・プログラムは、Bit 3論理デバイスのいずれかに書き込むためbt_write() Bit 3
Mirror API関数を使用します。

使用方法：writemem -[atud]

オプション 機能
-a <addr> データ転送を始めるアドレス。デフォルト値＝0x00000000。
-t <logdev> アクセスする論理デバイス(BT_DEV_RDP, BT_DEV_A32, 等)。
-u <unit> オープンするユニット番号。既定値は0。
-d <value> 書き込みを開始するデータの値。規定値は0。

全ての数値はC言語の基数表記法を使用します。

例： アドレス0x00001000で始まるBT_DEV_RDPから最初の256byteのデータを書き

込みます：

./writemem -a 0x00001000

writedma15

このサンプル・プログラムは、CPUがデータをコピーする代わりにカーネル・ドライバで

DMAハードウェアが使われることになって、それがより大きいなデータを書き込むことを除

いては、writememと同じです。この例はリモートVMEバスへデータを書き込むだけで、リモ

ートVMEバスからのデータ読み戻しはしません。

使用方法：writedma -[atuld]

オプション 機能
-a <addr> VMEアドレスの先頭。既定値＝0x00000000.
-t <logdev> アクセスする論理デバイス。規定値はBT_DEV_A32。
-u <unit> オープンするユニット番号。既定値は0。
-l <length> 書き込むバイト数。ページ・サイズへ切り下げます。規定値は0x1000。
-d <value> 書き込みを開始するデータの値。規定値は0。

RedHawk Linux User’s Guide

15-22

16-1

16
PRTカーネル・オプション

16
14
13

本章ではRedHawkシステムで利用可能なPRTカーネル・オプションについて説明します・

NOTE

RedHawk PRTカーネルはどのRedHawkのメジャー・バージョンの初期

リリースでは利用できませんが、その後の最初のRedHawkのマイナ

ー・アップデートに含まれます。従って、例えばRedHawk 7.3に関し

てはRedHawk PRTカーネルはRedHawk 7.3.1に含まれます。

PRTとは？16

RedHawk 7.3は、既定のRedHawk標準カーネル、RedHawkトレース・カーネル、RedHawkデバ

ッグ・カーネルに加えて3つの新しい”PRT”カーネル・オプションが利用可能となります。

PRTカーネルはRedHawkの通常のリアルタイム機能全てを含みますが、更にコミュニティに開

発されたPREEMPT_RTリアルタイム・セマンティクスも含みます。

PREEMPT_RTの追加は実質的にPRTカーネルのリアルタイム動作が変わり、RedHawkカーネ

ルのシールディングによるリアルタイム・モデルが最適ではない可能性のある特定のソフ

ト・リアルタイム・タスク(例：単一ソケット・単一コアのシステムまたは数千のスレッドを

伴うアプリケーション)にとって相応しいものになる可能性を秘めています。

RedHawk vs PRT16

RedHawkカーネルのシールディングは特定のリソースをリアルタイム活動に分離して専念さ

せるためにユーザーにシステムのリソースを分けるよう要求します(この時適切に調整する

と、このアプローチはそのハードウェアが到達可能である最高のリアルタイム性能をもたら

します)。しかしながら、このアプローチはプロセスの分離およびシールドに積極的に関与さ

せること、およびどの部分を分離、シールドする必要があるかについて十分に適した決定を

する事ができるようにアプリケーションを理解する事もユーザーに要求します。

PRTカーネルの主な目的は、RedHawkのシールディング用に設計されていないアプリケーショ

ンであってもあるレベルのリアルタイム性能に達する事を可能とするために手動のチューニ

ング処置を極力排除する事です。例えば、数百の競合スレッドで構成されているアプリケー

ションはRedHawkカーネルよりもPRTカーネルのほうがより機能する可能性があります。しか

しながら、最高のリアルタイム性能は依然としてRedHawkのシールディング用に明確に設計

されたアプリケーションによって実現されます。

RedHawk Linux User’s Guide

16-2

PRTの注意事項16

PREEMPT_RTはLinuxカーネルの多くの分野に重要な変更を行っておりますが、恐らくその根

本的な変更の殆どはカーネル・スピン・ロックの大部分が完全にプリエンプト可能な状態に

なっている事です。カーネル・スピン・ロック中にプリエンプションを許可する事は危険な

常態となる可能性があり、PREEMPT_RTで適切に動くよう完全に設計されていないデバイ

ス・ドライバでPRTカーネルを使用する場合は注意する必要があります。

PREEMPT_RTは、優先度の最も高い実行可能なプロセスが常にシステムのプロセッサ上で実

行されていることを確実にするためLinuxプロセス・スケジューラもまた根本的に変更してい

ます。これを保証するため、スケジューラは実行可能なプロセス一式を絶えず再評価し、利

用可能となるCPUへプロセスを瞬時に入れ替える事が必要となります。このスケジューリン

グ動作は結果としてCPU移動が非常に大きな数になりキャッシュ・スラッシングが発生する

可能性があり、PRTカーネルで到達可能なリアルタイム性能に制限をかける可能性がありま

す。

一方、これらの注意事項はあるにしても、RedHawkカーネルに対してRedHawkのシールディ

ング用に明確に設計されていないアプリケーションがPRTカーネルを使って総合的に勝るリア

ルタイム性能を達成する可能性があります。

PRTカーネル・フレイバー16

以下の3つのPRTカーネル・オプションは既存のRedHawk 7.3のシステム上へのインストールが

可能です：

PRT標準 PREEMPT_RTリアルタイム・セマンティクスを含めて修正された

RedHawk標準カーネルのバージョン。このPRT標準カーネルは最も

最適化され、PRTカーネルの最高の総合的な性能を提供しますが、

NightStar RTツールを十分に活用するために必要な特定の機能が不

足しています。

PRT Trace PREEMPT_RTリアルタイム・セマンティクスを含めて修正された

RedHawkトレース・カーネルのバージョン。PRTトレース・カーネ

ルは標準的なPRTカーネルの全機能をサポートし、更にNightStar
RT性能分析ツールのカーネル・トレース機能のサポートを提供し

ます。

PRT Debug PREEMPT_RTリアルタイム・セマンティクスを含めて修正された

RedHawkデバッグ・カーネルのバージョン。PRTデバッグ・カーネ

ルはPRTトレース・カーネルの全ての機能をサポートし、更に実行

時間での検証を含みかつカーネル・レベル・デバッグのサポートを

提供します。

Concurrent Real-TimeのNetwork Update Utility (NUU)は、既存のRedHawk 7.3のシステム上に

PRTカーネルをダウンロードしてインストールするために使用する事が可能です。あるいは、

最新のRedHawk製品アップデートのコピーを要求するためにConcurrent Real-Timeと連絡を取

ることも可能です。

PRT カーネル・オプション

16-3

追加リソース16

本章はPRTカーネルの基本的な紹介のみを提供しますが、最も有名であるReal-TimeLinux Wiki
を含む様々なオンライン・リソースがPREEMPT_RT開発およびユーザー・コミュニティのた

めに設けられています。

Real-Time Linux Wiki
http://rt.wiki.kernel.org

PREEMPT_RTに関する最新の情報については前述のReal-TimeLinux Wikiのリンクを閲覧、ま

たは単純に文字列”preempt_rt”をインターネットで検索してください。

http://rt.wiki.kernel.org/

RedHawk Linux User’s Guide

16-4

A-1

A
メッセージ・キュー・プログラム例

16
14
13

本付録にはPOSIXおよびSystem Vのメッセージ・キュー機能の使用を説明するサンプル・プロ

グラムが含まれています。更なるサンプル・プログラムは/usr/share/doc/ccur/examplesデ
ィレクトリにオンラインで提供されます。

POSIXメッセージ・キュー例A

ここにあるサンプル・プログラムはC言語で記述されています。このプログラムでは、親プロ

セスがPOSIXメッセージ・キューをオープンして、キューが空から空ではない状態へ遷移し

た時にリアルタイム・シグナルを介して通知されるように登録しています。親プロセスは子

プロセスを生成し、子プロセスが空のキューへメッセージを送信するまで子プロセスを待機

します。子プロセスはメッセージを送信し、その記述子をクローズして終了します。

親プロセスはリアルタイム・シグナルを受信し、シグナル・ハンドラ内でsiginfo_t構造体

を通して配信されるsigev_value (si_value)を取得します。親プロセスは子プロセスのテ

スト・メッセージを受信する前にsi_code (SI_MESGQ)の配信もテストします。親プロセス

はsi_value(共用体)の配信が事前に登録されたsigev_valueと合っていることを検証しま

す。シグナル・ハンドラは、psignalを使い受信したリアルタイム・シグナル値(SIGRTMAX)も
表示します。psignal関数はSIGRTMAXと明示する方法を知らないので、unknown signalと判定

し、値を出力して終了します。

このプログラムをビルドするには、以下を指定します：

gcc mq_notify_rtsig.c -Wall -g -l rt -o mq_notify_rtsig

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <unistd.h>
#include <mqueue.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <time.h>
#include <sched.h>
#include <signal.h>
#include <bits/siginfo.h>

#define MSGSIZE 40
#define MAXMSGS 5
#define VAL 1234

RedHawk Linux User’s Guide

A-2

void handlr(int signo, siginfo_t *info, void *ignored);

int val, code;

int main(int argc, char **argv)
{

struct sigaction act;
struct sigevent notify;
struct mq_attr attr;
sigset_t set;
char *mqname = "/mq_notify_rtsig";
char rcv_buf[MSGSIZE];
mqd_t mqdes1, mqdes2;
pid_t pid, cpid;
int status;

memset(&attr, 0, sizeof(attr));

attr.mq_maxmsg = MAXMSGS;
attr.mq_msgsize = MSGSIZE;

mq_unlink(mqname);

mqdes1 = mq_open(mqname, O_CREAT|O_RDWR, 0600, &attr);

sigemptyset(&set);
act.sa_flags = SA_SIGINFO;
act.sa_mask = set;
act.sa_sigaction = handlr;
sigaction(SIGRTMAX, &act, 0);

notify.sigev_notify = SIGEV_SIGNAL;
notify.sigev_signo = SIGRTMAX;
notify.sigev_value.sival_int = VAL;

mq_notify(mqdes1, ¬ify);

printf("\nmq_notify_rtsig:\tTesting notification
sigev_value\n\n");
printf("mq_notify_rtsig:\tsigev_value=%d\n",\
notify.sigev_value.sival_int);

if((pid = fork()) < 0) {

printf("fork: Error\n");
printf("mq_notify_rtsig: Test FAILED\n");
exit(-1) ;

}

if(pid == 0) { /* child */

cpid = getpid() ;

mqdes2 = mq_open(mqname, O_CREAT|O_RDWR, 0600, &attr);

printf("child:\t\t\tsending message to empty queue\n");

mq_send(mqdes2, "child-test-message", MSGSIZE, 30);

メッセージ・キュー・プログラム例

A-3

mq_close(mqdes2);
exit(0);

}
else { /* parent */

waitpid(cpid, &status, 0); /* keep child status from init
*/

printf("parent:\t\t\twaiting for notification\n");

while(code != SI_MESGQ)

sleep(1);
mq_receive(mqdes1, rcv_buf, MSGSIZE, 0);

printf("parent:\t\t\tqueue transition -
received %s\n",rcv_buf);

}

printf("mq_notify_rtsig:\tsi_code=%d\n",code);
printf("mq_notify_rtsig:\tsi_value=%d\n",val);

if(code != -3 || val != VAL) {

printf("\nmq_notify_rtsig:\tTest FAILED\n\n");
return(-1);

}

mq_close(mqdes1);
mq_unlink(mqname);

printf("\nmq_notify_rtsig:\tTest passed\n\n");

return(0);

