
PSSG Draft 17

STANDARDS PROJECT
Draft Standard for Information Technology—

Portable Operating System Interface (POSIX)—
Part 1:

System Application Program
Interface (API)— Amendment #:

Protection, Audit and Control Interfaces [C Language]

Sponsor

Portable Applications Standards Committee
of the

IEEE Computer Society
Work Item Number: JTC1 22.42 %

Abstract: IEEE Std 1003.1e is part of the POSIX series of standards. It defines
security interfaces to open systems for access control lists, audit, separation of +
privilege (capabilities), mandatory access control, and information label mechan- +
isms. This standard is stated in terms of its C binding.

Keywords: auditing, access control lists, application portability, capability, +
information labels, mandatory access control, privilege, open systems, operating
systems, portable application, POSIX, POSIX.1, security, user portability

PSSG / D17
October 1997

Copyright 1997 by the Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street,

New York, NY 10017, USA
All rights reserved.

ISBN-xxxx-xxxxx-x

Library of Congress Catalog Number 90-xxxxx

IEEE Draft P1003.1e, Copyright IEEE.
All Rights Reserved by IEEE.

The IEEE disclaims any responsibility or liability resulting from the
placement and use of this document.

This copyrighted document may be downloaded for personal use by one (1)
individual user.

No further copying or distribution is permitted without the express written
permission or an appropriate license from the IEEE.

This is a withdrawn IEEE Standards Draft.
Permission is hereby granted for IEEE Standards Committee participants to

reproduce this document for purposes of IEEE standardization activities.
Permission is also granted for member bodies and technical committees of

ISO and IEC to reproduce this document for purposes of developing a
national position.

Other entities seeking permission to reproduce this document for
standardization or other activities, or to reproduce portions of this
document for these or other uses, must contact the IEEE Standards

Department for the appropriate license.
Use of information contained in this unapproved draft is at your own risk.

IEEE Standards Department
Copyright and Permissions
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA
October 1997 XXXXXXX

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

Foreword

NOTE: This foreword is not a normative part of the standard and is included for informative pur-
poses only.

The purpose of this standard is to define a standard interface and environment
for Computer Operating Systems that require certain security mechanisms. The
standard is intended for system implementors and application software develop-
ers. It is an extension to IEEE Std 1003.1-1990. c

Organization of the Standard

The standard is divided into several parts:

— Revisions to the General Section (Section 1)

— Revisions to Terminology and General Requirements (Section 2)

— Revisions to Process Primitives (Section 3)

— Revisions to Process Environment (Section 4)

— Revisions to Files and Directories (Section 5)

— Revisions to Input and Output Primitives (Section 6)

— Revisions to Language Specific Services for C Programming Language (Sec-
tion 8)

— Access Control Lists (Section 23)

— Audit (Section 24)

— Capability (Section 25)

— Mandatory Access Control (Section 26)

— Information Labeling (Section 27)

— Annex B - Revisions to Rationale and Notes

— Annex F - Ballot Instructions

Conformance Measurement

Changes to the draft since the previous ballot are indicated by one of four marks %
in the right-hand margin. These change marks should aid the balloter in deter- %
mining what has changed and therefore what is candidate text for comments and %
objections during this ballot. A bar ("|") indicates changes to the line between %
drafts 15 and 16. A plus ("+") indicates that text has been added in draft 16. A %
minus ("-") indicates that text present in that location in draft 15 has been deleted %
in draft 16. A percent ("%") indicates that a change was made at that location in %

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

xi

draft 17.

In publishing this standard, both IEEE and the security working group simply
intend to provide a yardstick against which various operating system implemen-
tations can be measured for conformance. It is not the intent of either IEEE or the
security working group to measure or rate any products, to reward or sanction
any vendors of products for conformance or lack of conformance to this standard,
or to attempt to enforce this standard by these or any other means. The responsi-
bility for determining the degree of conformance or lack thereof with this stan-
dard rests solely with the individual who is evaluating the product claiming to be
in conformance with this standard.

Extensions and Supplements to This Standard

Activities to extend this standard to address additional requirements can be anti-
cipated in the future. This is an outline of how these extensions will be incor-
porated, and also how users of this document can keep track of that status.
Extensions are approved as ‘‘Supplements’’ to this document, following the IEEE
Standards Procedures. Approved Supplements are published separately and are
obtained from the IEEE with orders for this document until the full document is
reprinted and such supplements are incorporated in their proper positions.

If you have any questions regarding this or other POSIX documents, you may con- c
tact the the IEEE Standards Office by calling IEEE at:

1 (800) 678-IEEE from within the US
1+ (908) 981-1393 from outside the US

to determine which supplements have been published. Published supplements are
available for a modest fee.

Supplements are numbered in the same format as the main document with
unique positions as either subsections or main sections. A supplement may
include new subsections in various sections of the main document as well as new
main sections. Supplements may include new sections in already approved sup-
plements. However, the overall numbering shall be unique so that two supple-
ments only use the same numbers when one replaces the other. Supplements
may contain either required or optional facilities. Supplements may add addi-
tional conformance requirements (see POSIX.1, Implementation Conformance,
1.3) defining new classes of conforming systems or applications.

It is desirable, but perhaps unattainable, that supplements do not change the
functionality of the already defined facilities. Supplements are not used to pro-
vide a general update of the standard. A general update of the standard is done
through the review procedure as specified by the IEEE. c

If you have interest in participating in any of the PASC working groups please c
send your name, address, and phone number to the Secretary, IEEE Standards
Board, Institute of Electrical and Electronics Engineers, Inc., P.O. Box 1331, 445
Hoes Lane, Piscataway, NJ 08855-1331, and ask to have your request forwarded
to the chairperson of the appropriate TCOS working group. If you have interest

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

xii

in participating in this work at the international level, contact your ISO/IEC
national body.

Please report typographical errors and editorial changes for this draft standard
directly to:

Casey Schaufler
Silicon Graphics
2011 North Shoreline Blvd.
P.O. Box 7311
Mountain View, CA 94039-7311
(415) 933-1634 (voice)
(415) 962-8404 (fax)
casey@sgi.com
Schaufler@DOCKMASTER.NCSC.MIL

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

xiii

IEEE Std 1003.1e was prepared by the security Working Group, sponsored by the
Portable Applications Standards Committee of the IEEE Computer Society.

Portable Applications Standards Committee (PASC)

Chair: Lowell Johnson c
Treasurer: Barry Needham
Secretary: Charles Severence c

Security Working Group Officials

Chair: Lynne Ambuel
Technical Editor: Casey Schaufler −

The following people participated in the Security Working Group to develop
the standard.

Lynne Ambuel Jeanne Baccash Lee Badger
Martin Bailey John-Olaf Bauner D. Elliott Bell
Lowell Bogard Kevin Brady Joe Brame
Matthew Brisse Joseph Bulger Lisa Carnahan
Mark Carson Charisse Castagnoli Paul Close
Roland Clouse Peter E. Cordsen Janet Cugini
Anthony D’Alessandro Daniel D. Daugherty Manilal Daya
Ana Maria De Alvare’ Terence Dowling Jack Dwyer
Maryland R. Edwards Ron Elliott Lloyd English
Jeremy Epstein Frank Fadden Kevin Fall
David Ferbrache Carl Freeman Mark Funkenhauser
Morrie Gasser Gerald B. Green John Griffith
Henry Hall Craig Heath Tom Houghton
Rand Hoven Chris Hughes Howard Israel
Paul A. Karger Joseph Keenan Jerry Keselman
Yvon Klein Andy Kochis Steve Kramer
Steven LaFountain Danielle Lahmani Jason Levitt
Warren E. Loper Jeff Mainville Doug Mansur
Richard E. Mcnaney Chris Milsom Mark Modig
Jim Moseman Kevin V. Murphy Greg Nuss
Rose Odonnell Gary Oing Larry Parker
Gordon Parry Jeff Picciotto Michael Ressler
David Rogers Peter L. Rosencrantz Shawn Rovansek
Craig Rubin Roman Saucedo Stuart Schaeffer
Mark Schaffer Casey Schaufler Michael Schmitz
Larry Scott Eric Shaffer Olin Sibert
Rick Siebenaler Alan Silverstein Jon Spencer
Dennis Steinauer Chris Steinbroner Michael Steuerwalt
Doug Steves Steve Sutton W. Lee Terrell
Charlie Testa Jeff Tofano Brian Weis
Catherine West Ken Witte

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

xiv

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

0

Information technology—Portable operating
1 system interface for computer environments

2 Section 1: Revisions to the General Section

3 ⇒ 1.1 Scope This scope is to be revised and integrated appropriately into the
4 scope when POSIX.1e is approved:

5 This standard, P1003.1e/D17: October 1997 (POSIX.1e), defines five indepen- %
6 dent, optional sets of interfaces that will be used to implement protection,
7 audit, and control mechanisms. Implementation of any or all of these inter-
8 faces does not ensure the security of the conforming system nor of conforming
9 applications. In addition, implementation of these interfaces does not imply

10 that a conforming system can achieve any class or level of any security evalua-
11 tion criteria. These interfaces will become integrated into the ISO/IEC 9945-1:
12 1990 (System Application Program Interface) standard (POSIX.1) as they are
13 approved and published. The sets of interfaces for implementation are:

14 (1) Access Control Lists (ACL)

15 (2) Security Auditing

16 (3) Capability

17 (4) Mandatory Access Controls (MAC)

18 (5) Information Labeling (IL)

19 Each option defines new functions, as well as security-related constraints for the
20 functions and utilities defined by other POSIX standards.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

1 Revisions to the General Section 1

21 ⇒ 1.2 Normative References (POSIX.1: line 39)

22 The following standards contain provisions that, through references in this
23 text, constitute provisions of this standard. At the time of publication, the edi-
24 tions indicated were valid. All standards are subject to revision, and parties to
25 agreements based on this part of this standard are encouraged to investigate
26 the possibility of applying the most recent editions of the standards listed
27 below. Members of IEC and ISO maintain registers of currently valid Interna-
28 tional Standards.

