

A Concurrent Real-Time White Paper

2881 Gateway Drive

Pompano Beach, FL 33069

(954) 974-1700

www.concurrent-rt.com

Using ROS with RedHawk Linux on the

NVIDIA Jetson TX2

By: Jason Baietto

Chief Systems Architect

Linux Group

June 2018

http://www.concurrent-rt.com/

Using ROS with RedHawk Linux on the NVIDIA Jetson TX2 Page 2

Overview

This paper provides details for installing and running ROS 2 under the RedHawk™ Linux® real-time

kernel and tools available for the NVIDIA® Jetson TX2 and TX2i development boards. Also included is a

look at RedHawk’s real-time performance during the execution of the ROS Pendulum Control demo.

Installation

First, use Jetpack 3.2 to initialize a TX2 or TX2i development board with L4T 3.2 and then install

RedHawk Linux 7.3.1 according to the instructions detailed in the RedHawk 7.3.1 R28.2 for Jetson

TX2/TX2i Release Notes.

Next, perform the following steps to install the ROS 2 Ardent release onto a TX2:

1. Install curl utility
Issue the following commands to fetch and install curl from the Ubuntu repositories:

sudo apt update
sudo apt install curl

2. Import ROS 2 public key
Issue the following commands to fetch and install the ROS 2 public key to enable ROS 2

package signature verification:

curl http://repo.ros2.org/repos.key | sudo apt-key add –

3. Add ROS 2 package source definition

Create a package source file named /etc/apt/sources.list.d/ros2-latest.list

with the following contents:

deb [arch=arm64] http://repo.ros2.org/ubuntu/main xenial main

4. Retrieve full list of ROS 2 packages
Issue the following commands to generate the full list of ROS 2 packages that are currently

available for download and installation:

sudo apt update
apt-cache search 'ros-ardent-*' | cut -f1 -d' ' > full.txt

5. Remove ROS 1 packages from list
Certain ROS 2 packages depend upon ROS 1 packages in order to meet their package

dependency requirements; installing ROS 1 packages would require additional package sources

Using ROS with RedHawk Linux on the NVIDIA Jetson TX2 Page 3

to be defined, however these packages are not needed and can be eliminated from the full

package list with the following command:

grep -v -e ros1 -e turtlebot full.txt > packages.txt

6. Install ROS 2 packages
Issue the following command to download and install the modified list of ROS 2 packages:

sudo apt install $(<packages.txt)

Package download and installation should take approximately ten minutes to complete.

NOTE

The rest of this document will refer to ROS 2 Ardent simply as ROS for brevity.

Activation

Interacting with ROS software requires users to first define several environment variables, and this can

be accomplished with the following command:

source /opt/ros/ardent/setup.bash

The above command can be invoked interactively as needed, or it can be appended to a user’s

~/.bashrc file to have these variables automatically defined upon user login.

Exploration

To verify that ROS has been installed and configured correctly, users can experiment with the newly

installed ROS Intra-Process Communication demo. Full source code and complete details about this

demo can be found at this URL:

https://github.com/ros2/ros2/wiki/Intra-Process-Communication

Briefly, this demo creates two independent ROS nodes that communicate with each other using the

ROS publish/subscribe inter-process communication model. Start the demo with the following

command:

ros2 run intra_process_demo two_node_pipeline

https://github.com/ros2/ros2/wiki/Intra-Process-Communication

Using ROS with RedHawk Linux on the NVIDIA Jetson TX2 Page 4

While this demo is running you will see output displayed indicating that messages are being published

by one node, followed by acknowledgements that messages have been received by the other node.

Issue the following command from a different bash shell to see the ROS nodes that are currently active:

ros2 node list

The output will show that two ROS nodes exist while the demo is running: one named producer and

one named consumer.

There are many ROS tutorials and demonstrations available on the Internet that users are encouraged

to seek out to learn more about ROS.

Benchmarking

The installed ROS Pendulum Control demo can be used to measure the real-time performance of a

system; this demo simulates an inverted pendulum and it attempts to keep the pendulum aligned

vertically by constantly adjusting a horizontal force at the base of the pendulum. The demo also runs a

significant stress load in parallel on the system to more accurately determine the worst-case latency.

This demo cannot be run by the root user on the TX2 because it utilizes an 8 GB data structure and

when run as root it attempts to lock down all 8 GB into memory to eliminate the impact of page faults

on real-time performance. The TX2 only has a total of 8 GB RAM and does not have sufficient memory

available to lock down all pages; running as root will cause the demo to trigger an out-of-memory error

and the demo will abort.

The demo can successfully be run by a non-root user because it only accesses the 8 GB data structure

sparsely during its execution, however it will not be able to run with boosted priority and its

measurements will include the additional latencies caused by page faults.