}

void handlr(int signo, siginfo_t *info, void *ignored)
{

psignal(signo, "handlr:\t\t\t");

val = info->si_value.sival_int;
code = info->si_code;

return;

}

RedHawk Linux User’s Guide

A-4

System Vメッセージ・キュー例A

ここにあるサンプル・プログラムはC言語で記述されています。このプログラムでは、親プロ

セスは作業の一部の負荷を取り去るために子プロセスを生成します。親プロセスは自身およ

び子プロセスが使用するためにメッセージ・キューも作成します。

子プロセスがその作業を完了すると、メッセージ・キューを介して親プロセスへ結果を送信

し、親プロセスへシグナルを送信します。親プロセスがシグナルを受信すると、メッセー

ジ・キューからメッセージを読み取ります。

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <signal.h>
#include <errno.h>

#define MSGSIZE 40/* maximum message size */
#define MSGTYPE 10/* message type to be sent and received */

/* Use a signal value between SIGRTMIN and SIGRTMAX */
#define SIGRT1(SIGRTMIN+1)

/* The message buffer structure */
struct my_msgbuf {

long mtype;
char mtext[MSGSIZE];

};

struct my_msgbuf msg_buffer;

/* The message queue id */
int msqid;

/* SA_SIGINFO signal handler */
void sighandler(int, siginfo_t *, void *);

/* Set after SIGRT1 signal is received */
volatile int done = 0;
pid_t parent_pid;
pid_t child_pid;

main()
{

int retval;
sigset_t set;
struct sigaction sa;

/* Save off the parent PID for the child process to use. */
parent_pid = getpid();

/* Create a private message queue. */
msqid = msgget(IPC_PRIVATE, IPC_CREAT | 0600);

if (msqid == -1) {

perror(“msgget”);
exit(-1);

}

メッセージ・キュー・プログラム例

A-5

/* Create a child process. */
child_pid = fork();

if (child_pid == (pid_t)-1) {

/* The fork(2) call returned an error. */
perror(“fork”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);

exit(-1);

}

if (child_pid == 0) {

/* Child process */
/* Set the message type. */
msg_buffer.mtype = MSGTYPE;

/* Perform some work for parent. */
sleep(1);

/* ... */

/* Copy a message into the message buffer structure. */
strcpy(msg_buffer.mtext, “Results of work”);

/* Send the message to the parent using the message
* queue that was inherited at fork(2) time.
*/

retval = msgsnd(msqid, (const void *)&msg_buffer,
strlen(msg_buffer.mtext) + 1, 0);
if (retval) {

perror(“msgsnd(child)”);
/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
exit(-1);

}

/* Send the parent a SIGRT signal. */
retval = kill(parent_pid, SIGRT1);
if (retval) {

perror(“kill SIGRT”);

/* Remove the message queue. */
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
exit(-1);

}

exit(0);

}

/* Parent */
/* Setup to catch the SIGRT signal. The child process
* will send a SIGRT signal to the parent after sending
* the parent the message.
*/

sigemptyset(&set);
sa.sa_mask = set;
sa.sa_sigaction = sighandler;

RedHawk Linux User’s Guide

A-6

sa.sa_flags = SA_SIGINFO;
sigaction(SIGRT1, &sa, NULL);

/* Do not attempt to receive a message from the child
* process until the SIGRT signal arrives. Perform parent
* workload while waiting for results.
*/
while (!done) {

/* ... */
}

/* Remove the message queue.
(void) msgctl(msqid, IPC_RMID, (struct msqid_ds *)NULL);
*/

/* All done.
*/

exit(0);

}

/*
* This routine reacts to a SIGRT1 user-selected notification
* signal by receiving the child process’ message.
*/
void
sighandler(int sig, siginfo_t *sip, void *arg)
{

int retval;
struct ucontext *ucp = (struct ucontext *)arg;

/* Check that the sender of this signal was the child process.
*/
if (sip->si_pid != child_pid) {

/* Ignore SIGRT from other processes.
*/
printf(“ERROR: signal received from pid %d\n”, sip-
>si_pid);

return;

}

/* Read the message that was sent to us.
*/
retval = msgrcv(msqid, (void*)&msg_buffer,
MSGSIZE, MSGTYPE, IPC_NOWAIT);

done++;

if (retval == -1) {

perror("mq_receive (parent)");
return;

}

if (msg_buffer.mtype != MSGTYPE) {

printf(“ERROR: unexpected message type %d received.\n”,
msg_buffer.mtype);
return;

}

printf(“message type %d received: %s\n”,
msg_buffer.mtype, msg_buffer.mtext);

}

B-1

B
リアルタイム機能のためのカーネル・チューニング

表B-1は、RedHawk Linuxの独自機能およびRedHawkがサポートするカーネル構成設定の一覧

です。これらはリアルタイム業務を支援するConcurrent Real-Timeにより開発された機能およ

びオープン・ソース・パッチから組み込まれた機能を含んでいます。

各機能において、カーネル構成GUIオプションとチューニング・パラメータ名は必要に応じて

設定を表示および変更の手助けをするために提供されます。更に、各RedHawk Linuxプレビル

ト・カーネルの各機能のデフォルト設定が用意されています。一部の機能はプレビルト・カ

ーネルだけでなく特定のアーキテクチャカーネルに特有であることに注意して下さい。そう

である場合、アーキテクチャの仕様が括弧内に記載されます。カーネルの構成および構築に

関する詳細な情報については、11章を参照して下さい。

個々の機能に関する情報は様々な場所で入手できます。表B-1では、以下の参考文献が提供さ

れています：

• 本RedHawk Linux User’s Guide に含まれている情報が提供されるページ番号(アクティブ

なハイパーテキスト・リンク)

• 他の適切なConcurrent Real-Timeの文書の名称および文書番号

情報が取得可能な他の情報源は次のとおり：

• 情報はパラメータ選択時に表示するカーネル構成GUIの別のヘルプ・ウィンドウで提供さ

れます

• カーネル・ソース・ツリーのDocumentationディレクトリ内にあるテキスト・ファイル

• インターネット上のLinuxドキュメンテーション・サイト

RedHawk Linux User’s Guide

B-2

表B-1 リアルタイム機能用カーネル・チューニング・パラメータ

機能
カーネル構成

GUIオプション
チューニング・パラメータ名

既定値*/
ﾌﾟﾚﾋﾞﾙﾄｶｰﾈﾙ

ページ/
参考文献

シールドCPU

CPUｼｰﾙﾃﾞｨﾝｸﾞ有効
General Setup

SHIELD Y / all 2-1ﾍﾟｰｼﾞ

CPU停止有効 CPU_DOWNING Y / all 2-31ﾍﾟｰｼﾞ

再ｽｹｼﾞｭｰﾘﾝｸﾞ変数 General Setup RESCHED_VAR Y / all (x86_64) 5-3ﾍﾟｰｼﾞ

時間管理

ﾃｨｯｸﾚｽ･ｼｽﾃﾑ有効
Timers

Subsystem
NO_HZ Y / all H-1ﾍﾟｰｼﾞ

高分解能
ﾌﾟﾛｾｽ･ｱｶｳﾝﾃｨﾝｸﾞ

General Setup HRACCT Y / all 7-2ﾍﾟｰｼﾞ

TSC信頼性
Processor Type
and Features

REQUIRE_TSC Y / all (x86_64) 7-2ﾍﾟｰｼﾞ

RCIMサポート Device Drivers RCIM M / all
RCIM User’s

Guide
(0898007)

POSIXﾒｯｾｰｼﾞ･ｷｭｰ General Setup POSIX_MQUEUE Y / all 3-2ﾍﾟｰｼﾞ

Post/Waitサポート General Setup POST_WAIT Y / all (x86_64) 5-34ﾍﾟｰｼﾞ

exec間でｹｰﾊﾟﾋﾞﾘﾃｨ継

承
General Setup INHERIT_CAPS_ACROSS_EXEC Y / all 13-1ﾍﾟｰｼﾞ

ﾌﾟﾛｾｽ･ｽｹｼﾞｭｰﾘﾝｸﾞ
Processor Type
and Features

SCHED_SMT Y / all (x86_64) 2-37ﾍﾟｰｼﾞ

RedHawk製品オプション

Frequency-based
Scheduler (FBS)

Frequency-
Based
Scheduling

FBSCHED Y / all
FBS User’s

Guide
(0898005)

Performance Monitor
(PM)

Frequency-
Based
Scheduling

FBSCHED_PM Y / all
FBS User’s

Guide
(0898005)

Auditing General Setup AUDIT
Y / all (x86_64)
N / all (ARM64)

RedHawk-FAQ

SBS VMEbus-to-PCI Device Drivers SBSVME M / all (x86_64) 15-1ﾍﾟｰｼﾞ

* Y = 設定, N = 非設定, M =カーネル・モジュールがロードされた時に有効

リアルタイム機能のためのカーネル・チューニング

B-3

表B-1 リアルタイム機能用カーネル・チューニング・パラメータ (続き)

機能
カーネル構成

GUIオプション
チューニング・パラメータ名

既定値*/
ﾌﾟﾚﾋﾞﾙﾄｶｰﾈﾙ

ページ/
参考文献

/proc ファイルシステム

/proc/ccur
Pseudo

File Systems

PROC_CCUR_DIR Y / all n/a

/proc/pid/affinity PROC_PID_AFFINITY Y / all n/a

/proc/pid/resmem PROC_PID_RESMEM Y / all n/a

PCI BAR Access PCI Support PROC_PCI_BARMAP Y / all 14-1ﾍﾟｰｼﾞ

メモリ・マッピング

プ ロ セ ス 空 間 の

mmap /usermapサポー

ト

Pseudo File
Systems PROCMEM_MMAP Y / all 9-1ﾍﾟｰｼﾞ

Interrupt Processing

RCIM IRQ拡張有効 Device Drivers RCIM_IRQ_EXTENSIONS Y / all
RCIM User’s

Guide
(0898007)

shmbind呼び出し有効 General Setup SHMBIND Y / all 3-16ﾍﾟｰｼﾞ

XFSファイルシステム

XFS有効
File Systems

XFS_FS
M / all (x86_64)
N / all (ARM64)

8-1ﾍﾟｰｼﾞ
ﾘｱﾙﾀｲﾑ・ｻﾌﾞﾎﾞﾘｭｰﾑ
ｻﾎﾟｰﾄ

XFS_RT
Y / all (x86_64)
N / all (ARM64)

ｶｰﾈﾙ･ﾌﾟﾘｴﾝﾌﾟｼｮﾝ
Preemption

Model
PREEMPT Y / all 1-6ﾍﾟｰｼﾞ

ptrace拡張 General Setup PTRACE_EXT Y / all 1-6ﾍﾟｰｼﾞ

システム・ダンプ

kdumpｸﾗｯｼｭ・ﾀﾞﾝﾌﾟ
有効 Processor Type

and Features

KEXEC Y / all (x86_64) 12-1ﾍﾟｰｼﾞ

ｶｰﾈﾙ・ｸﾗｯｼｭ・ﾀﾞﾝﾌﾟ
有効

CRASH_DUMP
Y / kdump
(x86_64)

ﾃﾞﾊﾞｯｸﾞ・ｼﾝﾎﾞﾙ生成 Kernel Hacking DEBUG_INFO Y / all

* Y = 設定, N = 非設定, M =カーネル・モジュールがロードされた時に有効

RedHawk Linux User’s Guide

B-4

表B-1 リアルタイム機能用カーネル・チューニング・パラメータ (続き)

機能
カーネル構成

GUIオプション
チューニング・パラメータ名

既定値*/
ﾌﾟﾚﾋﾞﾙﾄ･ｶｰﾈﾙ

ページ/
参考文献

NUMAサポート

Processor Type
and Features

NUMA Y / all (x86_64) 10-1ﾍﾟｰｼﾞ

AMD_NUMA Y / all (x86_64)