29 (1) ISO/IEC 9945-1: 1990, Information Technology—Portable Operating Sys-
30 tem Interface (POSIX)—Part 1: System Application Program Interface
31 (API) [C Language]

32 (2) IEEE Standard for Information Technology—Portable Operating System
33 Interface (POSIX)—Part 2: Shell and Utilities. c

34 (3) P1003.2c/D17: October 1997, Draft Standard for Information %
35 Technology—Portable Operating System Interface (POSIX)—Part 2:
36 Shell and Utilities—Amendment #: Protection and Control Utilities

37 ⇒ 1.3.1.3 Conforming Implementation Options (POSIX.1: line 98) Insert
38 the following options in alphabetic order:

39 {_POSIX_ACL} Access control list option (in 2.9.3) c

40 {_POSIX_AUD} Auditing option (in 2.9.3) c

41 {_POSIX_CAP} Capability option (in 2.9.3) c

42 {_POSIX_MAC} Mandatory access control option (in 2.9.3) c

43 {_POSIX_INF} Information label option (in 2.9.3) c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 1 Revisions to the General Section

1 Section 2: Revisions to Terminology and General Requirements

2 ⇒ 2.2.1 Terminology

3 ⇒ 2.2.2 General Terms (POSIX.1: lines 89-397) Add the following definitions -
4 in alphabetical order:

5 2.2.2.1 access: A specific type of interaction between a process and an object
6 that results in the flow of information from one to the other. Possible information
7 flows include the transfer of attributes pertaining to that object, the transfer of
8 data pertaining to that object, or the fact of existence of that object.

9 2.2.2.2 access acl: An access control list (ACL) which is used in making discre-
10 tionary access control decisions for an object.

11 2.2.2.3 access control: The prevention of unauthorized access to objects by
12 processes and, conversely, the permitting of authorized access to objects by
13 processes.

14 2.2.2.4 access control list (ACL): A discretionary access control entity associ-
15 ated with an object, consisting of a list of entries where each entry is an identifier
16 (e.g. user or group of users) coupled with a set of access permissions.

17 2.2.2.5 access control policy: A set of rules, part of a security policy, by which
18 a user’s authorization to access an object is determined.

19 2.2.2.6 audit: The procedure of capturing, storing, analyzing, maintaining and
20 managing data concerning security-relevant activities. c

21 2.2.2.7 auditable event: An activity which may cause an audit record to be
22 reported in an audit log.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 3

23 2.2.2.8 audit event type: A field within an audit record that identifies the
24 activity reported by the record and defines the required content of the record.

25 2.2.2.9 audit ID: An identifier for the user accountable for an audit event.

26 2.2.2.10 audit record: The discrete unit of data reportable in an audit log on
27 the occurrence of an audit event.

28 2.2.2.11 audit log: The destination of audit records that are generated and the
29 source of records read by an audit post-processing application.

30 2.2.2.12 availability: The property of an object or subject being accessible and
31 usable upon demand by an authorized user.

32 2.2.2.13 capability: An attribute of a process that is included in the determina- %
33 tion of whether or not a process has the appropriate privilege to perform a specific
34 POSIX.1 action where appropriate privilege is required. −

35 2.2.2.14 capability flag: A per-capability attribute of a file or process that is +
36 used during exec() processing in computing the capability of the process executing c
37 that file.

38 2.2.2.15 capability state: A grouping of all of the flags defined by an implemen-
39 tation for all capabilities defined for the implementation.

40 2.2.2.16 channel: An information transfer path within a system or a mechanism
41 by which the path is effected.

42 2.2.2.17 confidentiality: The property that the existence of an object and/or its
43 contents and/or attributes are not made available nor disclosed to unauthorized
44 processes.

45 2.2.2.18 covert channel: A communications channel that allows a process to
46 transfer information in a manner that violates the system’s security policy. Covert
47 channels are typically realized by the exploitation of mechanisms not intended to
48 be used for communication.

49 2.2.2.19 data descriptor: An internal representation which uniquely identifies
50 a data object.

51 2.2.2.20 default acl: An ACL which is used in determining the initial discre-
52 tionary access control information for objects.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

4 2 Revisions to Terminology and General Requirements

53 2.2.2.21 denial of service: The unauthorized prevention of authorized access to
54 resources or the delaying of time-critical operations. −

55 2.2.2.22 discretionary access control (DAC): A means of restricting access to
56 objects based on the identity of the user, process, and/or groups to which the
57 objects belong. The controls are discretionary in the sense that a subject with
58 some access permission is capable of passing that permission (perhaps indirectly)
59 on to other subjects.

60 2.2.2.23 dominate: An implementation-defined relation between the values of
61 MAC labels or information labels.

62 2.2.2.24 downgrade: An operation which changes a MAC label or information
63 label to a value that does not dominate the current label. −

64 2.2.2.25 equivalent: An implementation-defined relation between the values of
65 MAC labels or of information labels. Two labels are equivalent if each of the labels
66 dominates the other.

67 2.2.2.26 extended ACL: An ACL that contains entries in addition to a
68 minimum ACL.

69 2.2.2.27 exportable data: Opaque data objects for which the data is self-
70 contained and persistent. As a result, they can be copied or stored freely.

71 2.2.2.28 file group class: The property of a file indicating access permissions
72 for a process related to the process’s group identification.

73 A process is in the file group class of a file if the process is not in the file owner
74 class and if the effective group ID or one of the supplementary group IDs of the
75 process matches the group ID associated with the file.

76 If {_POSIX_ACL} is defined, then a process is also in the file group class if the pro-c
77 cess is not in the file owner class and

78 (1) the effective user ID of the process matches the qualifier of one of the
79 ACL_USER entries in the ACL associated with the file, or

80 (2) the effective group ID or one of the supplementary group IDs of the pro-
81 cess matches the qualifier of one of the ACL_GROUP entries in the ACL
82 associated with the file.

83 Other members of the class may be implementation defined.

84 2.2.2.29 formal security policy model: A precise statement of a system secu-
85 rity policy.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 5

86 2.2.2.30 information label: The representation of a security attribute of a sub-
87 ject or object that applies to the data contained in that subject or object and is not
88 used for mandatory access control.

89 2.2.2.31 information label floating: The operation whereby one information
90 label is combined with another information label. The specific algorithm used to
91 define the result of a combination of two labels is implementation defined.

92 2.2.2.32 information label policy: The policy that determines how information
93 labels associated with objects and subjects are automatically adjusted as data
94 flows through the system.

95 2.2.2.33 MAC label: The representation of a security attribute of a subject or
96 object which represents the sensitivity of the subject or object and is used for
97 mandatory access control decisions. −

98 2.2.2.34 mandatory access control (MAC): A means of restricting and permit-
99 ting access to objects based on an implementation-defined security policy using

100 MAC labels and the use of the implementation-defined dominate operator. The
101 restrictions are mandatory in the sense that they are always imposed by the sys-
102 tem.

103 2.2.2.35 minimum ACL: An ACL that contains only the required ACL entries. −

104 2.2.2.36 object: A passive entity that contains or receives data. Access to an
105 object potentially implies access to the data that it contains.

106 2.2.2.37 opaque data object: A data repository whose structure and represen-
107 tation is unspecified. Access to data contained in these objects is possible through−
108 the use of defined programming interfaces.

109 2.2.2.38 persistent: A state in which data retains its original meaning as long
110 as the system configuration remains unchanged, even across system reboots.
111 However, any change to the system configuration (such as adding or deleting user
112 IDs and modifying the set of valid labels) may render such data invalid. −

113 2.2.2.39 principle of least privilege: A security design principle that states
114 that a process or program be granted only those privileges (e.g., capabilities)
115 necessary to accomplish its legitimate function, and only for the time that such
116 privileges are actually required.

117 2.2.2.40 query: Any operation which obtains either data or attributes from a
118 subject or object.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

6 2 Revisions to Terminology and General Requirements

119 2.2.2.41 read: A fundamental operation that obtains data from an object or sub-
120 ject.

121 2.2.2.42 required ACL entries: The three ACL entries that must exist in every
122 valid ACL. These entries are exactly one entry each for the owning user, the own-
123 ing group, and other users not specifically enumerated in the ACL.

124 2.2.2.43 security: The set of measures defined within a system as necessary to
125 adequately protect the information to be processed by the system.

126 2.2.2.44 security administrator: An authority responsible for implementing
127 the security policy for a security domain.

128 2.2.2.45 security attribute: An attribute associated with subjects or objects
129 which is used to determine access rights to an object by a subject.