Baseline Performance

First, invoke the Pendulum Control demo as the nvidia user without using any real-time features:

pendulum_launch.bash

You may see some errors about lacking the permissions required to lock down memory pages and

boost priority at the start of the run, however the demo will ignore these errors and continue to run

until it is interrupted. You should see many output samples like the following displayed:

Commanded motor angle: 1.570796

Actual motor angle: 1.567588

Current latency: 484711 ns

Mean latency: 765336.716988 ns

Min latency: 12416 ns

Using ROS with RedHawk Linux on the NVIDIA Jetson TX2 Page 5

Max latency: 15679572 ns

Minor pagefaults during execution: 0

Major pagefaults during execution: 0

This output shows a sampled latency of 484 microseconds, an average latency of 765 microseconds,

and a worst-case latency of 15 milliseconds; clearly the pendulum demo cannot achieve acceptable

real-time performance levels on the TX2 without utilizing real-time features.

RedHawk Optimized Performance

While the pendulum demo cannot be run by the root user on the TX2, RedHawk shielding, process

binding and priority boosting can still be used by non-root users to improve real-time performance.

RedHawk provides a capability plugin that can automatically grant individual users additional

capabilities upon login. For more details on this extension read the pam_capability(8) and

capability.conf(5) man pages by issuing the following commands:

export MANPATH=/usr/ccur/man

man pam_capability

man capability.conf

Perform the following steps to configure the capability plugin and utilize RedHawk real-time features to

improve performance even when the demo is run by the nvidia user:

1. Assign extra capability to nvidia user

Edit the /etc/security/capability.conf file as the root user and add the following

lines to the end of the file:

role demouser cap_sys_nice

user nvidia demouser

2. Activate capability plugin upon login

Edit the /etc/pam.d/sshd file as the root user and add the following line after the last

session entry but before any @include lines:

 session required /lib/aarch64-linux-gnu/security/pam_capability.so

To verify that you have configured the capability plugin correctly, ssh into the system as the

nvidia user and issue the following command:

getpcaps $$

You should see output similar to the following:

Capabilities for `14554’: = cap_sys_nice+eip

Using ROS with RedHawk Linux on the NVIDIA Jetson TX2 Page 6

Note that you can similarly modify /etc/pam.d/lightdm to automatically grant

capabilities to users upon graphical login.

3. Isolate one CPU core for real-time activity
Issue the RedHawk shield command to fully isolate CPU core 5 from all processes, interrupts

and timer events:

shield -a 5

To verify that CPU core 5 has been fully shielded, issue the shield command again with no

options and you should see output identical to the following:

 CPUID irqs ltmrs procs

--

 0 no no no

 1 no no no

 2 no no no

 3 no no no

 4 no no no

 5 yes yes yes

The pendulum demo can now be run on CPU core 5 with real-time isolation.

4. Bind demo to shielded core and boost priority
You now need to modify the demo launch script to utilize RedHawk real-time features. Copy

the launch script to a file in the nvidia user’s home directory with the following command:

cp /opt/ros/ardent/bin/pendulum_launch.bash ~/demo.bash

Edit the demo.bash script and change this line:

pendulum_demo -i 0 &

to this line:

run -b 5 -s fifo -P90 pendulum_demo -i 0 &

This change will bind the pendulum_demo program exclusively to CPU core 5 and have it run

with a real-time priority of 90 utilizing the SCHED_FIFO scheduling class.

5. Run the pendulum demo
Finally, invoke the modified pendulum launch script as follows:

~/demo.bash

You should now see many samples like the following printed:

Using ROS with RedHawk Linux on the NVIDIA Jetson TX2 Page 7

Commanded motor angle: 1.570796

Actual motor angle: 1.570404

Current latency: 7005 ns

Mean latency: 8021.634300 ns

Min latency: 6555 ns

Max latency: 47488 ns

Minor pagefaults during execution: 0

Major pagefaults during execution: 0

This output shows a sampled latency of 7 microseconds, an average latency of 8 microseconds,

and a worst-case latency of 47 microseconds; the pendulum demo achieves significantly

improved real-time performance levels on the TX2 when utilizing RedHawk real-time features,

even without locking down pages into memory.

While the real-time optimized version of the demo is running, issue the following command in a

different bash shell:

run -n pendulum_demo

You will see output like the following displayed:

Pid Tid Bias Actual CPU Policy Pri Nice Name

19945 19945 0x20 0x20 5 rr 98 0 pendulum_demo

19945 19948 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19952 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19953 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19954 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19955 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19956 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19957 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19961 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19962 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19963 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19964 0x20 0x20 5 fifo 90 0 pendulum_demo

19945 19965 0x20 0x20 5 fifo 90 0 pendulum_demo

This output shows that all cores of the demo are now running on CPU core 5 with a boosted

real-time priority.

Summary

The ROS Pendulum Control demo achieves significantly improved real-time response when utilizing

RedHawk real-time features, however the demo was clearly not written to support the limited amount

of RAM available on the TX2. It is hoped that future versions of the pendulum demo will dynamically

adjust to the system’s available RAM and reduce the number of memory pages required to be locked

down, so that the worst-case latencies measured by the demo under RedHawk will be further reduced.