X86_64_ACPI_NUMA Y / all (x86_64)

Memory
Management

Options
MEMSHIELD_ZONELIST_ORDER Y / all (x86_64)

General Setup NUMA_BALANCING Y / all (x86_64) 10-10ﾍﾟｰｼﾞ

RAM block
device support

BLK_DEV_RAM_NUMA Y / all (x86_64)

カーネル・トレーシング

ｶｰﾈﾙ･ﾄﾚｰｼﾝｸﾞ有効

General Setup

XTRACE
Y / trace, debug;

N / generic
n/a

ｸﾗｯｼｭ・ﾀﾞﾝﾌﾟから

xtraceﾃﾞｰﾀを抽出
XTRACE_CRASH

Y / debug, trace;
N / generic
(x86_64)

n/a

NVIDIAグラフィクス

のサポート Device Drivers NVIDIA M / all (x86_64)
Release Notes

(0898003)

UIOサポート Device Drivers UIO
M / all (x86_64)
N / all (ARM64)

14-14ﾍﾟｰｼﾞ

* Y = 設定, N = 非設定, M =カーネル・モジュールがロードされた時に有効

C-1

C
ケーパビリティ

本付録では、RedHawk Linuxに含まれるケーパビリティと各ケーパビリティが提供するパーミ

ッションを掲載します。

概要B

ケーパビリティは、スーパー・ユーザーに関連する伝統的な権限が個別に有効および無効に

することが可能な別個のユニットに分けられたLinuxの方式です。無節操なユーザーは、Linux
が提供するセキュリティ・メカニズムを無効にするためのケーパビリティが提供されたパー

ミッションの一部を使用することが可能であるため、この機能は十分に注意して使用する必

要があります。ケーパビリティは/usr/include/linux/capability.hで定義されています。

ケーパビリティをLinuxで機能させる方法に関する詳細な情報については、capabilities(7)の
manページを参照して下さい。ケーパビリティを利用した認証スキームを提供するPAM機能

に関する情報については、13章を参照して下さい。

ケーパビリティB

本セクションでは、RedHawk Linuxの下で定義される各ケーパビリティより提供されるパーミ

ッションについて説明します。Linuxに実装されたケーパビリティの最新のリストや各ケーパ

ビリティが許可する操作または挙動については、http://man7.org/linux/man-
pages/man7/capabilities.7.html を参照して下さい。

CAP_AUDIT_CONTROL
- 本ケーパビリティは、カーネル監査の有効および無効、監査フィル

ター・ルールの変更、監査ステータスとフィルタリング・ルールの

検索を許可します。

CAP_AUDIT_READ

- 本ケーパビリティは、マルチキャストnetlinkソケットを介した監査

ログの読み出しを許可します。

CAP_AUDIT_WRITE

- 本ケーパビリティは、カーネル監査ログへの記録の書き込みを許可

します。

CAP_BLOCK_SUSPEND

- 本ケーパビリティは、システムのサスペンドをブロック(epoll(7)
EPOLLWAKEUP, /proc/sys/wake_lock)することが可能な機能の使用

を許可します。

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

RedHawk Linux User’s Guide

C-2

CAP_CHOWN
- 本ケーパビリティは、ファイルのUIDおよびGIDの任意の変更

(chown(2)を参照して下さい)を許可します。

CAP_DAC_OVERRIDE
本ケーパビリティは次を許可します：

- ファイルの読み取り、書き込み、実行許可のチェックの回避。

(DACは「Discretionary Access Control」の略称) 詳細については

acl(5)を参照して下さい。
- 任意のプロセスのマッピングを調査するためにnumapgs(1)の使

用。次のケーパビリティも必要となります：CAP_SYS_NICE,
CAP_IPC_LOCK, CAP_SYS_PTRACE, CAP_SYS_ADMIN

- 一致するユーザーIDを持つ任意のプロセスがpagemap(1)によって

提供される利用可能な全てのマッピング情報へのアクセス。一致し

ないユーザーIDのプロセスに関しては、pagemap(1)を参照して下

さい。次のケーパビリティも必要となります：CAP_SYS_ADMIN,
CAP_SYS_NICE, CAP_SYS_PTRACE

CAP_DAC_READ_SEARCH
本ケーパビリティは次を許可します：

- ファイルの読み取り権限のチェックとディレクトリの読み込み/実
行権限のチェックの回避。詳細についてはacl(5)を参照して下さ

い。
- open_by_hanle_at(2)の起動。

CAP_FOWNER
本ケーパビリティは次を許可します：

- ファイルのUIDに一致するプロセスのファイルシステムUIDを通常

必要となる操作に関する権限のチェックの回避。但し、

CAP_DAC_OVERRIDEとCAP_DAC_READ_SEARCHに該当する

これらの操作は除きます。
- 任意のファイルに関する拡張ファイル属性(chattr(1)を参照して下

さい)の設定。
- 任意のファイルに関するAccess Control List(ACL)の設定。
- ファイル削除に関するディレクトリのスティッキー・ビットの無

視。
- open(2)とfcntl(2)システム・コールで任意のファイルに対して

O_NOATIMEの指定。

CAP_FSETID
本ケーパビリティは次を許可します：

- ファイル修正時にSet-User-IDとSet-Group-IDのモード・ビットの消

去の無効。
- ファイルシステムまたは呼び出し元プロセスの任意の補足GIDに一

致しないGIDのファイルに対してSet-Group-IDビットの設定。

CAP_IPC_LOCK
本ケーパビリティは次を許可します：

ケーパビリティ

C-3

- mlock(2), mlock2(2), mlockall(2), mmap(2), shmctl(2)システム・

コールを介したメモリのロック。
- 任意のプロセスのマッピングを調査するためにnumapgs(1)の使

用。次のケーパビリティも必要となります：
CAP_DAC_OVERRIDE, CAP_SYS_NICE, CAP_SYS_PTRACE,
CAP_SYS_ADMIN

CAP_IPC_OWNER

- 本ケーパビリティは、ユーザーにSystem VのIPCオブジェクト(共有

メモリ・セグメント、メッセージ・キュー、セマフォ配列)に関す

る操作に対して権限のチェックの回避を許可します。ipcs(1)を参

照して下さい。

CAP_KILL

- 本ケーパビリティは、ioctl(2)のKDSIGACCEPT操作の使用を含む

シグナルの送信(kill(2)を参照して下さい)に対する権限のチェック

の無効を許可します。

CAP_LEASE

- 本ケーパビリティは、任意のファイルに関するリースの設置

(fcntl(2)を参照して下さい)を許可します。

CAP_LINUX_IMMUTABLE

- 本ケーパビリティは、FS_APPEND_FLとFS_IMMUTABLE_FLのi-
nodeフラグの設定(chattr(2)を参照して下さい)を許可します。

CAP_MAC_ADMIN

- 本ケーパビリティは、Smack Linux Security Module(LSM)に実装さ

れたMandatory Access Control(MAC)の無効を許可します。

CAP_MAC_OVERRIDE

- 本ケーパビリティは、MACの構成または状態の変更を許可しま

す。Smack LSMに実装されています。

CAP_MKNOD

- 本ケーパビリティは、mknode(2)を使用する特別なファイルの生

成を許可します。

CAP_NET_ADMIN
本ケーパビリティは、以下のネットワーク管理操作を許可します：

- インターフェース構成
- IPファイヤウォール、マスカレード、アカウンティングの管理
- ルーティング・テーブルの変更
- 任意の透過プロキシ(Transparent Proxy)用アドレスにバインド
- TOS (Type Of Service)の設定
- ドライバの統計情報を消去
- プロミスキャス・モードの設定
- マルチキャストの有効化
- 次のソケット・オプションを設定するためにsetsockopt(2)を使

用：SO_DEBUG, SO_MARK, SO_PRIORITY(0～6の範囲外の優先

度用), SO_RCVBUFFORCE, SO_SNDBUFFORCE

RedHawk Linux User’s Guide

C-4

CAP_NET_BIND_SERVICE
- 本ケーパビリティは、インターネット・ドメインの特権ポート(ポ

ート番号1024未満)へのソケットのバインドを許可します。

CAP_NET_BROADCAST

- 本ケーパビリティは現在使用されていませんが、ブロードキャス

ト・ソケットの作成とマルチキャストの接続待機を許可することを

目的としています。

CAP_NET_RAW
本ケーパビリティは次を許可します：

- RAWおよびPACKETソケットの利用。
- 透過プロキシの任意のアドレスにバインド。

CAP_SETGID
本ケーパビリティは次を許可します：

- プロセスのGIDおよび補足のGIDリストの任意の操作。
- UNIXドメイン・ソケットを介してソケットの認証情報を渡す時に

GIDの模造。
- ユーザー名前空間(user_namespaces(7)を参照して下さい)にマッ

ピングしたグループIDの書き込み。

CAP_SETFCAP

- 本ケーパビリティは、ファイルのケーパビリティの設定を許可しま

す。

CAP_SETPCAP
本ケーパビリティは次を許可します：

- ファイルのケーパビリティがサポートされていない場合：任意の他

のプロセスとの間で呼び出し元の許可されたケーパビリティのセッ

トに任意のケーパビリティの付与または削除。(CAP_SETPCAPの
この特性はファイルのケーパビリティをサポートするように構成さ

れたカーネルの場合は利用できません。それはCAP_SETPCAPが
このようなカーネルとは全く異なるセマンティクスを持っているた

めです。)
- ファイルのケーパビリティがサポートされている場合：呼び出し元

スレッドのバウンディング・セットから自身の継承セットに任意の

ケーパビリティの追加；バウンディング・セットから(prctl(2)
PR_CAPBSET_DROPを介して)ケーパビリティの削除および

securebitsフラグの削除。

CAP_SETUID
本ケーパビリティは次を許可します：

- UNIXドメイン・ソケットを介してソケットの認証情報を渡す時に

UIDの模造。
- ユーザー名前空間にマッピングしたユーザーIDの書き込み。

(namespaces(7)を参照して下さい)

ケーパビリティ

C-5

- プロセスUIDの任意の操作。(setuid(2), setreuid(2), setresuid(2),
setfsuid(2))

CAP_SYS_ADMIN
本ケーパビリティは、以下のシステム管理操作を提供します：

- 次を含むある範囲のシステム管理操作の実行：quotactl(2),
mount(2), umount(2), swapon(2), setdomainname(2)

- 特権を持つsyslog(2)操作の実行。その操作を許可するために

CAP_SYS_LOGを使用する必要があります。
- VM86_REQUEST_IRQ vm86(2)コマンドの使用。
- 任意のSystem VのIPCオブジェクトに対するIPC_SETとIPC_RMID

操作の実行。
- RLIMIT_NPROCリソース制限の無効化。
- trustedとsecurityの拡張属性に対する操作の実行(xattr(7)を参照して

下さい)。
- lookup_dcookie(2)の使用。
- IOPRIO_CLASS_RTを指定するためioprio_set(2)の呼び出し。
- UNIXドメイン・ソケットを介してソケットの認証情報を渡す時に

PIDの模造。
- ファイルを開くシステムコール(accept(2), execve(2), open(2),

pipe(2))において/proc/sys/fs/file-max (システム全体でファイルを開

く数の制限)の超過。
- clone(2)やunshare(2)を使って新しい名前空間を生成する

CLONE_*フラグの採用。(Linux 3.8以降、ユーザーの名前空間の生

成はどのケーパビリティも必要ありません)
- perf_event_open(2)の呼び出し。
- 特権を持つperfイベント情報にアクセス。
- (target名前空間でCAP_SYS_ADMINを必要とする) setns(2)の呼び