130 2.2.2.46 security domain: A set of elements, a security policy, a security
131 authority and a set of security-relevant activities in which the set of elements are
132 subject to the security policy, administered by the security authority, for the
133 specified activities.

134 2.2.2.47 security policy: The set of laws, rules, and practices that regulate how
135 an organization manages, protects, and distributes sensitive information.

136 2.2.2.48 security policy model: A precise presentation of the security policy
137 enforced by a system. +

138 2.2.2.49 strictly dominate: A relation between the values of two MAC labels or
139 information labels whereby one label dominates but is not equivalent to the other
140 label.

141 2.2.2.50 subject: An active entity that causes information to flow between
142 objects or changes the system state; e.g., a process acting on behalf of a user. c

143 2.2.2.51 tranquillity: Property whereby the MAC label of an object can be
144 changed only while it is not being accessed. −

145 2.2.2.52 upgrade: An operation that changes the value of a MAC label or infor-
146 mation label to a value that strictly dominates its previous value.

147 2.2.2.53 user: Any person who interacts with a computer system. Operations
148 are performed on behalf of the user by one or more processes.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 7

149 2.2.2.54 write: A fundamental operation that results only in the flow of informa-
150 tion from a subject to an object.

151 ⇒ 2.2.3 Abbreviations (POSIX.1: line 404)

152 For the purpose of this standard, the following abbreviations apply:

153 (1) POSIX.1: ISO/IEC 9845-1: 1990: Information Technology—Portable c
154 Operating System Interface (POSIX)—Part 1: System Application Pro-
155 gram Interface (API) [C Language]

156 (2) POSIX.2: ISO/IEC 9845-1: 1992: Information IEEE Standard for Infor- c
157 mation Technology—Portable Operating System Interface (POSIX)—Part
158 2: Shell and Utilities

159 (3) POSIX.1e: IEEE Std 1003.1e/D17: October 1997, Draft Standard for c
160 Information Technology—Portable Operating System Interface
161 (POSIX)—Protection, Audit and Control Interfaces

162 (4) POSIX.2c: IEEE Std 1003.2c/D17: October 1997, Draft Standard for c
163 Information Technology—Portable Operating System Interface
164 (POSIX)—Protection and Control Utilities

165 ⇒ 2.3 General Concepts (POSIX.1: lines 406-498)

166 ⇒ 2.3.2 file access permissions (POSIX.1: line 413) Change this sub-clause to c
167 "2.3.2 file access controls", and incorporate the concept of "file access permis-
168 sions" under it along with the following new concepts:

169 One standard file access control mechanism based on file permission bits and
170 two optional file access control mechanisms based on access control lists and −
171 MAC labels are defined by this document.

172 ⇒ 2.3.2.1 file access permissions (POSIX.1: line 414) After the above change
173 to section 2.3.2, create a new subsection called 2.3.2.1 and replace the previous
174 text in POSIX.1 subsection 2.3.2 with the following.

175 This standard defines discretionary file access control on the basis of file per-
176 mission bits as described below. The additional provisions of section 2.3.2.2
177 apply only if {_POSIX_ACL} is defined. c

178 The file permission bits of a file contain read, write, and execute/search per-
179 missions for the file owner class, file group class, and file other class.

180 These bits are set at file creation by open(), creat(), mkdir(), and mkfifo().
181 They are changed by chmod() and, if {_POSIX_ACL} is defined, acl_set_file() c
182 and acl_set_fd(). These bits are read by stat(), and fstat().

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8 2 Revisions to Terminology and General Requirements

183 Implementations may provide additional or alternate file access control
184 mechanisms, or both. An additional access control mechanism shall only
185 further restrict the access permissions defined by the file access control
186 mechanisms described in this section. An alternate access control mechanism
187 shall:

188 (1) Specify file permission bits for the file owner class, file group class, and
189 file other class corresponding to the access permissions, to be returned by
190 stat() or fstat().

191 (2) Be enabled only by explicit user action on a per file basis by the file c
192 owner or a user with the appropriate privilege.

193 (3) Be disabled for a file after the file permission bits are changed for that
194 file with chmod(). The disabling of the alternate mechanism need not
195 disable any additional mechanisms defined by an implementation.

196 Whenever a process requests file access permission for read, write, or
197 execute/search, if no additional mechanism denies access, access is determined as
198 follows:

199 If the process possesses appropriate privilege:

200 — If read, write, or directory search permission is requested, access is
201 granted.

202 — If execute permission is requested, access is granted if execute per-
203 mission is granted to at least one user by the file access permission
204 bits or by an alternate access control mechanism; otherwise, access is
205 denied.

206 Otherwise:

207 — Access is granted if an alternate access control mechanism is not
208 enabled and the requested access permission bit is set for the class
209 (file owner class, file group class, or file other class) to which the pro-
210 cess belongs, or if an alternate access control mechanism is enabled
211 and it allows the requested access; otherwise, access is denied.

212 If {_POSIX_CAP} is defined, then appropriate privilege includes the following c
213 capabilities: CAP_DAC_WRITE for write access, CAP_DAC_EXECUTE for exe-
214 cute access, and CAP_DAC_READ_SEARCH for read and search access. See +
215 Table 25-5.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 9

216 ⇒ 2.3.2.2 access control lists: Add this as a new concept.

217 The {_POSIX_ACL} option provides an additional access control mechanism
218 by providing file access control based upon an access control list mechanism.
219 The provisions of this section apply only if {_POSIX_ACL} is defined. The c
220 interaction between file permission bits and the ACL mechanism is defined
221 such that a correspondence is maintained between them. The ACL mechanism
222 therefore enhances access control based upon the file permission bits.

223 An ACL entry shall support at a minimum read, write, and execute/search per-
224 missions.

225 An ACL is set at file creation time by open(), creat(), mkdir(), and mkfifo().
226 An additional default ACL can be associated with a directory; the default ACL
227 is used in setting the ACL of any object created in that directory. An ACL is
228 changed by acl_set_fd() and acl_set_file(). A call to acl_set_fd() or acl_set_file()
229 may also result in a change to the file’s permission bits. A call to chmod() to
230 change a file’s permission bits will also result in a change to the corresponding c
231 entries in the ACL. The file’s ACL is read by either acl_get_fd() or
232 acl_get_file(). A process is granted discretionary access to a file only if all indi-
233 vidual requested modes of access are granted by an ACL entry or the process +
234 possesses appropriate privileges.

235 Whenever a process requests file access permission for read, write, or +
236 execute/search, if no additional mechanism denies access, access is determined+
237 as follows: +

238 If the process possesses appropriate privilege:

239 — If read, write or directory search permission is requested, access
240 is granted.

241 — If execute permission is requested, access is granted if execute
242 permission is specified in at least one ACL entry; otherwise,
243 access is denied.

244 Otherwise:

245 — access is granted if an alternate access control mechanism is not
246 enabled and the requested access permissions are granted on the
247 basis of the evaluation of the ACL (see 23.1.5), or if an alternate
248 access control mechanism is enabled and it allows the requested
249 access; otherwise, access is denied.

250 If {_POSIX_CAP} is defined, then appropriate privileges includes the following c
251 capabilities: CAP_DAC_WRITE for write access, CAP_DAC_EXECUTE for
252 execute access, and CAP_DAC_READ_SEARCH for read and search access. c
253 See Table 25-5.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

10 2 Revisions to Terminology and General Requirements

254 ⇒ 2.3.2.3 mandatory access control: Add this as a new concept.

255 The {_POSIX_MAC} option provides interfaces to an additional access control
256 mechanism based on the assignment of MAC labels to subjects and objects.
257 The provisions of this section only apply if {_POSIX_MAC} is defined. c

258 The MAC mechanism permits or restricts access to an object by a process
259 based on a comparison of the MAC label of the process to the MAC label of the
260 object. A process can read an object only if the process’s MAC label dominates +
261 the object’s MAC label, and write an object only if the process’s MAC label is +
262 dominated by the object’s MAC label. However, an implementation may
263 impose further restrictions, permitting write access to objects only by
264 processes with a MAC label equivalent to that of the object. The standard does
265 not define the dominance and equivalence relationships and, thus, does not c
266 define a particular MAC policy.

267 MAC read access to an object by a process requires that the process’s MAC
268 label dominate the object’s MAC label or that the process possess appropriate
269 privilege. If {_POSIX_CAP} is defined, the appropriate privilege is c
270 CAP_MAC_READ. See Table 25-6.

271 MAC write access to an object by a process requires that the process’s MAC
272 label be dominated by the object’s MAC label or that the process possess
273 appropriate privilege. If {_POSIX_CAP} is defined, the appropriate privilege is c
274 CAP_MAC_WRITE. See Table 25-6.

275 Execute/search file access requires MAC read access to the file.

276 The MAC label of an object (including a process object) is set at creation time
277 to dominate the MAC label of the creating process. Although this allows crea-
278 tion of upgraded objects, this standard provides only interfaces which will
279 create objects with MAC labels equivalent to that of the creating process.
280 However, interfaces are provided to allow an appropriately privileged process
281 to upgrade existing objects.

282 ⇒ 2.3.2.4 evaluation of file access: Add this as a new concept.

283 Whenever a process requests file access, if an alternate access control mechan-
284 ism is not enabled and all applicable POSIX.1 access control mechanisms c
285 grant the requested access and all additional access control mechanisms grant c
286 the requested access or if an alternate access control mechanism is enabled c
287 and grants the requested access, then access is granted; otherwise, access is
288 denied.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 11

289 ⇒ 2.3.5 file times update: (POSIX.1: line 475) Add the following paragraph to
290 the concept definition of file times update:

291 When {_POSIX_MAC} is defined and the object and process MAC labels are not c
292 equivalent, then the result of marking the file time attribute st_atime for c
293 update shall be implementation-defined.

294 ⇒ 2.4 Error Codes Add the following items to the error code definitions in alpha-−
295 betic order.

296 [ENOTSUP] Operation is not supported. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

12 2 Revisions to Terminology and General Requirements

297 ⇒ 2.7.2 POSIX.1 Symbols (POSIX.1: Table 2-2) Insert the following entries in
298 alphabetical order in Table 2-2:

299 Reserved Reserved
300 Header Key Prefix Suffix301 ii
302 <sys/acl.h> 1 acl_
303 2 ACL_
304 <sys/audit.h> 1 aud_
305 2 AUD_
306 <sys/capability.h> 1 cap_
307 2 CAP_
308 <sys/inf.h> 1 inf_
309 2 INF_
310 <sys/mac.h> 1 mac_
311 2 MAC_

312 ⇒ 2.7.3 Headers and Function Prototype (POSIX.1: line 910-927) Add the
313 following entries in alphabetical order:

314 <sys/acl.h> acl_add_perm(), acl_calc_mask(), acl_clear_perms(), c
315 acl_copy_entry(), acl_copy_ext(), acl_copy_int(),
316 acl_create_entry(), acl_delete_def_file(), acl_delete_entry(),
317 acl_delete_perm(), acl_dup(), acl_free(), acl_from_text(),
318 acl_get_entry(), acl_get_fd(), acl_get_file(), acl_get_permset(),
319 acl_get_qualifier(), acl_get_tag_type(), acl_init(), acl_set_fd(),
320 acl_set_file(), acl_set_permset(), acl_set_qualifier(),
321 acl_set_tag_type(), acl_size(), acl_to_text(), acl_valid().

322 <sys/audit.h> aud_copy_ext(), aud_copy_int(), aud_delete_event(),
323 aud_delete_event_info(), aud_delete_hdr(), aud_delete_hdr_info(), c
324 aud_delete_obj(), aud_delete_obj_info(), aud_delete_subj(),
325 aud_delete_subj_info(), aud_dup_record (), aud_evid_from_text(),
326 aud_evid_to_text(), aud_free(), aud_get_all_evid(),
327 aud_get_event(), aud_get_event_info(), aud_get_hdr(),
328 aud_get_hdr_info(), aud_get_id(), aud_get_obj(),
329 aud_get_obj_info(), aud_get_subj(), aud_get_subj_info(),
330 aud_id_from_text(), aud_id_to_text(), aud_init_record(),
331 aud_put_event (), aud_put_event_info (), aud_put_hdr (),
332 aud_put_hdr_info(), aud_put_obj (), aud_put_obj_info(),
333 aud_put_subj (), aud_put_subj_info (), aud_read(),
334 aud_rec_to_text(), aud_size(), aud_switch(), aud_valid(),
335 aud_write().

336 <sys/capability.h> cap_clear(), cap_copy_ext(), cap_copy_int(), cap_dup (),
337 cap_free(), cap_from_text(), cap_get_fd(), cap_get_file(),
338 cap_get_flag(), cap_get_proc(), cap_init(), cap_set_fd(),
339 cap_set_file(), cap_set_flag(), cap_set_proc(), cap_size(),
340 cap_to_text().

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 13

341 <sys/inf.h> inf_default(), inf_dominate(), inf_equal(), inf_float(), inf_free(),
342 inf_from_text(), inf_get_fd(), inf_get_file(), inf_get_proc(),
343 inf_set_fd(), inf_set_file(), inf_set_proc(), inf_size(), inf_to_text(),
344 inf_valid().

345 <sys/mac.h> mac_dominate(), mac_equal(), mac_free(), mac_from_text(),
346 mac_get_fd(), mac_get_file(), mac_get_proc(), mac_glb(),
347 mac_lub(), mac_set_fd(), mac_set_file(), mac_set_proc(),
348 mac_size(), mac_to_text(), mac_valid().

349 ⇒ 2.8.2 Minimum Values (POSIX.1: line 983) Insert the following entry in
350 Table 2-3 in alphabetical order:

351 Name Description Value352 iii
353 The maximum number of entries
354 in an ACL for objects that support
355 ACLs. c
356 Unspecified
357 if {_POSIX_ACL} is not
358 defined. c

359 {_POSIX_ACL_ENTRIES_MAX} 16

360 ⇒ 2.8.4 Run-Time Invariant Values (Possibly Indeterminate)
361 (POSIX.1: line 1023) Insert the following entry in Table 2-5 in alphabetical
362 order:

363 Name Description364 ii
365 The maximum number of entries in an ACL for objects that support ACLs.c
366 Unspecified if {_POSIX_ACL} is not defined.−
367 {_POSIX_ACL_MAX} {

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

14 2 Revisions to Terminology and General Requirements

368 ⇒ 2.8.5 Pathname Variable Values (POSIX.1: line 1044) Insert the following
369 entries in alphabetical order in Table 2-6:

370 Table 2-6 - Pathname Variable Values

371 Name Description Minimum Value372 ii
373 A value greater than
374 zero if POSIX
375 extended Access Con-
376 trol Lists are sup-
377 ported on the object;
378 otherwise zero.

379 {_POSIX_ACL_EXTENDED} Zero

380 The maximum c
381 number of ACL c
382 entries permitted in c
383 the ACLs associated c
384 with the object. If c
385 {_POSIX_ACL_EXTENDED}c
386 is greater than zero,
387 then this value shall
388 be 16 or greater. If
389 {_POSIX_ACL_EXTENDED}
390 is zero, then this value
391 shall be 3.

392 {_POSIX_ACL_PATH_MAX} 3 or 16

393 A value greater than
394 zero if POSIX File
395 Capability extensions
396 are supported on the
397 object; otherwise zero.

398 {_POSIX_CAP_PRESENT} Zero

399 A value greater than
400 zero if POSIX Infor-
401 mation Label func-
402 tions that set the
403 Information Label are
404 supported on the
405 object; otherwise zero.

406 {_POSIX_INF_PRESENT} Zero

407 A value greater than
408 zero if POSIX Manda-
409 tory Access Control
410 functions that set the
411 MAC label are sup-
412 ported on the object;
413 otherwise zero.

414 {_POSIX_MAC_PRESENT} Zero

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

2 Revisions to Terminology and General Requirements 15

415 ⇒ 2.9.3 Compile-Time Symbolic Constants for Portability Specifications c
416 (POSIX.1: line 1122) Insert the following entries in Table 2-10 in alphabetical c
417 order:

418 Table 2-10 - Compile-Time Symbolic Constants

419 Name Description420 ii
421 If this symbol is defined, it
422 indicates that the implemen-
423 tation supports Access Con-
424 trol List extensions.

425 {_POSIX_ACL}

426 If this symbol is defined, it
427 indicates that the implemen-
428 tation supports Auditing
429 extensions.

430 {_POSIX_AUD}

431 If this symbol is defined, it
432 indicates that the implemen-
433 tation supports Capability
434 extensions.

435 {_POSIX_CAP}

436 If this symbol is defined, it
437 indicates that the implemen-
438 tation supports Information
439 Label extensions.

440 {_POSIX_INF}

441 If this symbol is defined, it
442 indicates that the implemen-
443 tation supports Mandatory
444 Access Control extensions.

445 {_POSIX_MAC}

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

16 2 Revisions to Terminology and General Requirements

1 Section 3: Revisions to Process Primitives

2 ⇒ 3.1.1.2 Process Creation — Description (POSIX.1: line 36) Insert the fol-
3 lowing lines after line 32 in Section 3.1.1.2: c

4 (1) If {_POSIX_ACL} is defined, the child process shall have its own copy of c
5 any ACL pointers and ACL entry descriptors in the parent, and any ACL
6 working storage to which they refer. c

7 (2) If {_POSIX_AUD} is defined, the child process shall have its own copy of c
8 any audit record descriptors in the parent, and any audit working
9 storage to which they refer. The audit state of the child, as set by

10 aud_switch(), shall initially be the same as that of the parent; subse-
11 quent calls to aud_switch() in either process shall not affect the audit
12 state of the other process. c

13 ⇒ 3.1.2.2 Execute a File — Description (POSIX.1: line 153) Insert the follow-
14 ing at the end of the list of attributes inherited by the new process image on
15 exec() following line 153 in Section 3.1.2.2:

16 (15) If {_POSIX_MAC} is defined, the process MAC label (see 26.1.1) %

17 ⇒ 3.1.2.2 Execute a File — Description (POSIX.1: line 168) Insert the follow-c
18 ing paragraphs after line 168 in section 3.1.2.2:

19 If {_POSIX_ACL} is defined, the new process image created shall not inherit c
20 any ACL pointers or ACL entry descriptions or any ACL working storage from
21 the previous process image.

22 If {_POSIX_AUD} is defined, the new process image shall not inherit any audit c
23 record descriptors or audit record working storage from the previous process
24 image. Any incomplete audit records are discarded. The audit state of the
25 process, as set by aud_switch() shall be the same as in the previous process
26 image.