出し。
- fanotify_init(2)の呼び出し。
- bpf(2)の呼び出し。
- KEYCTL_CHOWNとKEYCTL_SETPERMのkeyctl(2)操作の実

行。
- madvise(2)のMADV_HWPOISON操作の実行。
- 呼び出し元制御端末以外の端末の入力キューに文字を挿入するため

にTIOCSTIをioctl(2)で使用。
- 廃止されたnfsservctl(2)システムコールを使用。
- 廃止されたbdflush(2)システムコールを使用。
- 様々な特権を持つブロック・デバイスのioctl(2)操作の実行。
- 様々な特権を持つファイルシステムのioctl(2)操作の実行。
- 多くのデバイス・ドライバで管理操作の実行。
- /sys/kernel/debug/rcu/rcudataファイルへの書き込み。
- nvidiaのプリアロケート・ページの構成。
- pw_post(2)の使用。本ケーパビリティがない場合は、実ユーザー

または実グループIDが互換であれば一部の他のプロセスの

pw_post(2)を停止することが可能です。
- nodemaskの変更

RedHawk Linux User’s Guide

C-6

- RCIMのファームウェアの変更。
- RCIMの拡張試験の有効化。
- 一部のプロセスのマッピングを調査するためにnumapgs(1)を使

用。次に示すケーパビリティも必要となります：

CAP_DAC_OVERRIDE, CAP_IPC_LOCK, CAP_SYS_PTRACE,
CAP_SYS_NICE

- 一致するユーザーIDを持つ任意のプロセスに対してpagemap(1)で
提供される利用可能な全てのマッピング情報へのアクセス。ユーザ

ーIDが一致しないプロセスについてはpagemap(1)を参照して下さ

い。次に示すケーパビリティも必要となります：CAP_SYS_NICE,
CAP_DAC_OVERRIDE, CAP_SYS_PTRACE

CAP_SYS_BOOT

- 本ケーパビリティは、reboot(2)とkexec_load(2)の使用を許可しま

す。

CAP_SYS_CHROOT

- 本ケーパビリティは、chroot(2)の使用を許可します。

CAP_SYS_MODULE

- 本ケーパビリティは、カーネル・モジュールのロードとアンロード

を許可します(init_module(2)とdelete_module(2)を参照して下さ

い)。

CAP_SYS_NICE
本ケーパビリティは次を許可します：

- プロセスのナイス値(nice(2), setpriority(2))の引き上げおよび任意

のプロセスのナイス値の変更。
- 呼び出し元プロセスに対してリアルタイム・スケジューリング・ポ

リシーの設定および任意のプロセスに対してスケジューリング・ポ

リシーや優先度を設定(sched_setscheduler(2),
sched_setparam(2), sched_setattr(2))。

- 任意のプロセスに対してCPUアフィニティの設定

(sched_setaffinity(2))。
- 任意のプロセスに対してI/Oスケジューリング・クラスや優先度の

設定(ioprio_set(2))。
- 任意のプロセスにmigrate_pages(2)の適用およびプロセスが任意

のノードに移動することの許可。
- 任意のプロセスにmove_pages(2)の適用。
- mbind(2)とmove_pages(2)を使ってMPOL_MF_MOVE_ALLフラ

グの使用。
- fbsget(2)とfbsconfigure(3)の使用。
- /proc/irq/*/smp_affinity*ファイル一式に値の書き込み。
- /proc/shield以下のファイルの変更。
- local_irq(2)の使用。
- 一部の他のプロセスでmlockall_pid(2)の使用。
- procstat(2)の使用。
- cpucntl(2)を介しての変更。
- 任意のプロセスのマッピングを調査するためにnumapgs(1)の使

用。次に示すケーパビリティも必要となります：
CAP_DAC_OVERRIDE, CAP_IPC_LOCK, CAP_SYS_PTRACE,
CAP_SYS_ADMIN

ケーパビリティ

C-7

- 一致するユーザーIDを持つ任意のプロセスに対してpagemap(1)で
提供される利用可能な全てのマッピング情報へのアクセス。ユーザ

ーIDが一致しないプロセスについてはpagemap(1)を参照して下さ

い。次に示すケーパビリティも必要となります：
CAP_DAC_OVERRIDE, CAP_SYS_PTRACE, CAP_SYS_ADMIN

CAP_SYS_PACCT

- 本ケーパビリティは、acct(2)の使用を許可します。

CAP_SYS_PTRACE
本ケーパビリティは次を許可します：

- ptrace(2)を使用する任意のプロセスのトレース。
- 任意のプロセスにget_robust_list(2)の適用。
- process_vm_readv(2)およびprocess_vm_writev(2)を使用する任

意のプロセスのメモリとの間でデータの転送。
- kcmp(2)を使用するプロセスの調査。
- 任意のプロセスのマッピングを調査するためにnumapgs(1)の使

用。次に示すケーパビリティも必要となります：
CAP_DAC_OVERRIDE, CAP_IPC_LOCK, CAP_SYS_NICE,
CAP_SYS_ADMIN

- 一致するユーザーIDを持つ任意のプロセスに対してpagemap(1)で
提供される利用可能な全てのマッピング情報へのアクセス。ユーザ

ーIDが一致しないプロセスについてはpagemap(1)を参照して下さ

い。次に示すケーパビリティも必要となります：
CAP_DAC_OVERRIDE, CAP_SYS_PTRACE, CAP_SYS_NICE

- 全てのRedHawk拡張にptrace(2)の使用。

CAP_SYS_RAWIO
本ケーパビリティは次を許可します：

- I/Oポートの操作(iopl(2)およびioperm(2))。
- /proc/kcoreへのアクセス。
- FIBMAPをioctl(2)操作で使用。
- x86モデル固有のレジスタ(MSR、msr(4)を参照して下さい)にアク

セスするためにデバイスのオープン。
- /proc/sys/vm/mmap_min_addrの更新。
- /proc/sys/vm/mmap_min_addrで指定された値以下のアドレスにメモ

リ・マッピングの生成。
- /proc/bus/pciにファイルのマッピング。
- /dev/memと/dev/kmemのオープン。
- 様々なSCSIデバイス・コマンドの実行。
- hpsa(4)およびcciss(4)デバイスに関するいくつかの操作の実行。
- 他のデバイスにおいてある範囲のデバイス固有の操作の実行。
- 他のプロセスのアドレス空間の一部のmmap(2)
- 再スケジューリング変数の生成。
- shmbind(2)の使用
- 一部の他のプロセスでmlockall_pid(2)の使用。

CAP_SYS_RESOURCE
本ケーパビリティは次を許可します：

RedHawk Linux User’s Guide

C-8

- ext2ファイルシステムで予約済み空間の使用。
- ext3ジャーナリングを制御するioctl(2)呼び出しの実行。
- ディスク・クオータ制限の無効化。
- リソース制限の無効化(setrlimit(2)を参照して下さい)。
- RLIMIT_NPROCリソース制限の無効化。
- コンソールの割り当てでコンソールの最大数の無効化。
- キーマップの最大数の無効化。
- リアルタイム・クロックから64Hzを超える割り込み；

/proc/sys/kernel/msgmnb(msgop(2)およびmsgctl(2)を参照して下さ

い)の制限を超えるSystem Vメッセージ・キューに対してmsg_qbytes
制限の引き上げ。

- F_SETPIPE_SZをfcntl(2)コマンドを使ってパイプの能力を設定す

る時に/proc/sys/fs/pipe-max-size制限の無効化。
- /proc/sys/fs/pipe-max-sizeで指定された制限を超えてパイプの能力を

向上させるためにF_SETPIPE_SZの使用。
- POSIXメッセージ・キュー生成時に/proc/sys/fs/mqueue/queues_max

制限の無効化(mq_overview(2)を参照して下さい)。
- prctl(2)でPR_SET_MMの操作。
- CAP_SYS_RESOURCE付きプロセスが最後に設定した値よりも低

い値を/proc/PID/oom_score_adjに設定。

CAP_SYS_TIME
本ケーパビリティは次を許可します：

- システム・クロック(settimeofday(2), stime(2), adjtimex(2))およ

びリアルタイム(ハードウェア)・クロックの設定。
- 任意の/proc/masterclockファイルへの書き込み。
- Pulse-Per-Second(PPS)サポートへの変更。

CAP_SYS_TTY_CONFIG
本ケーパビリティは次を許可します：

- 本ケーパビリティは、vhangup(2)の使用および仮想端末上で様々

な特権を持つioctl(2)操作の使用を許可します。

CAP_SYSLOG
本ケーパビリティは次を許可します：

- 特権を持つsyslog(2)の操作。操作で必要となる特権に関する情報

についてはsyslog(2)を参照して下さい。
- /proc/sys/kernel/kptr_restrictの値が１の時に/procおよび他のインター

フェースを介して公開されたカーネルのアドレスの参照(proc(5)に
あるkptr_restrictの解説を参照して下さい。)。

CAP_WAKE_ALARM
本ケーパビリティは次を許可します：

- 本ケーパビリティは、システムを起こす何かの起動を許可します

(CLOCK_REALTIME_ALARMの設定および

CLOCK_BOOTTIME_ALARMタイマー)。

D-1

D
32bitコードから64bitコードへの移植

本付録ではx86_64アーキテクチャ上の64bit処理へ32bitコードを移行するために必要となる情

報について提供します。

NOTE

32bit互換はARM64アーキテクチャではサポートされていません。

序文D

RedHawk Linuxのバージョン2.X以降は、64bit AMDおよびIntelプロセッサだけでなく32bit Intel
Pentium Xeonプロセッサ上でも実行することが可能です。RedHawk Linuxのx86_64バージョン

は、x86_64プロセッサ上でネイティブ・モードで32bitおよび64bitの両方を実行する完全な

64bitオペレーティング・システムです。

AMDプロセッサは、EM64T Instruction Set Architecture (ISA)をサポートする最近のIntelプロセ

ッサと殆ど同じAMD64 ISAを利用しています。AMD64とEM64Tの両方とも真の64bit実行が可

能であり、“x86_64”アーキテクチャとして知られています。

x86_64プロセッサの“long”実行モードは2つのサブモード(“64bit”および“互換”)を持っていま

す。既存の32bitアプリケーションのバイナリは、RedHawk Linux下で互換モードで再コンパイ

ルせずに実行する、もしくはアプリケーションを64bitモードで実行するために再コンパイル

することが可能です。

32bitアプリケーションは、性能が低下する「エミュレーション・モード」ではなくネイティ

ブに実行されます。この理由から、多くのアプリケーションは64bitへ移植する必要はありま

せん。

x86_64用に最適化されたソフトウェアは、科学技術計算、データベース・アクセス、シミュ

レーション、CADツール等のような最も要求の多いアプリケーションに必要とされる大きな

アドレス指定可能なメモリや64bitアーキテクチャ上の機能強化を利用することが可能です。

もしアプリケーションが64bit処理で得られるより大きな仮想および物理アドレス空間から恩

恵を受ける場合、本セクション内の情報は所有されているコードの移行に役に立つでしょ

う。

既存の32bitアプリケーションの64bitへの移植は、以降のセクションで詳述されている次の範

囲を必要とします：

• 32bit用に記述されたソース・コードは、64bitモードで実行するための修正が恐らく必要

となります。

• 32bit演算用にコンパイルされたバイナリは、64bitモードで実行する前に64bit用に再コン

パイル必要があります。

• ビルド処理(Makefile, プロジェクト・ファイル, 他)は、64bitの実行可能ファイルを構築す

るために更新およびコンパイル用オプションを調べて移植性を追加する必要がある可能

性があります。

RedHawk Linux User’s Guide

D-2

• 唯一64bitのデバイス・ドライバだけは、64bitオペレーティング・システムで使用するこ

とが可能です。必要とするドライバの64bit版が存在しない場合、デバイス・ドライバを

組み込むアプリケーションは正確に動作しない可能性があります。RedHawk Linuxが供給

する全てのドライバは64bit互換です。

更に、お手持ちのアプリケーションから最大限性能を得るためのヒントを提供します。

手順D

体系的に64bitへ移植するためにお手持ちのコードの修正に取り組むため、以下のガイド・ラ

インに従ってください。ヘッダー/インクルード・ファイル、リソース・ファイル、Makefile
を含む全てのソース・ファイルは再調査およびそれに応じた修正をする必要があます。これ

らの手順に関する詳細は以降のセクションで提供されます。

• AMD64アーキテクチャ固有のコード用に#if defined __x86_64__ または

__amd64__ を使用
• 組み込み関数またはネイティブ・アセンブリ・サブルーチンを使用するために全てのイ

ンライン・アセンブリ・コードを変換
• 必要に応じて既存のアセンブリ・コードの呼び出し規約を修正
• ポインタ演算の使用の再調査および結果の確認
• ポインタ、整数、物理アドレスへの参照の再調査および32bitと64bitアーキテクチャの違

いに対応するため可変サイズのデータ型を使用
• 64bit実行可能ファイルをビルドするためにMakefileの調査および移植性をチェックするオ

プションの追加

コーディング要件D

データ型のサイズD

32bitと64bitの移植性の主要な問題は、アドレスのサイズまたはint, long等のサイズとの関連

に関して推定があってはならないということです。

表D-1は、AMD64システム上のRedHawk Linux下での様々なANSIデータ型のサイズを示しま

す。

表D-1 データ型のサイズ

ANSIデータ型 サイズ(Byte)
char

short

int

long

1
2
4
8

32bit コードから 64bit コードへの移植

D-3

ANSIデータ型 サイズ(Byte)
long long

intptr_t, uintptr_t

float

double

long double

8
8
4
8
16

様々なデータ型のサイズを取得するために「sizeof」演算子を使用することが可能です。

(例：もし変数int xがある場合、sizeof(x)によりxのサイズを取得することが可能となり

ます)この使用法は構造体もしくは配列に対しても働きます。例えば、a_structという名前

の構造体型変数がある場合、どれくらいメモリが必要となるのかを調べるために

sizeof(a_struct)を使用することが可能です。

long型D

long型は64bitとなるため、longとintの値間で直接または暗黙的な割り当てまたは比較をす

べて調査する必要があります。有効性を確実にするためlongとintの間の割り当ておよび比

較を認めることをコンパイラに任せるすべてのキャストを調査して下さい。longのサイズを

解決するためにBITS_PER_LONGマクロの値を利用して下さい。

もしintとlongが異なるサイズのままでなければならない場合(例：既存の公開API定義のた

め)、64bit項目の値が32bit項目の最大値を超えないことを確かめるアサーションを実装

し、それが発生した場合に対処するための例外条件を生成して下さい。

ポインタD

ポインタは64bitとなるため、ポインタとintの値間で直接または暗黙的な割り当てまたは比

較もまたすべて調査する必要があります。ポインタとintの間の割り当ておよび比較を認める

ことをコンパイラに任せるすべてのキャストを削除して下さい。(ポインタのサイズと等し

い)可変サイズ型へ型を変更して下さい。表D-2は可変サイズのデータ型を示します。

表 D-2 可変サイズのデータ型

ANSIデータ型 定義
intptr_t
uintptr_t

ptrdiff_t

size_t

ssize_t

ポインタを格納するための符号付き整数型
ポインタを格納するための符号なし整数型
2つのポインタ値の符号付き差分を格納するため

の符号付き型
ポインタが参照可能な最大バイト数を示す符号

なしの値
ポインタが参照可能な最大バイト数を示す符号

付きの値

RedHawk Linux User’s Guide

D-4

配列D

32bitコードの下では、intとlongは配列のサイズを格納するために使用することが可能で

す。64bitの下では、配列は4GBよりも長くすることが可能です。intまたはlongに代わっ

て、移植性のためにsize_tデータ型を使用してください。これは64bitターゲット用に、も

しくは32bitで32bitターゲット用にコンパイルした場合に64bit符号付き整数型となりま

す。sizeof()およびstrlen()の両方からの戻り値は、どちらもsize_t型です。

宣言D

表D-2で示されるサイズ可変型のいずれかを使用するために64bitへ変更する必要のある変数、

パラメータ、関数/メソッドが返す型のどの宣言もまた修正する必要があります。

明示的なデータ・サイズD

明示的にアドレス・データのサイズが必要である場合、表D-3のデータ型を使用してくださ

い。本質的にデータのサイズを解決するANSIデータ型は存在せず、これらの型はLinux固有と

なります。

表D-3 固定精度のデータ型

データ型 定義
int64_t

uint64_t

int32_t

uint32_t

int16_t

uint16_t

int8_t

uint8_t

64-bit符号付き整数
64-bit符号なし整数
32-bit符号付き整数
32-bit符号なし整数
16-bit符号付き整数
16-bit符号なし整数
8-bit符号付き整数
8-bit符号なし整数

定数D

定数(特に16進数または2進数の値)は、32bit仕様である確立が高いです。例えば、32bit定数の

0x80000000は64bitでは0x0000000080000000になります。それが使用されている方法次第で、

結果は好ましくないことになる可能性があります。この問題を回避するために「~」演算子お

よび型接尾語を活用して下さい。(例：0x80000000定数は代わりに~0x7fffffffulとしても良いで

しょう)

APID

コードは64bitAPIを使用するように変更する必要がある可能性があります。一部のAPIは、明

示的な32bitデータ型と競合する64bitとしてコンパイラが解釈することになるデータ型を使用

します。

32bit コードから 64bit コードへの移植

D-5

呼び出し規約D

呼び出し規約はプロセッサ・レジスタが機能の呼び出し元と呼び出し先で使用する方法を明

記します。これは、Cコードおよびインライン・アセンブリ記述を同時に使用するハンド・コ

ーディングされたアセンブリ・コードを移植する場合に適用します。x86_64向けのLinux呼び

出し規約は表D-4に記載されています。

表D-4 呼び出し規約

レジスタ 状態 用途
%rax

%rbx

%rdi, %rsi, %rdx,

%rcx, %r8, %r9

%rsp

$rbp

%r10

%r11

%r12-%r15

%xmm0-%xmm1

%xmm2-%xmm7

%xmm8-%xmm15

%mmx0-%mmx7

%st0

%st1-%st7

%fs

volatile

Non-volatile

volatile

Non-volatile
Non-volatile

volatile

volatile
Non-volatile
volatile
volatile
volatile
volatile
volatile

volatile
volatile

可変引数が使用されているSSEレジスタの数に

関する情報を渡す一時的なレジスタ；最初に戻

るレジスタ
任意にベース・ポイントとして使用、呼び出し

先が保護する必要あり
整数の引数(1,2,3,4,5,6)を渡すために使用

スタック・ポインタ
フレーム・ポインタとして使用、呼び出し先が

保護する必要あり
関数の静的チェーン・ポインタを渡すために使

用する一時的なレジスタ
一時的なレジスタ
呼び出し先が保護する必要あり
浮動小数点引数を渡すおよび返すために使用
浮動小数点引数を渡すために使用
一時的なレジスタ
一時的なレジスタ
long double引数を返すために使用する一時的な

レジスタ
一時的なレジスタ
システムがスレッド固有のデータ・レジスタと

して使用するために予約

条件付コンパイルD

32bitと64bit実行用の条件付コードを提供する必要がある場合、表D-5のマクロを使用すること

が可能です。

表D-5 条件付コンパイル用マクロ

マクロ 定義
__amd64__

_i386

コンパイラはAMD64用のコードを生成します
コンパイラはx86用のコードを生成します

RedHawk Linux User’s Guide

D-6

その他D

その他の様々な問題は符号拡張、メモリ割り当てサイズ、桁送り、配列オフセットから生じ

る可能性があります。整数オーバーフローのセマンティクスに関する条件を構成する全ての

コードについては特に注意して下さい。

コンパイルD

既存のMakefileは、少しの修正もしくは修正なしでx86_64プロセッサ上でネイティブ64bitの実

行ファイルを構築するはずです。

以下のgccスイッチは移植性の問題を見つけるために使用することが可能です。詳細はgcc(1)
のmanページを参照して下さい。

-Werror -Wall -W -Wstrict-prototypes -Wmissing-prototypes
-Wpointer-arith -Wreturn-type -Wcast-qual -Wwrite-strings
-Wswitch -Wshadow -Wcast-align -Wuninitialized -ansi
-pedantic -Wbad-function-cast -Wchar-subscripts -Winline
-Wnested-externs -Wredundant-decl

テスト/デバッグD

64bitコードに対して標準的なRedHawk Linuxのテストおよびデバッグ手法に従ってください。

性能問題D

本章の情報は、お手持ちの64bitアプリケーションから最高のパフォーマンスを得る方法を説

明します。

メモリのアライメントおよび構造体のパディングD

アライメントの問題は例外は発生しませんが、性能の衝突を引き起こす可能性があります。

アライメントの不整はいくつかのクロック・サイクルを犠牲にして実行時に処理されます。

不十分に整列したオペランドの性能の副作用は大きくなる可能性があります。

構造体の中のデータは、結果として空間を無駄にするため非効率となる可能性のある境界線

に自然と並べられます。自然な整列とは2byteオブジェクトは2byteの境界線上、4byteのオブジ

ェクトは4byteの境界線上に格納されることを意味します。

32bit コードから 64bit コードへの移植

D-7

例えば、以下の構造体の定義は64bitコードを生成するときに24byteを消費します：

typedef struct _s {
int x;
int *p;
int z;

} s, *ps;

ポインタpは、xメンバーの後に追加するために4byteのパディングを引き起こして8byte境
界線上に整列されます。更に、構造体を8byteの境界線に合わせようと穴埋めするためにzメ
ンバーの後に4byteのパディングが追加されます。

最も効果的な構造体のパッキングは、構造体内で最大から最小へメンバーをパッキングする

ことにより実現されます。以下の宣言はより効果的です。これはたったの16byteで、どのよう

なパディングも必要としません：

typedef struct _s {
int *p;
int x;
int z;

} s;

潜在的なパディングのために、構造体内のフィールドの一定のオフセットを見つける最も安

全な方法は、stddef.hに定義されているoffsetof()マクロを使用することです。

RedHawk Linux User’s Guide

D-8

E-1

E
シールドCPU上のカーネル・レベル・デーモン

Linuxカーネルは、システム機能を実行するため多くのカーネル・デーモンを使用します。こ

れらのデーモンの一部はシステムのCPU毎に複製されます。プロセスからのCPUシールディ

ングはこれらの一部の「CPU毎」デーモンを除去しません。

以下のデーモンはプロセスをシールドしたCPU上で深刻なジッターの問題を引き起こす可能

性があります。幸い、これらのデーモンは慎重にシステムを構成および使用することにより

回避することが可能です。

kmodule cpu これらのデーモンはカーネル・モジュールがアンロードされる度に

作成および実行されます。リアルタイム・アプリケーションがシス

テム上で実行している間はカーネル・モジュールがアンロードされ

ないことを強く推奨します。

migration/cpu これらは特定のCPUからタスクを移動するために責任を負うタスク

移動デーモンです。プロセス・シールドしたCPUで動作しているプ

ロセスがそのCPUからの移動を強いられる状況において、これらの

デーモンはプロセス・シールドしたCPU上で動作します。以下のい

ずれかのインターフェースが使用される時、強制的な移動が発生す

る可能性があります：

/proc/pid/affinity
sched_setaffinity(2)
/proc/shield/procs
cpucntl(2)
delete_module(2)