27 If {_POSIX_CAP} is defined, the new process image shall not inherit any capa- c
28 bility data objects nor any working storage associated with capabilities in the
29 previous process image.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

3 Revisions to Process Primitives 17

30 If {_POSIX_CAP} is defined, the exec() functions shall modify the state of each c
31 of the capabilities of the process as follows, where I1, E1, and P1 are respec- c
32 tively the inheritable, effective, and permitted flags of the new process image; c
33 I0 is the inheritable flags of the current process image; and If, Ef and Pf are c
34 respectively the inheritable, effective, and permitted flags associated with the
35 file being executed:

36 I1 = I0
37 P1 = (Pf && X) || (If && I0) c
38 E1 = Ef && P1 c

39 where X denotes possible additional implementation-defined restrictions. +

40 If {_POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the c
41 file being executed, the information label of the process shall automatically be
42 set to the same value as returned by inf_float(file information label, process
43 information label). If {_POSIX_INF} is defined but {_POSIX_INF_PRESENT} c
44 is not in effect for the file being executed, the information label of the process
45 shall be set in an implementation defined manner.

46 ⇒ 3.3.1.3 Signal Actions — Description (POSIX.1: line 556) Insert the fol- c
47 lowing section before line 556:

48 If {_POSIX_INF} is defined, the following functions shall also be %
49 reentrant with respect to signals:

50 inf_dominate() inf_equal() inf_set_fd() inf_set_file()
51 inf_set_proc() inf_size()

52 If {_POSIX_MAC} is defined, the following functions shall also c
53 be reentrant with respect to signals:

54 mac_dominate() mac_equal() mac_set_fd() mac_set_file()
55 mac_set_proc() mac_size()

56 ⇒ 3.3.2.2 Send a Signal to a Process — Description (POSIX.1: line 594)
57 Insert the following sentence after the word "privileges":

58 If {_POSIX_CAP} is defined, then appropriate privilege shall include c
59 CAP_KILL.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

18 3 Revisions to Process Primitives

60 ⇒ 3.3.2.2 Send a Signal to a Process — Description (POSIX.1: line 616)
61 Insert the following after line 616:

62 If {_POSIX_MAC} is defined, then in addition to the restrictions defined above, c
63 the following restrictions apply depending on the MAC labels of the sending
64 and receiving process. There are four cases to be considered for each potential
65 receiving process specified by pid:

66 (1) If the MAC label of the sending process is equivalent to the MAC label of
67 the receiving process, then no additional restrictions are imposed.

68 (2) If the MAC label of the sending process dominates the MAC label of the
69 receiver (i.e., the signal is being written down), then the sending process
70 must have appropriate privilege. If {_POSIX_CAP} is defined, then c
71 appropriate privilege shall include CAP_MAC_WRITE.

72 (3) If the MAC label of the receiving process dominates the MAC label of the
73 sending process (i.e., the signal is being written up), then it is implemen-
74 tation defined whether the sending process requires appropriate
75 privilege. If {_POSIX_CAP} is defined and appropriate privilege is c
76 required, then appropriate privilege shall include CAP_MAC_READ.

77 (4) If neither of the MAC labels of the sender and receiver dominates the %
78 other, then the sending process must have appropriate privilege. If
79 {_POSIX_CAP} is defined, appropriate privilege shall include c
80 CAP_MAC_WRITE.

81 ⇒ 3.3.2.4 Send a Signal to a Process — Errors (POSIX.1: line 625-628)
82 Replace lines 625-628 with the following:

83 [EPERM] The process does not have permission to send the signal to
84 any receiving process.

85 If {_POSIX_MAC} is defined, the process has appropriate c
86 MAC access to a receiving process, but other access checks
87 have denied the request.

88 [ESRCH] No process or process group can be found corresponding to
89 that specified by pid.

90 If {_POSIX_MAC} is defined, a receiving process or processes c
91 may actually exist, but the sending process does not have
92 appropriate MAC access to any of the receiving processes.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

3 Revisions to Process Primitives 19

1 Section 4: Revisions to Process Environment

2 ⇒ 4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 48) Insert
3 the following after line 48 of Section 4.2.2.2:

4 If {_POSIX_CAP} is defined, then appropriate privilege shall include the
5 CAP_SETUID capability.

6 ⇒ 4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 52) Insert
7 the following after line 52 of Section 4.2.2.2:

8 If {_POSIX_CAP} is defined, then appropriate privilege shall include the
9 CAP_SETUID capability.

10 ⇒ 4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 54) Insert
11 the following after line 54 of Section 4.2.2.2:

12 If {_POSIX_CAP} is defined, then appropriate privilege shall include the
13 CAP_SETGID capability.

14 ⇒ 4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 58) Insert
15 the following after line 58 of Section 4.2.2.2:

16 If {_POSIX_CAP} is defined, then appropriate privilege shall include the
17 CAP_SETGID capability.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

4 Revisions to Process Environment 21

18 ⇒ 4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 61) Insert
19 the following after line 61 of Section 4.2.2.2:

20 If {_POSIX_CAP} is defined, then appropriate privilege shall include the
21 CAP_SETUID capability.

22 ⇒ 4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 64) Insert
23 the following after line 64 of Section 4.2.2.2:

24 If {_POSIX_CAP} is defined, then appropriate privilege shall include the
25 CAP_SETUID capability.

26 ⇒ 4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 66) Insert
27 the following after line 66 of Section 4.2.2.2:

28 If {_POSIX_CAP} is defined, then appropriate privilege shall include the
29 CAP_SETGID capability.

30 ⇒ 4.2.2.2 Set User and Group IDs — Description (POSIX.1: line 69) Insert
31 the following after line 69 of Section 4.2.2.2:

32 If {_POSIX_CAP} is defined, then appropriate privilege shall include the
33 CAP_SETGID capability.

34 ⇒ 4.8.1.2 Get Configurable System Variables — Description (POSIX.1: line
35 407) Insert the following entries in Table 4-2:

36 Variable name Value37 iii
38 {_POSIX_ACL_MAX} {_SC_ACL_MAX} c
39 {_POSIX_ACL} {_SC_ACCESS_CONTROL_LIST}
40 {_POSIX_AUD} {_SC_AUDIT}
41 {_POSIX_CAP} {_SC_CAPABILITIES}
42 {_POSIX_INF} {_SC_INFORMATION_LABEL}
43 {_POSIX_MAC} {_SC_MANDATORY_ACCESS_CONTROL}

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

22 4 Revisions to Process Environment

1 Section 5: Revisions to Files and Directories

2 ⇒ 5.3.1.2 Open a File — Description (POSIX.1: lines 192-194) Replace the
3 sentence beginning ‘‘The file permission bits ...’’, with the following:

4 If {_POSIX_ACL} is defined and {_POSIX_ACL_EXTENDED} is in effect for c
5 the directory in which the file is being created (the "containing directory") and −
6 said directory has a default ACL, the following actions shall be performed:

7 (1) The default ACL of the containing directory is copied to the access
8 ACL of the new file.

9 (2) Both the ACL_USER_OBJ ACL entry permission bits and the file
10 owner class permission bits of the access ACL are set to the intersec- +
11 tion of the default ACL’s ACL_USER_OBJ permission bits and the file
12 owner class permission bits in mode. The action taken for any
13 implementation-defined permissions that may be in the
14 ACL_USER_OBJ entry shall be implementation-defined.

15 (3) If the default ACL does not contain an ACL_MASK entry, both the
16 ACL_GROUP_OBJ ACL entry permission bits and the file group class
17 permission bits of the access ACL are set to the intersection of the +
18 default ACL’s ACL_GROUP_OBJ permission bits and the file group
19 class permission bits in mode. The action taken for any
20 implementation-defined permissions that may be in the
21 ACL_GROUP_OBJ entry shall be implementation-defined.

22 (4) If the default ACL contains an ACL_MASK entry, both the
23 ACL_MASK ACL entry permission bits and the file group class per-
24 mission bits of the access ACL are set to the intersection of the default+
25 ACL’s ACL_MASK permission bits and the file group class permission
26 bits in mode. The action taken for any implementation-defined per-
27 missions that may be in the ACL_MASK entry shall be
28 implementation-defined.

29 (5) Both the ACL_OTHER ACL entry permission bits and the file other
30 class permission bits of the access ACL are set to the intersection of +
31 the default ACL’s ACL_OTHER permission bits and the file other
32 class permission bits in mode. The action taken for any
33 implementation-defined permissions that may be in the ACL_OTHER
34 entry shall be implementation-defined.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 23

35 Implementation-defined default ACL entries may affect the above algorithm
36 but shall not alter the access permitted to any subject that does not match
37 those implementation-defined ACL entries. Implementations may provide an
38 additional default ACL mechanism that is applied if a default ACL as defined
39 by this standard is not present. Such an implementation-defined default ACL c
40 interface may apply different access and/or default ACLs to created objects
41 based upon implementation-defined criteria.

42 If {_POSIX_ACL} is not defined, or {_POSIX_ACL_EXTENDED} is not in effectc
43 for the directory in which the file is being created (the "containing directory"), c
44 or said directory does not have a default ACL, the file permission bits (see
45 5.6.1) shall be set to the value of mode except those set in the file mode crea-
46 tion mask of the process (see 5.3.3). In any of these cases (default ACL,
47 implementation-defined default ACL, or file permission bits), access control
48 decisions shall not be made on the newly created file until all access control
49 information has been associated with the file.

50 ⇒ 5.3.1.2 Open a File — Description (POSIX.1: line 197) Insert the following
51 lines after line 197 in Section 5.3.1.2:

52 If {_POSIX_MAC} is defined and {_POSIX_MAC_PRESENT} is in effect for the c
53 containing directory and the file is created, the MAC label of the newly created
54 file shall be equivalent to the MAC label of the calling process. If
55 {_POSIX_INF} is defined and the file is created, the information label of the c
56 file shall automatically be set to a value which dominates the value returned
57 by inf_default().

58 ⇒ 5.3.1.2 Open a File — Description (POSIX.1: line 234) Insert the following
59 sentences after line 234 in Section 5.3.1.2:

60 If {_POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the c
61 file path, then the information label of the file shall automatically be set to a
62 value which dominates the value returned by inf_default().

63 ⇒ 5.3.1.2 Open a File — Description (POSIX.1: line 240) Insert the following
64 paragraph after line 240 in Section 5.3.1.2:

65 If {_POSIX_MAC} is defined and if the file exists and it is a FIFO special file, c
66 then the calling process shall have MAC write access to the file. If the file
67 exists and is a FIFO special file, and the value of oflag includes O_RDONLY or
68 O_RDWR then the calling process shall also have MAC read access to the file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24 5 Revisions to Files and Directories

69 ⇒ 5.3.4.2 Link a File — Description (POSIX.1: line 331) Insert the following
70 sentence:

71 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
72 CAP_LINK_DIR capability.

73 ⇒ 5.3.4.2 Link a File — Description (POSIX.1: line 336) Insert the following
74 paragraph after line 336 in Section 5.3.4.2:

75 If {_POSIX_MAC} is defined, the calling process shall have MAC write access c
76 to existing, MAC read access to the path to existing and new , and MAC read
77 access to new .

78 If {_POSIX_MAC} is defined the calling process shall also have MAC write c
79 access to the directory in which the new entry is to be created.

80 If {_POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the c
81 existing argument, the information label of existing remains unchanged.

82 ⇒ 5.3.4.4 Link a File — Errors (POSIX.1: line 347) Insert the following after
83 the line:

84 or {_POSIX_MAC} is defined and MAC write access was denied to existing or toc
85 the directory in which new is to be created or MAC read access was denied to
86 the path to existing or to new .

87 ⇒ 5.4.1.2 Make a Directory — Description (POSIX.1: lines 378-380) Replace
88 the second and third sentences of the paragraph with the following:

89 If {_POSIX_ACL} is defined and {_POSIX_ACL_EXTENDED} is in effect for c
90 the directory in which the new directory is being created (the "containing
91 directory") and said directory has a default ACL, the following actions shall be −
92 performed:

93 (1) The default ACL of the containing directory is copied to both the
94 access ACL and the default ACL of the new directory.

95 (2) Both the ACL_USER_OBJ ACL entry permission bits and the file
96 owner class permission bits of the access ACL are set to the intersec- +
97 tion of the default ACL’s ACL_USER_OBJ permission bits and the file
98 owner class permission bits in mode. The action taken for any
99 implementation-defined permissions that may be in the

100 ACL_USER_OBJ entry shall be implementation-defined.

101 (3) If the default ACL does not contain an ACL_MASK entry, both the
102 ACL_GROUP_OBJ ACL entry permission bits and the file group class
103 permission bits of the access ACL are set to the intersection of the +

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 25

104 default ACL’s ACL_GROUP_OBJ permission bits and the file group
105 class permission bits in mode. The action taken for any
106 implementation-defined permissions that may be in the
107 ACL_GROUP_OBJ entry shall be implementation-defined.

108 (4) If the default ACL contains an ACL_MASK entry, both the
109 ACL_MASK ACL entry permission bits and the file group class per-
110 mission bits of the access ACL are set to the intersection of the default+
111 ACL’s ACL_MASK permission bits and the file group class permission
112 bits in mode. The action taken for any implementation-defined per-
113 missions that may be in the ACL_MASK entry shall be
114 implementation-defined.

115 (5) Both the ACL_OTHER ACL entry permission bits and the file other
116 class permission bits of the access ACL are set to the intersection of +
117 the default ACL’s ACL_OTHER permission bits and the file other
118 class permission bits in mode. The action taken for any
119 implementation-defined permissions that may be in the ACL_OTHER
120 entry shall be implementation-defined.

121 Implementation-defined default ACL entries may affect the above algorithm
122 but shall not alter the access permitted to any subject that does not match
123 those implementation-defined ACL entries. Implementations may provide an
124 additional default ACL mechanism that is applied if a default ACL as defined
125 by this standard is not present. Such an implementation-defined default ACL c
126 interface may apply different access and/or default ACLs to created objects
127 based upon implementation-defined criteria.

128 If {_POSIX_ACL} is not defined or {_POSIX_ACL_EXTENDED} is not in effect c
129 for the directory in which the file is being created (the "containing directory"), c
130 or said directory does not have a default ACL, the file permission bits of the
131 new directory shall be set to the value of mode except those set in the file mode
132 creation mask of the process (see 5.3.3). In any of these cases (default ACL,
133 implementation-defined default ACL, or file permission bits), access control
134 decisions shall not be made on the newly created directory until all access con-
135 trol information has been associated with the directory.

136 ⇒ 5.4.1.2 Make a Directory — Description (POSIX.1: line 385) Insert the fol-
137 lowing paragraphs after line 385 in Section 5.4.1.2:

138 If {_POSIX_MAC} is defined and {_POSIX_MAC_PRESENT} is in effect for the c
139 containing directory and the directory is created, the MAC label of the newly
140 created directory shall be equivalent to the MAC label of the calling process.

141 If {_POSIX_MAC} is defined, the calling process shall require MAC write c
142 access to the containing directory.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26 5 Revisions to Files and Directories

143 ⇒ 5.4.2.2 Make a FIFO Special File — Description (POSIX.1: lines 426-428)
144 Replace the second and third sentences in the paragraph with the following:

145 If {_POSIX_ACL} is defined and {_POSIX_ACL_EXTENDED} is in effect for c
146 the directory in which the FIFO is being created (the "containing directory") −
147 and said directory has a default ACL, the following actions shall be performed:

148 (1) The default ACL of the containing directory is copied to the access
149 ACL of the new FIFO.

150 (2) Both the ACL_USER_OBJ ACL entry permission bits and the file
151 owner class permission bits of the access ACL are set to the inter-+
152 section of the default ACL’s ACL_USER_OBJ permission bits and
153 the file owner class permission bits in mode. The action taken for
154 any implementation-defined permissions that may be in the
155 ACL_USER_OBJ entry shall be implementation-defined.

156 (3) If the default ACL does not contain an ACL_MASK entry, both
157 the ACL_GROUP_OBJ ACL entry permission bits and the file
158 group class permission bits of the access ACL are set to the inter- +
159 section of the default ACL’s ACL_GROUP_OBJ permission bits
160 and the file group class permission bits in mode. The action
161 taken for any implementation-defined permissions that may be in
162 the ACL_GROUP_OBJ entry shall be implementation-defined.

163 (4) If the default ACL contains an ACL_MASK entry, both the
164 ACL_MASK ACL entry permission bits and the file group class
165 permission bits of the access ACL are set to the intersection of the+
166 default ACL’s ACL_MASK permission bits and the file group
167 class permission bits in mode. The action taken for any
168 implementation-defined permissions that may be in the
169 ACL_MASK entry shall be implementation-defined.

170 (5) Both the ACL_OTHER ACL entry permission bits and the file
171 other class permission bits of the access ACL are set to the inter- +
172 section of the default ACL’s ACL_OTHER permission bits and the
173 file other class permission bits in mode. The action taken for any
174 implementation-defined permissions that may be in the
175 ACL_OTHER entry shall be implementation-defined.

176 Implementation-defined default ACL entries may affect the above algorithm
177 but shall not alter the access permitted to any subject that does not match
178 those implementation-defined ACL entries. Implementations may provide an
179 additional default ACL mechanism that is applied if a default ACL as defined
180 by this standard is not present. Such an implementation-defined default ACL c
181 interface may apply different access and/or default ACLs to created objects
182 based upon implementation-defined criteria.

183 If {_POSIX_ACL} is not defined or {_POSIX_ACL_EXTENDED} is not in effect c
184 for the directory in which the file is being created (the "containing directory"), c
185 or said directory does not have a default ACL, the file permission bits of the c
186 new FIFO are initialized from mode. The file permission bits of the mode c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 27

187 argument are modified by the file creation mask of the process (see 5.3.3).

188 ⇒ 5.4.2.2 Make a FIFO Special File — Description (POSIX.1: lines 432)
189 Insert the following paragraphs after line 432 in Section 5.4.2.2:

190 If {_POSIX_MAC} is defined and {_POSIX_MAC_PRESENT} is in effect for the c
191 containing directory and the special file is created, the MAC label of the newly
192 created special file shall be equivalent to the MAC label of the calling process
193 and the calling process shall have MAC write access to the parent directory of
194 the file to be created.

195 If {_POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the %
196 file path, and the special file is created, then the information label of the spe-
197 cial file shall automatically be set to a value which dominates the value
198 returned by inf_default().