バックグラウンド・プロセスのジッターが容認される可能性がある

場合のみ、シールドCPU上で実行中のアプリケーションはこれらの

インターフェースを使用する必要があります。

強制的な移動は、CPU_FREQおよびNUMAのカーネル構成オプシ

ョンにより有効にすることが可能な様々なカーネル機能によっても

行われます。これらのオプションは全てのRedHawk Linuxカーネル

構成でデフォルトで無効にされています。

kswapdnode これらは、メモリが残り少なくなった時にページを回収するために

スワップ・ページをスワップ・デバイスへ追い出すページ・スワッ

プ・アウト・デーモンです。

NUMA構成オプションが有効でカーネルが構築される時、各々が

シングルCPUへ割り付けられたこれらのデーモンのいくつかが存在

する可能性があります。CPUがプロセス・シールドされたまたは

(cpu(1)を使い)ダウンされた時、デーモンはシールドされていない

アクティブなCPUへ移動します。CPUがもはやシールドされていな

いまたはダウンされていない場合、デーモンは元へ戻されます。

NUMAが無効の時、これらは特定のCPUに割り付けられていない1
つのシステム全体のデーモンとなるため、kswapdはプロセスから

シールドされたCPUでは実行されず、非シールドCPU上の問題とな

ります。

NUMAはプレビルトRedHawk x86_64カーネルのみデフォルトで有

効になっています。

RedHawk Linux User’s Guide

E-2

kapmd これは電源管理要求を処理する拡張型電源管理(APM: Advanced
Power Management)デーモンです。これは常にCPU 0へ割り付けら

れます。APMはカーネル・ブート・パラメータ “apm=off”で無効に

する、またはAPMカーネル構成オプションを無効にすることで完

全に排除することが可能です。APMは全てのRedHawk Linuxカーネ

ル構成でデフォルトで無効となっています。何故ならこのデーモン

はCPU毎デーモンではないため、プロセスからシールドされたCPU
では実行されず、その結果、非シールドCPU上でのみ問題となりま

す。

以下のデーモンはプロセス・シールドされたCPU上で実行する可能性があります。しかし、

これらはそのCPUへ割り付けられたプロセスまたは割り込みのために必要な機能を実行する

ため、これらのデーモンはシールドされたCPUへ割り付けられたプロセスまたは割り込みに

より開始される処置の結果として作動されるだけであるため、デターミニズムに対する影響

という点ではこれらのデーモンは問題は少ないと考えられます。

ksoftirqd/cpu これらは特定CPU用にソフトIRQルーチンを実行するソフトIRQデ

ーモンです。デバイス・ドライバ割り込みハンドラが直接またはタ

スクレットを介して間接的にソフトIRQを使用する場合、これらの

デーモンのいずれかがプロセス・シールドされたCPU上で実行され

ます。ソフトIRQはローカル・タイマー、SCSI、ネットワークの割

り込みハンドラにより直接使用されます。タスクレットは多くのデ

バイス・ドライバにより使用されます。

ksoftirqdのスケジューリング優先度は、grub行ブート・オプショ

ン「softirq.pri=」を使って変更することが可能です。リアルタイ

ム・システムでは、デフォルトの優先度は高い値が設定されており

変更すべきではないことに留意して下さい。それはリアルタイムに

最適化されたシステムでは、そのデーモンは全てのsoftirqの処理を

実行するためです。非リアルタイム・システムではそうではなく、

デフォルトでゼロに設定されています。

events/cpu これらは特定CPU上のプロセスにより開始される様々なカーネル・

サービスのために仕事を実行するデフォルトのワーク・キュー・ス

レッドです。これらは同じCPUへ割り付けられたデバイス・ドライ

バ割り込みルーチンにより保留された仕事を実行することも可能で

す。これらのデーモンは-10のナイス値で実行します。

aio/cpu これらは特定CPU上のプロセスにより完全な非同期I/O要求が

io_submit(2)システムコールで起こされるワーク・キュー・スレッ

ドです。これらのデーモンは-10のナイス値で実行します。

reiserfs/cpu これらはレイザー・ファイル・システムで使用されるワーク・キュ

ー・スレッドです。これらのデーモンは-10のナイス値で実行しま

す。

xfsdatad/cpu
xfslogd/cpu これはIRIXジャーナリング・ファイル・システム(XFS)で使用され

るワーク・キュー・スレッドです。これらのデーモンは-10のナイ

ス値で実行します。

シールド CPU 上のカーネル・レベル・デーモン

E-3

cio/cpu
kblockd/cpu
kworker/*
wanpipe_wq/cpu これらは様々なデバイス・ドライバに使用されるワーク・キュー・

スレッドです。これらのスレッドは特定CPU上のプロセスによって

開始される様々なカーネル・サービスのために仕事を実行します。

これらは同じCPUへ割り付けられたデバイス・ドライバ割り込みル

ーチンにより保留された仕事を実行することも可能です。これらの

デーモンは-10のナイス値で実行します。

どのサード・パーティのドライバでも、シールドCPUへ割り付けられたプロセスもしくは割

り込みハンドラにより始動されるプライベート・ワーク・キューおよびワーク・キュー・ス

レッドを作成することが可能であることにも注意して下さい。これらのデーモンは常にname /
cpu と命名され-10のナイス値で実行します。

RedHawk Linux User’s Guide

E-4

F-1

F
シールドCPU上のプロセッサ間割り込み

本付録では、シールドCPU上でのプロセッサ間割り込みの影響および最高のパフォーマンス

のためにこれらの割り込みの軽減、排除する方法について説明します。

概要F

1つ以上のシールドCPUで構成されるRedHawkプラットフォームにおいて、他のCPUの特定の

動作はシールドCPUへ割り込みが送信される要因となる可能性があります。これらのプロセ

ッサ間割り込みは、例えば、それぞれのデータ・キャッシュのフラッシュまたはそれぞれの

トランスレーション・ルックアサイド・バッファ・キャッシュ(TLB: Translation Look-aside
Buffer)のフラッシュのような一部のCPU毎の特定タスクを処理することを他のCPUに強制する

ための方法として使用されます。

プロセッサ間割り込みは潜在的にシールドCPUに対する顕著なジッターを引き起こす可能性

があるため、これらの割り込みが発生する原因となる動作、そしてこれらの割り込みの一部

を排除するためにお手持ちのシステムを構成する方法を理解することに役立ちます。

グラフィクス割り込みF

グラフィクスまたはCUDAベースのアプリケーション実行中は様々なプロセッサ間割り込みが

発生します。

NVIDIAグラフィクス・ドライバは、グラフィクス処理ユニット(GPU: Graphics Processing
Unit)のデータの読み書きをするために様々なキャッシュ禁止メモリ・バッファを割り当てお

よび設定をします。いつバッファが割り当てもしくは解放されようとも、プロセッサ間割込

みはTranslation Lookaside Buffer (TLB)キャッシュ内のフラッシュを動作させます。これらのプ

ロセッサ間割込みはシールドCPU上で実行中のデターミニスティック・アプリケーションに

影響を及ぼす可能性があります。これらの影響は次の動作中に発生する可能性があります：

• XサーバーやVNCサーバー等を含むグラフィカル・アプリケーションの開始または停止
• CUDAアプリケーションの開始または停止
• 非グラフィカルTTYからグラフィカルTTYへの切り替え

プロセッサ間割込みは、事前に割り当てられたキャッシュ禁止ページのプールを利用するこ

とで排除または縮小される可能性があります。ドライバの割り当てを満たす必要のあるペー

ジはそのページ・プールから直接取得し、それらのページが解放される時にページ・プール

へ戻されます。これはCPUページ・マッピングを同期するために追加のフラッシュ操作を実

行する必要性を取り除きます。

RedHawk Linux User’s Guide

F-2

Concurrent Real-Timeより出荷されるNVIDIAドライバは、新しくページを事前に割り当てるよ

う改良された方式に依存します。現在は次項で説明される「RedHawkページプール・ドライ

バー」を使用します。

NVIDIA CUDAは、CPU上で必要とするわずかな時間で多くの複雑な計算問題を解くために

NVIDIAグラフィクス処理ユニット(GPU)に搭載される並列計算エンジンを利用する汎用並列

計算アーキテクチャです。

CUDAアプリケーションはNVIDIA GPUと接続するためにキャッシュ禁止バッファを利用する

ので、同じ事前割当てグラフィクス・ページプール・ページは、CUDAアプリケーションを実

行しているシステムのシールドCPUのジッターを大幅に削減するのにも役立ちます。特別な

CPUアプリケーションのコーディングまたは構成は必要ありません。

NOTE

9.1以前のRedHawkのバージョンはカーネルに組み込まれるNVIDIAド

ライバが標準装備でした。RedHawk 9.1はNVIDIAアドオン・ドライバ

ー・メディアを標準装備する新しいページプール・事前割り当てドラ

イバを単独で使用します。

9.1以前のRedHawkのバージョンは、承認済みNVIDIAドライバと新し

いページプール事前割り当てドライバをインストールするために

NVIDIAアドオン・ドライバー・メディアも使用することも可能で

す。インストール・スクリプトは以前のNVIDIA RedHawkインストー

ルを削除します。

RedHawkページ・プール・ドライバF

RedHawkはページを管理、割り当て、他のドライバに供給するページ・プール・ドライバを

提供します。全てのメモリはページ・プール・ドライバが事前に割り当てられることで提供

されるので、メモリを解放または割り当て時にページプール・ドライバを利用するドライバ

はプロセッサ間割込みの原因とはなりません

現時点で、Concurrent Real-Timeのメディアと一緒に出荷されるNVIDIAドライバのみがペー

ジ・プール・ドライバを使用することが許可されています。ページ・プール・ドライバは

NVIDIAドライバより依頼されるページの割り当てや提供について責任を負います。これは

NVIDIAドライバをロードする時はいつでも動的にロードされるモジュール式ドライバです。

本ドライバはカーネル・ソースに含まれていますが、カーネルとは関係なく出荷されます。

このような方法で古いシステムにおいて新しいNVIDIAドライバを対応することが可能となり

ます。

ページ要求された時にページプールが空の場合、ページは動的に割り当てられてプロセッサ

間割込みが通常どおり発生します。これらのページが解放される時、システムに解放される

代わりにページ・プール・ドライバに戻されます。

PREALLOC_PAGEPOOL_PAGESカーネル・パラメータに正の値が設定されている場合、この

値はプールに事前に割り当てられるページ数を表します。20480ページの値が全てのプレビル

トRedHawk Linuxカーネルに設定されています。しかしながら、ページ・プール・ドライバが

ロードされるまでページ割り当ては発生しません。PREALLOC_PAGEPOOL_PAGESに0(ゼロ)
が設定されている場合、ページプール割り当ては無効となります。

シールド CPU 上のプロセッサ間割り込

F-3

代わりにカーネル起動パラメータ(preallocated_pages=<numpages>)を設定することで静的に

コンパイルされた値を無効にすることが可能です。numpagesは事前割り当てされるページ数

を表します。カーネル起動パラメータpagepool_disabledを使ってページプール割り当てを無効

にすることも可能です。カーネル起動パラメータの設定についてはRockyはblscfg(1)のmanペ
ージ、Ubuntuはccur-grub2(1)を参照して下さい。