199 ⇒ 5.5.1.2 Remove Directory Entries — Description (POSIX.1: line 474)
200 Insert the following paragraphs:

201 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
202 CAP_ADMIN capability.

203 If {_POSIX_MAC} is defined the calling process shall have MAC write access to c
204 the directory containing the link to be removed.

205 ⇒ 5.5.1.4 Remove Directory Entries — Errors (POSIX.1: line 487) Insert
206 the following phrase at the end of the line:

207 or {_POSIX_MAC} is defined and MAC write access to the directory containing c
208 the link to be removed was denied.

209 ⇒ 5.5.2.2 Remove a Directory — Description (POSIX.1: line 520) Insert the
210 following paragraph after line 520:

211 If {_POSIX_MAC} is defined, the calling process shall have MAC write access c
212 to the parent directory of the directory being removed. If {_POSIX_MAC} is c
213 defined, the calling process shall have MAC read access to the parent directory
214 of the directory being removed.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

28 5 Revisions to Files and Directories

215 ⇒ 5.5.2.4 Remove a Directory — Errors (POSIX.1: line 532) Insert the fol-
216 lowing phrase at the end of the line:

217 or {_POSIX_MAC} is defined and MAC write access was denied to the parent c
218 directory of the directory being removed or MAC read access was denied to the
219 directory containing path.

220 ⇒ 5.5.3.2 Rename a File — Description (POSIX.1: line 583) Insert the follow-
221 ing paragraph after line 566:

222 If {_POSIX_MAC} is defined the calling process must have MAC write access toc
223 the directory containing old and to the directory that will contain new. If
224 {_POSIX_MAC} is defined, and the link named by the new argument exists, c
225 the calling process shall have MAC write access to new .

226 ⇒ 5.6.2.2 Get File Status — Description (POSIX.1: line 726) Insert the fol-
227 lowing sentence:

228 If {_POSIX_ACL} is defined, and {_POSIX_ACL_EXTENDED} is in effect for c
229 the pathname, and the access ACL contains an ACL_MASK entry, then the file c
230 group class permission bits represent the ACL_MASK access ACL entry file c
231 permission bits. If {_POSIX_ACL} is defined, and {_POSIX_ACL_EXTENDED}c
232 is in effect for the pathname, and the access ACL does not contain an c
233 ACL_MASK entry, then the file group class permission bits represent the c
234 ACL_GROUP_OBJ access ACL entry file permission bits.

235 ⇒ 5.6.2.2 Get File Status — Description (POSIX.1: line 727) Insert the fol-
236 lowing:

237 If {_POSIX_MAC} is defined stat() shall require the calling process have MAC c
238 read access to the file. If {_POSIX_MAC} is defined fstat() shall require the c
239 calling process have the file open for read or have MAC read access to the file.

240 ⇒ 5.6.2.4 Get File Status — Errors (POSIX.1: line 738) Insert the following
241 phrase at the end of this line:

242 or {_POSIX_MAC} is defined and MAC read access is denied to the file. c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 29

243 ⇒ 5.6.4.2 Change File Modes — Description (POSIX.1: line 802) Insert the
244 following sentence in line 802 of Section 5.6.4.2:

245 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
246 CAP_FOWNER capability.

247 ⇒ 5.6.4.2 Change File Modes — Description (POSIX.1: line 804) Insert the
248 following sentence in line 804:

249 If the process does not have appropriate privilege, then the S_ISUID bit in the
250 mode is ignored. If {_POSIX_CAP} is defined, then appropriate privilege shall c
251 include the CAP_FSETID capability.

252 ⇒ 5.6.4.2 Change File Modes — Description (POSIX.1: line 805) Insert the
253 following paragraph after this line:

254 If {_POSIX_ACL} is defined and {_POSIX_ACL_EXTENDED} is in effect for −
255 the pathname, then the following actions shall be performed.

256 (1) The ACL_USER_OBJ access ACL entry permission bits shall be set equal+
257 to the file owner class permission bits.

258 (2) If an ACL_MASK entry is not present in the access ACL, then the +
259 ACL_GROUP_OBJ access ACL entry permission bits shall be set equal to+
260 the file group class permission bits. Otherwise, the ACL_MASK access +
261 ACL entry permission bits shall be set equal to the file group class per-
262 mission bits, and the ACL_GROUP_OBJ access ACL entry permission +
263 bits shall remain unchanged.

264 (3) The ACL_OTHER access ACL entry permission bits shall be set equal to +
265 the file other class permission bits.

266 ⇒ 5.6.4.2 Change File Modes — Description (POSIX.1: line 809) Insert the
267 following sentence after this line:

268 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
269 CAP_FSETID capability.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

30 5 Revisions to Files and Directories

270 ⇒ 5.6.4.2 Change File Modes — Description (POSIX.1: line 811) Insert the
271 following sentence after line 811 of Section 5.6.4.2:

272 If {_POSIX_MAC} is defined, the calling process shall have MAC write access c
273 to the file.

274 ⇒ 5.6.4.2 Change File Modes — Errors (POSIX.1: line 821) Insert the follow-
275 ing phrase at the end of this line:

276 or {_POSIX_MAC} is defined and MAC write access to the target file is denied. c

277 ⇒ 5.6.5.2 Change Owner and Group of a File — Description (POSIX.1: line
278 844) Insert the following sentence in this line:

279 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
280 CAP_FOWNER capability.

281 ⇒ 5.6.5.2 Change Owner and Group of a File — Description (POSIX.1: line
282 847) Insert the following sentence after this line:

283 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
284 CAP_CHOWN capability.

285 ⇒ 5.6.5.2 Change Owner and Group of a File — Description (POSIX.1: line
286 856) Insert the following sentence after the word "altered":

287 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
288 CAP_FSETID capability.

289 ⇒ 5.6.5.2 Change Owner and Group of a File — Description (POSIX.1: line
290 858) Insert the following paragraph after line 858:

291 If {_POSIX_MAC} is defined, the calling process shall have MAC write access c
292 to the file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 31

293 ⇒ 5.6.5.4 Change Owner and Group of a File — Errors (POSIX.1: line 868)
294 Insert the following phrase at the end of this line:

295 or {_POSIX_MAC} is defined and MAC write access to the target file is denied. c

296 ⇒ 5.6.5.4 Change Owner and Group of a File — Errors (POSIX.1: line 879) c
297 Insert the following sentences after this line: c

298 If {_POSIX_CAP} is defined and {_POSIX_CHOWN_RESTRICTED} is defined, c
299 and the effective user ID matches the owner of the file, then appropriate c
300 privilege shall include the CAP_CHOWN capability. If {_POSIX_CAP} is c
301 defined, and the effective user ID does not match the owner of the file, then c
302 appropriate privilege shall include the CAP_FOWNER capability.

303 ⇒ 5.6.6.2 Set File Access and Modification Times — Description
304 (POSIX.1: line 899) Insert the following sentence after this line:

305 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
306 CAP_FOWNER capability.

307 ⇒ 5.6.6.2 Set File Access and Modification Times — Description
308 (POSIX.1: line 899) Insert the following paragraph after this:

309 If {_POSIX_MAC} is defined, then the process shall have MAC write access to c
310 the file.

311 ⇒ 5.6.6.2 Set File Access and Modification Times — Description
312 (POSIX.1: line 903) Insert the following sentence after this line:

313 If {_POSIX_CAP} is defined, then appropriate privilege shall include the c
314 CAP_FOWNER capability.

315 ⇒ 5.6.6.4 Set File Access and Modification Times — Errors (POSIX.1: line
316 927) Insert the following phrase at the end of this line:

317 or {_POSIX_MAC} is defined and MAC write access to the target file is denied. c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

32 5 Revisions to Files and Directories

318 ⇒ 5.7.1.3 Get Configurable Pathname Variables — Returns (POSIX.1: line
319 965) Add the following variables to Table 5-2:

320 Variable name Value Notes321 iii
322 {_POSIX_ACL_EXTENDED} {_PC_ACL_EXTENDED} (7)
323 {_POSIX_ACL_PATH_MAX} {_PC_ACL_MAX} (7) c
324 {_POSIX_CAP_PRESENT} {_PC_CAP_PRESENT} (7)
325 {_POSIX_MAC_PRESENT} {_PC_MAC_PRESENT} (7)
326 {_POSIX_INF_PRESENT} {_PC_INF_PRESENT} (7)

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

5 Revisions to Files and Directories 33

1 Section 6: Revisions to Input and Output Primitives

2 ⇒ 6.1.1.2 Create an Inter-Process Channel — Description (POSIX.1: line
3 21) Insert the following paragraphs after this line:

4 If {_POSIX_MAC} is defined, then the MAC label of a pipe shall be equivalent
5 to the MAC label of the process that created it. The MAC label is present for
6 return by mac_get_fd(). This standard does not define that any access control c
7 decisions are made using the label.

8 If {_POSIX_INF} is defined, the information label of the pipe shall automati-
9 cally be set to a value which dominates the value returned by inf_default().

10 ⇒ 6.4.1.2 Read from a File — Description (POSIX.1: line 158) Insert the fol-
11 lowing paragraph after this line:

12 If {_POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the
13 file being read, then the information label of the process shall automatically be
14 set to an implementation-defined value that shall be the same as the value of
15 inf_float(file information label, process information label).