/proc/driver/pagepool/statsファイルは、ページプールの使用率を表示および実際に使用して

いるページの最大量を監視するためにいつでも調査することが可能です。例えば：

$ cat /proc/driver/pagepool/stats
Pre-allocated pages: 20480

Total allocated pages: 23550

Pages in use: 0

Pages to be zeroed: 0

Maximum pages used: 20000

プール内のページ数を増やすまたは減らすためにファイルへ書き込むことが可能です。これ

は値を変更する前に様々な値でお手持ちのシステムをテストすることを可能にします。ファ

イルに書き込まれるページの値はPages in useフィールドの現在の値以上である必要があ

ることに注意して下さい。

以下の例はプールの事前割り当てページ数を5120へ下げます。

$ echo 5120 > /proc/driver/pagepool/stats

本ファイルへ書き込むことでページ数の値を変更する手法は起動後は持続しないので、ユー

ザーは本ファイルへ書き込むためのCAP_SYS_ADMINケーパビリティを持つことが必要で

す。

非現実的な大きな値を指定するとページ割り当ての失敗という結果になり、割り当ては取り

消されます。ファイルへの書き込み後、ファイルを読み出すことでページ割り当を検証する

ことが可能です。

システムで事前割り当てされたページ数を表示および変更するためにpagepool-memory(1)
ユーティリティも使用する事が可能です。詳細についてはpagepool-memory(1)のmanページ

を参照してください。

ユーザー・アドレス空間のTLBフラッシュ割り込みF

シールドCPU上で実行するためにバイアスされたプロセスおよび他のCPU上で実行するプロ

セスのアドレス空間の共有はユーザー空間TLBフラッシュ・プロセッサ間割り込みを受信す

る可能性があります。共有メモリ領域は利用していますが同じCPU上のプロセスだけでアド

レス空間を共有しているプロセスは、どのような共有メモリ動作に起因するプロセッサ間割

り込みも気づくことはありません。

Pスレッド・ライブラリを使用するマルチ・スレッド・アプリケーションとAdaアプリケーシ

ョンは共有メモリ・アプリケーションの実例です(プログラマーは共有メモリを作成するため

に明示的に呼び出しを行っていません)。これらのプログラムのタイプでは、Pスレッド・ラ

イブラリとAdaの実行時はユーザーのために共有メモリ領域を作成しています。従って、これ

らのアプリケーションは、同じスレッド・グループまたは同じAdaプログラムからのスレッド

がシステム内の別のCPU上で実行する時にこのタイプのプロセッサ間割り込みの影響を受け

やすくなります。

RedHawk Linux User’s Guide

F-4

ユーザー・アドレスTLBフラッシュ・プロセッサ間割り込みは、同じアドレス空間を共有し

ている他のプロセスが異なるCPUで実行している時に発生し、そのアドレス空間属性の変更

の原因となります。ページ・フォルト、ページ・スワップ、mprotect()呼び出し、共有メモ

リ領域の作成/削除等を引き起こすメモリ参照のような動作は、このタイプのプロセッサ間割

り込みの原因になり得るアドレス空間属性変更の実例となります。この類のプロセッサ間割

り込みは、1割り込みにつき最大10μ秒に達する小さな影響を与えます。大量のメモリを共有

されている場合、影響はもっと深刻となる可能性があります。

これらのタイプのプロセッサ間割り込みを排除するために、シールドCPU上で実行するタイ

ム・クリティカル・プロセスがそのアプリケーションのタイム・クリティカル部分の間中は

共有メモリ領域に影響を与える操作を回避するようなアプリケーションをユーザーは利用お

よび記述することを推奨します。これはメモリのページをロック、mprotect()を介したメモ

リ保護を変更しない、新しい共有メモリ領域を作成しない、既存の共有メモリ領域を削除し

ないことにより達成することが可能です。

G-1

G
シリアル・コンソールの設定

111

本章ではRedHawk Linux下でシリアル・コンソールを構成するために必要な手順を提供しま

す。

1. 以下のカーネル・オプションを含めるためにブート・コマンド行を修正します：

console=tty#,baud#

tty#はコンソール用に使用するシリアル・ポート、baud#は使用するシリアル通信

速度です。通常は殆どが以下のようになります：

console=ttyS0,115200

2. 適当なデータ端末装置をシリアル・ポートに接続し、選択された通信速度で通信する

よう構成されている事を確認してください。使用されているデバイスの仕様によって

は、ヌル・モデムが必要となる可能性があります。

安価なLinux PCはデータ端末装置としては優れた選択であることに気付いて下さい。

シリアル通信セッションの作成に関する詳細な情報はminicom(1)のmanページを参照

して下さい。

Windows PCもまた使用することが可能ですが、この説明は本資料の範疇を超えてい

ます。

シリアル・コンソールのもう1つの用途は、ハングする可能性のあるシステムを調査するため

にリアルタイム・シェルを構成することです。この手順は問題が発生している全てのアプリ

ケーションがロードされる前に設定されたシリアル・コンソール上で完了している必要があ

ります。

1. ハングアップする可能性のあるシステムのシリアル・コンソールを設定します。例え

ば：

• /etc/grub2.cfgを修正して下さい：

1. 以下の行を### END /etc/grub.d/00_header ### sectionセクションの

前に追加して下さい：

serial --speed=115200 --unit=0 --word=8 --parity=no --
stop=1
terminal_input console serial
terminal_output console serial

2. シリアル・コンソールを介して起動する各カーネルに対して次のgrubオプショ

ンをそのカーネルのlinux16またはlinuxの行に付け足して下さい：

console=ttyS0,115200

• シリアル・ケーブルを一番低い番号のシリアル・ポートと他の計算機またはラ

ップトップのシリアル・ポートに接続します。

2. もう一方の計算機がLinuxである場合：

• シェルを開きます。
• # minicom –s.
• 「Serial port setup」を選択し「Enter」。
• デバイスを/dev/ttyS0へ変更します。

RedHawk Linux User’s Guide

G-2

• 通信速度を115200へ変更します。
• 「Exit」を選択し「Enter」(「Exit from minicom」ではありません)。
• ログイン・プロンプトからルートとしてログインします。

もう一方の計算機がWindowsの場合：
• ターミナル・アプリケーションを起動します。
• COM1を使用して接続します。
• 通信速度を115200に設定します。
• ログイン・プロンプトからルートとしてログインします。

3. ルート・ログインから、以下で示すRTConsole.shスクリプトを実行します。引数と

してどのタスクよりも高いリアルタイム優先度を与えます。例えば：

./RTConsole.sh 90

この手順はデバッグ用に「ハングアップ」している間もアクティブなままであるログイン・

シェルおよびシステムへのアクセスと視認性を提供します。幸先良い出足はどのプロセスが

システムを支配しているのかを割り出すためにtop(1)を実行することです。

デバッグが終了したらシステムを再起動する必要があります：

reboot

RTConsole.sh

#!/bin/bash
if [$UID -ne 0]
then

echo "Must be root to execute."
exit

fi

if [$# -eq 0]
then

echo "Usage: RTConsole <Login shell priority>"
exit

fi

for i in $(ps -e -o pid,cmd | fgrep /0 | fgrep -v fgrep | awk
'{print $1}');
do

run -s fifo -P $1 -p $i
done
run -s fifo -P $1 -p $PPID

H-1

H
RedHawkの起動コマンド・ライン・パラメータ

ここに含まれているのは、RedHawkで特有の起動コマンド・ライン・パラメータです。起動

パラメータの完全なリストはkernel-params.txtファイル内にあります。

起動パラメータはカーネルに組み込まれている機能を定義します。起動コマンドはカーネル

起動時に自動的に包含するために/etc/grub2.cfgへ追加、またはカーネル起動している時に

起動コマンド・ラインに指定することが可能です。

カーネル起動パラメータはカーネル・ソース・ツリーのDocumentation/admin-guideディ

レクトリにあるkernel-params.txtファイル内に定義されています。

以下で使用されているkern-nameは、カーネル・ソース・パッケージをインストールしたと

時に/usr/src/ツリー以下に生成されていディレクトリの名称であることに注意して下さい。

名称の例がlinux-6.12.33-RedHawk-9.6である場合、6.12.33はkernel.orgのバージョンで9.6は
RedHawkのバージョンとなります。従って、このディレクトリ名称はRedHawkのリリース毎

に変化します。

kernel-params.txtファイルへのパス形式は次のようになります：

/usr/src/linux-<kern-name>-source/Documentation/admin-guide/

Ubuntuシステムでのパスは次のようになります：

/usr/src/linux-<kern-name>/Documentation/admin-guide/

次のアルファベット順に並んだパラメータのリストは、改良されたリアルタイム性能を提供

するためにRedHawkが追加または変更したLinuxカーネル・パラメータの全てが含まれてい

ます。これらに関する詳細については上述のkernel-params.txtファイルを参照して下さ

い。

• acpi_no_setmode_retry
• adjtimex.debug.on
• enable_managed_irqs
• fbs.intr.serialize
• idle.forcespin
• idle.shielded
• jrcu.ehz
• jrcu.hz
• jrcu.pri
• kvm.kvmrt_gs_hc_host_enabled
• kvmrt_gs_hc_guest_enabled
• kvmrt_gs_syscall_enabled

RedHawk Linux User’s Guide

H-2

• masterclock
• no_rcim_bar2_resize
• no-stagger-sched-tick
• serial_bound
• slub_cpu_partial
• smi_sniffer
• softirq.nodaemonize
• softirq.pri
• stop_machine_warning
• tsc
• tsc.recalibrate.async
• tsc.recalibrate.none
• tsc.recalibrate.sync
• vfio-pci.addr
• watchdog.verbose
• workqueue.pri
• workqueue.shield.nomigrate
• xilinx.fpga.aspm.off

RedHawk の起動コマンド・ライン・パラメータ

H-3

RedHawk Linux User’s Guide

H-4

	前書き
	目次
	1
	序文
	概要 1
	RedHawk Linuxカーネル1
	システム・アップデート1
	リアルタイム機能1
	プロセッサ・シールディング1
	プロセッサ・アフィニティ1
	ユーザー・レベル・プリエンプション制御1
	高速ブロック/ウェイク・サービス1
	RCIMドライバ1
	Frequency-Based Scheduler 1
	/procの修正1
	カーネル・トレース機能1
	ptrace拡張1
	カーネル・プリエンプション1
	リアルタイム・スケジューラ1
	低レイテンシー拡張1
	優先度継承1
	高分解能プロセス・アカウンティング1
	ケーパビリティのサポート1
	カーネルのコア・ダンプ/クラッシュおよびライブ解析1
	ユーザー・レベル・スピン・ロック1
	usermapと/procのmmap 1
	ハイパースレッディング1
	XFSジャーナリング・ファイルシステム1
	POSIXリアルタイム拡張1
	ユーザー優先度スケジューリング1
	メモリ常駐プロセス1
	メモリ・マッピングおよびデータ共有1
	プロセス同期1
	非同期入出力1
	同期入出力1
	リアルタイム・シグナルの挙動1
	クロックおよびタイマー1
	メッセージ・キュー1

	2
	リアルタイム性能
	シールドCPUモデルの概要2
	デターミニズムの概要2
	プロセス・ディスパッチ・レイテンシー2
	割り込み禁止の効果2
	割り込みの影響2
	プリエンプション禁止の効果2
	オープン・ソース・デバイス・ドライバの影響2

	シールディングでリアルタイム性能を向上する方法2
	バックグラウンド・プロセスからのシールディング2
	割り込みからのシールディング2
	ローカル割り込みからのシールディング2

	CPUシールディングのインターフェース2
	shieldコマンド2
	shieldコマンド例2
	終了ステータス2
	shieldコマンド拡張機能2

	cpuctlおよびcpustatシステムコール2
	CPUシールディングの/procインターフェース2
	systemdシールド・サービス2
	CPUへの割り込み割り当て2
	systemdシールド・サービス2-16
	/procインターフェース2-17
	管理割り込みに関するカーネル起動オプション2

	CPUへのプロセス割り当て2
	runコマンド2-18
	/procインターフェース2-18
	sched_setaffinity()2
	mpadvise()2
	initへのCPUアフィニティ割り当て2

	シールドCPUの設定例2

	デターミニズムを高める手順2
	メモリのページをロック2
	プログラム優先度の設定2
	遅延割り込み処理の優先度設定2
	別プロセスの起床2
	キャッシュ・スラッシングの回避2
	物理メモリの予約2
	NUMAノードへのバインディング2
	4-WayシステムのI/Oスループット2
	ハイパースレッディングの理解2
	システム構成2-33
	推奨されるCPU構成2
	標準的なシールドCPUモデル2
	割込みの分離を使ったシールド2
	ハイパースレッドのシールド2
	浮動小数点 / 整数の共有2
	データ・キャッシュの共有2
	単一プロセッサのシールド2

	メモリ不足状態の回避2

	Linuxのデターミニズムに関する既知の問題2

	3
	リアルタイム・プロセス間通信
	概要3
	POSIXメッセージ・キュー3
	System Vメッセージ3
	メッセージの利用3
	msggetシステムコール3
	msgctlシステムコール3
	msgsndおよびmsgrcvシステムコール3
	メッセージの送信3
	メッセージの受信3

	POSIX共有メモリ3
	shm_openルーチンの利用3
	shm_unlinkルーチンの利用3

	System V共有メモリ3
	共有メモリの利用3
	shmgetシステムコール3
	shmctlシステムコール3
	共有メモリ領域をI/O空間へバインド
	shmgetの利用3
	shmbindの利用3

	shmatおよびshmdtシステムコール3
	共有メモリ領域の結合3
	共有メモリ領域の分離3

	共有メモリ・ユーティリティ3
	shmdefineユーティリティ3
	shmconfigコマンド3

	4
	プロセス・スケジューリング
	概要4
	プロセス・スケジューラの管理方法4
	スケジューリング・ポリシー4
	デッドライン・スケジューリング(SCHED_DEADLINE) 4
	ファーストイン・ファーストアウト・スケジューリング(SCHED_FIFO) 4
	ラウンドロビン・スケジューリング(SCHED_RR) 4
	タイムシェアリング・スケジューリング(SCHED_OTHER) 4
	バッチ・スケジューリング(SCHED_BATCH) 4
	低優先度スケジューリング(SCHED_IDLE) 4

	性能向上のための手続き4
	優先度設定方法4
	割り込みルーチン4
	SCHED_FIFO vs SCHED_RR4
	CPUをロックする固定優先度プロセス4
	メモリのロック4
	CPUアフィニティとシールド・プロセッサ4

	プロセス・スケジューリング・インターフェース4
	POSIXスケジューリング・ルーチン4
	sched_setschedulerルーチン4
	sched_getschedulerルーチン4
	sched_setparamルーチン4
	sched_getparamルーチン4
	sched_yieldルーチン4
	sched_get_priority_minルーチン4
	sched_get_priority_maxルーチン4
	sched_rr_get_intervalルーチン4

	runコマンド4

	5
	プロセス間同期
	プロセス間同期の理解5
	再スケジューリング制御5
	再スケジューリング変数の理解5
	resched_cntlシステムコールの利用5
	再スケジューリング制御マクロの利用5
	resched_lock5
	resched_unlock5
	resched_nlocks5

	再スケジューリング制御ツールの適用5

	ビジーウェイト相互排他5
	spin_mutex変数の理解5
	spin_mutexインターフェースの利用5
	spin_mutexツールの適用5
	nopreempt_spin_mutex変数の理解5
	nopreempt_spin_mutexインターフェースの利用5

	POSIXカウンティング・セマフォ5
	概要5-12
	インターフェース5
	sem_initルーチン5
	sem_destroyルーチン5
	sem_openルーチン5
	sem_closeルーチン5
	sem_unlinkルーチン5
	sem_waitルーチン5
	sem_timedwaitルーチン5
	sem_trywaitルーチン5
	sem_postルーチン5
	sem_getvalueルーチン5

	POSIXミューテックスの基礎5
	ロウバスト・ミューテックス5
	優先度継承5
	ユーザー・インターフェース5
	pthread_mutex_consistent5
	pthread_mutexattr_getprotocol5
	pthread_mutexattr_getrobust5
	pthread_mutexattr_setprotocol5
	pthread_mutexattr_setrobust5

	POSIXミューテックス・プログラムのコンパイル5

	System Vセマフォ5
	概要5-25
	System Vセマフォの利用5
	semgetシステムコール5
	semctlシステムコール5
	semopシステムコール5

	条件同期5
	postwaitシステムコール5
	serverシステムコール5
	server_block5
	server_wake15
	server_wakevec5

	条件同期ツールの適用5

	6
	プログラム可能なクロックおよびタイマー
	クロックおよびタイマーの理解6
	RCIMクロックおよびタイマー6
	POSIXクロックおよびタイマー6

	POSIX時間構造体の理解6
	POSIX clockルーチンの利用6
	clock_settimeルーチンの利用6
	clock_gettimeルーチンの利用6
	clock_getresルーチンの利用6

	POSIX timerルーチンの利用6
	timer_createルーチンの利用6
	timer_deleteルーチンの利用6
	timer_settimeルーチンの利用6
	timer_gettimeルーチンの利用6
	timer_getoverrunルーチンの利用6

	POSIX sleepルーチンの利用6
	nanosleepルーチンの利用6
	clock_nanosleepルーチンの利用6

	7
	システム・クロックおよびタイマー
	システム時間計測7
	ローカル・タイマー7
	機能7
	CPUアカウンティング7
	プロセス実行時間のクォンタムおよび制限7
	インターバル・タイマーのデクリメント7
	システム・プロファイリング7
	CPU負荷バランシング7
	CPU再スケジューリング7
	POSIXタイマー7
	RCU処理7
	その他7

	ローカル・タイマーの禁止7

	8
	ファイルシステムとディスクI/O
	ジャーナリング・ファイルシステム8
	XFSファイルシステムの作成8
	XFSファイルシステムのマウント8

	ダイレクト・ディスクI/O8

	9
	メモリ・マッピング
	ターゲット・プロセスのアドレス空間へのマッピングの確立9
	mmap(2)の利用9
	usermap(3)の利用9
	検討事項9
	カーネル構成パラメータ9

	10
	Non-Uniform Memory Access (NUMA)
	概要10
	メモリ・ポリシー10
	NUMAユーザー・インターフェース10
	run(1)を利用したNUMAサポート(プロセス用) 10
	shmconfig(1)を利用したNUMAサポート(共有メモリ領域用) 10
	システムコール10
	ライブラリ機能10
	情報提供ファイルおよびユーティリティ10
	ノード統計値10
	マッピングされたページのノードID10

	numastatを利用したNUMA成功/失敗統計値10

	NUMAバランシング10
	NUMAバランシングの有効化10
	シールディングの相互作用10
	シールディングの制限10

	性能ガイドライン10
	タスク全体のNUMA mempolicy10
	共有メモリ領域10

	構成10

	11
	カスタム・カーネルの構成および構築
	序文11
	カーネル・パッケージの構築手順11
	Rocky互換システムの手順11
	Ubuntuベース・システムの手順11

	xconfig11
	3rdパーティ・ドライバ・モジュールの構築11
	動的カーネル・モジュール・サポート11

	12
	カーネル・デバッギング
	概要12
	VMcore生成イベント12
	vmlinuxネームリスト・ファイルの保存12
	VMcore構成12
	kdump構成の更新12
	scp VMcore生成の構成12
	NFS VMcore生成の構成12
	sysctl(1) kdumpオプション12
	crashを利用したダンプの解析12
	ダンプ・ファイルの解析12
	実行中システムの解析12
	ヘルプの入手12

	NMI割り込み12
	NMIウォッチドッグ12

	13
	PAMケーパビリティ
	序文13
	PAMサービス・ファイル13
	PAM構成ファイル13

	ロール・ベース・アクセス制御13
	ロール13
	グループ13
	ユーザー13

	実例：リアルタイム・ユーザー向けPAMケーパビリティの構成13
	通常使用されるサービスの割り当て13
	リアルタイム・ロールの割り当て13
	リアルタイム・ユーザーの割り当て13
	リアルタイム・ケーパビリティの確認13

	14
	デバイス・ドライバ
	デバイス・ドライバの種類の理解14
	ユーザー・レベル・デバイス・ドライバの開発14
	PCIリソースへのアクセス14
	PCI BARインターフェース14
	bar_scan_open(3) 14
	bar_scan_next(3) 14
	bar_device_count(3) 14
	bar_scan_rewind(3) 14
	bar_scan_close(3) 14
	free_pci_device(3) 14
	bar_mmap(3) 14
	bar_munmap(3) 14

	カーネル・スケルトン・ドライバ14
	サンプル・ドライバの機能の理解14
	ドライバのテスト14

	カーネル・レベル・デバイス・ドライバの開発14
	ドライバ・モジュールの構築14
	カーネルの仮想アドレス空間14
	リアルタイム性能の問題14
	割り込みルーチン14
	割り込み機能の遅延(ボトム・ハーフ) 14
	ソフトIRQとタスクレット14
	ワーク・キュー14
	優先度の理解14
	マルチ・スレッディングの問題14

	ユーザー空間I/Oドライバ(UIO) 14
	性能の解析14

	15
	PCI-to-VMEサポート
	概要15
	文書15
	ハードウェアのインストール15
	開梱15
	アダプター・カードの設定15
	PCIアダプター・カードのインストール15
	VMEバス・アダプター・カードのインストール15
	アダプター・ケーブルの接続15

	ソフトウェアのインストール15
	構成15
	btpモジュール15
	デバイス・ファイルおよびモジュール・パラメータ仕様15
	VMEバス・マッピング15

	ユーザー・インターフェース15
	API関数15
	バインド・バッファの実装15
	bt_get_info BT_INFO_KMALLOC_BUF15
	bt_set_info BT_INFO_KMALLOC_SIZ15
	bt_set_info BT_INFO_KFREE_BUF15
	バインド・バッファの追加情報15
	bigphysareaパッチ15
	btpモジュールのアンロード15
	bt_bind rem_addr_pパラメータ15
	ローカル・メモリ15

	VMEバス空間へのマッピングおよびバインド15
	bt_hw_map_vme15
	bt_hw_unmap_vme15
	/procファイル・システム・インターフェース15
	VMEバス・マッピングの表示15
	VMEバス・マッピングの生成15
	VMEバス・マッピングの削除15

	アプリケーション例15
	bt_bind_mult15
	bt_bind_multsz15
	bt_hwmap15
	bt_hwunmap15
	readdma15
	shmat15
	shmbind15
	shmconfig-script15
	vme-mappings15
	writemem15
	writedma15

	16
	PRTカーネル・オプション
	PRTとは？16
	RedHawk vs PRT16
	PRTの注意事項16
	PRTカーネル・フレイバー16
	追加リソース16

	A
	メッセージ・キュー・プログラム例
	POSIXメッセージ・キュー例A
	System Vメッセージ・キュー例A

	B
	リアルタイム機能のためのカーネル・チューニング
	C
	ケーパビリティ
	概要B
	ケーパビリティB

	D
	32bitコードから64bitコードへの移植
	序文D
	手順D
	コーディング要件D
	データ型のサイズD
	long型D
	ポインタD
	配列D
	宣言D
	明示的なデータ・サイズD
	定数D

	APID
	呼び出し規約D
	条件付コンパイルD
	その他D

	コンパイルD
	テスト/デバッグD
	性能問題D
	メモリのアライメントおよび構造体のパディングD

	E
	シールドCPU上のカーネル・レベル・デーモン
	F
	シールドCPU上のプロセッサ間割り込み
	概要F
	グラフィクス割り込みF
	RedHawkページ・プール・ドライバF
	ユーザー・アドレス空間のTLBフラッシュ割り込みF

	G
	シリアル・コンソールの設定
	H
	RedHawkの起動コマンド・ライン・パラメータ