16 ⇒ 6.4.2.2 Write to a File — Description (POSIX.1: line 261) Insert the follow-
17 ing paragraph after this line:

18 If {_POSIX_INF} is defined and {_POSIX_INF_PRESENT} is in effect for the
19 file being written, then the information label of the file shall automatically be
20 set to an implementation-defined value which shall be the same as the value of
21 inf_float(process information label, file information label).

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

6 Revisions to Input and Output Primitives 35

1 Section 8: Revisions to C Programming Language Specific Services

2 ⇒ 8.2.3 Interactions of Other File Type C Functions (POSIX.1: line 345)
3 Insert the following sentence after line 345:

4 In particular, if an optional portion of this standard is present, the traits
5 specific to the option in the underlying function must be shared by the stream
6 function.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

8 Revisions to C Programming Language Specific Services 37

1 Section 23: Access Control Lists

2 23.1 General Overview

3 The POSIX.1e ACL facility defines an interface for manipulating Access Control
4 Lists. This interface is an extension of the POSIX.1 file permission bits. Support
5 for the interfaces defined in this section is optional but shall be provided if the
6 symbol {_POSIX_ACL} is defined. c

7 The POSIX.1e ACL interface does not alter the syntax of existing POSIX.1 inter-
8 faces. However, the access control semantics associated with existing POSIX.1
9 interfaces are necessarily more complex as a result of ACLs. The POSIX.1e ACL

10 facility includes:

11 (1) Definition and use of access and default ACLs

12 (2) Definition of initial access permissions on object creation

13 (3) Specification of the access check algorithm

14 (4) Functions to manipulate ACLs.

15 Every object can be thought of as having associated with it an ACL that governs
16 the discretionary access to that object; this ACL is referred to as an access ACL.
17 In addition, a directory may have an associated ACL that governs the initial
18 access ACL for objects created within that directory; this ACL is referred to as a +
19 default ACL. Files, as defined by POSIX.1, are the only objects for which the
20 POSIX.1e ACL facility defines ACLs. For the purposes of this document, the
21 POSIX.1 file permission bits will be considered as a special case of an ACL. An
22 ACL consists of a set of ACL entries. An ACL entry specifies the access permis-
23 sions on the associated object for an individual user or a group of users. The
24 POSIX.1e ACL facility does not dictate the actual implementation of ACLs or the
25 existing POSIX.1 file permission bits. The POSIX.1e ACL facility does not dictate
26 the specific internal representation of an ACL nor any ordering of entries within
27 an ACL. In particular, the order of internal storage of entries within an ACL does
28 not affect the order of evaluation.

29 In order to read an ACL from an object, a process must have read access to the
30 object’s attributes. In order to write (update) an ACL to an object, the process
31 must have write access to the object’s attributes.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.1 General Overview 39

32 23.1.1 ACL Entry Composition

33 An ACL entry contains, at a minimum, three distinct pieces of information:

34 (1) tag type: specifies the type of ACL entry

35 (2) qualifier: specifies an instance of an ACL entry tag type

36 (3) permissions set: specifies the discretionary access rights for processes
37 identified by the tag type and qualifier

38 A conforming implementation may add implementation-defined pieces of informa-
39 tion to an ACL entry.

40 A conforming ACL implementation shall define the following tag types:

41 — ACL_GROUP: an ACL entry of tag type ACL_GROUP denotes discretion-
42 ary access rights for processes whose effective group ID or any supplemen-
43 tal group IDs match the ACL entry qualifier

44 — ACL_GROUP_OBJ: an ACL entry of tag type ACL_GROUP_OBJ denotes
45 discretionary access rights for processes whose effective group ID or any c
46 supplemental group IDs match the group ID of the group of the file.

47 — ACL_MASK: an ACL entry of tag type ACL_MASK denotes the maximum
48 discretionary access rights that can be granted to a process in the file group c
49 class.

50 — ACL_OTHER: an ACL entry of tag type ACL_OTHER denotes discretionary
51 access rights for processes whose attributes do not match any other entry in c
52 the ACL

53 — ACL_USER: an ACL entry of tag type ACL_USER denotes discretionary
54 access rights for processes whose effective user ID matches the ACL entry
55 qualifier

56 — ACL_USER_OBJ: an ACL entry of tag type ACL_USER_OBJ denotes dis-
57 cretionary access rights for processes whose effective user ID matches the c
58 user ID of the owner of the file.

59 A conforming implementation may define additional tag types.

60 This standard extends the file group class, as defined in POSIX.1, to include
61 processes which are not in the file owner class and which match ACL entries with−
62 the tag types ACL_GROUP, ACL_GROUP_OBJ, ACL_USER, or any
63 implementation-defined tag types that are not in the file owner class.

64 An ACL shall contain exactly one entry for each of ACL_USER_OBJ,
65 ACL_GROUP_OBJ, and ACL_OTHER tag types. ACL entries with ACL_GROUP
66 and ACL_USER tag types shall appear zero or more times in an ACL. A conform- c
67 ing implementation shall support the maximum number of entries in an ACL, as
68 defined by the value of {_POSIX_ACL_PATH_MAX}, on a non-empty set of objects. c

69 The three ACL entries of tag type ACL_USER_OBJ, ACL_GROUP_OBJ, and
70 ACL_OTHER are referred to as the required ACL entries. An ACL that contains
71 only the required ACL entries is called a minimum ACL. An ACL which is not a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

40 23 Access Control Lists

72 minimum ACL is called an extended ACL.

73 An ACL that contains ACL_GROUP, ACL_USER, or implementation-defined ACL
74 entries in the file group class shall contain exactly one ACL_MASK entry. If an
75 ACL does not contain ACL_GROUP, ACL_USER, or implementation-defined ACL
76 entries in the file group class, then the ACL_MASK entry shall be optional.

77 The qualifier field associated with the POSIX.1e ACL facility defined tag types
78 shall not be extended to contain any implementation-defined information. The
79 qualifier field associated with implementation-defined tag types may contain fully
80 implementation-defined information. The qualifier field shall be unique among
81 all entries of the same POSIX.1e ACL facility defined tag type in a given ACL.
82 For entries of the ACL_USER and ACL_GROUP tag type, the qualifier field shall
83 be present and contain either a user ID or a group ID respectively. The value of
84 the qualifier field in entries of tag types ACL_GROUP_OBJ, ACL_MASK,
85 ACL_OTHER, and ACL_USER_OBJ shall be unspecified. c

86 The set of discretionary access permissions shall, at a minimum, include: read,
87 write, and execute/search. Additional permissions may be added and shall be +
88 implementation-defined.

89 23.1.2 Relationship with File Permission Bits

90 ACL interfaces extend the file permission bit interfaces to provide a finer granu- c
91 larity of access control than is possible with permission bits alone. As a superset
92 of the file permission bit interface, the ACL functionality specified preserves com- c
93 patibility with applications using POSIX.1 interfaces to retrieve and manipulate
94 access permission bits, e.g., chmod(), creat(), and stat().

95 The file permission bits shall correspond to three entries in an ACL. The permis- c
96 sions specified by the file owner class permission bits correspond to the permis-
97 sions associated with the ACL_USER_OBJ entry. The permissions specified by c
98 the file group class permission bits correspond to the permissions associated with
99 the ACL_GROUP_OBJ entry or the permissions associated with the ACL_MASK

100 entry if the ACL contains an ACL_MASK entry. The permissions specified by the c
101 file other class permission bits correspond to the permissions associated with the
102 ACL_OTHER entry.

103 The permissions associated with these ACL entries shall be identical to the per-
104 missions defined for the corresponding file permission bits. Modification of the
105 permissions associated with these ACL entries shall modify the corresponding file
106 permission bits and modification of the file permission bits shall modify the per-
107 missions of the corresponding ACL entries.

108 When the file permissions of an object are modified, e.g. using the chmod() func-
109 tion, then:

110 (1) the corresponding permissions associated with the ACL_USER_OBJ
111 entry shall be set equal to each of the file owner class permission bits

112 (2) if the ACL does not contain an ACL_MASK entry, then the corresponding
113 permissions associated with the ACL_GROUP_OBJ entry shall be set

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.1 General Overview 41

114 equal to each of the file group class permission bits

115 (3) if the ACL contains an ACL_MASK entry, then the corresponding per-
116 missions associated with the ACL_MASK entry shall be set equal to each
117 of the file group class permission bits and the permissions associated
118 with the ACL_GROUP_OBJ entry shall not be modified.

119 (4) the corresponding permissions associated with the ACL_OTHER entry
120 shall be set equal to each of the file other class permission bits

121 23.1.3 Default ACLs

122 A default ACL is an additional ACL which may be associated with a directory, but c
123 which has no operational effect on the discretionary access on that directory. It
124 shall be possible to associate a default ACL with any directory for which
125 {_POSIX_ACL_EXTENDED} is in effect. If there is a default ACL associated with
126 a directory, then that default ACL shall be used, as specified in 23.1.4, to initial-
127 ize the access ACL for any object created in that directory. If the newly created
128 object is a directory and if the parent directory has a default ACL, then the new
129 directory inherits the parent’s default ACL as its default ACL. Entries within a
130 default ACL are manipulated using the same interfaces as those used for an
131 access ACL. A default ACL has the same minimum required entries as an access
132 ACL as specified in 23.1.1.

133 Directories are not required to have a default ACL. While any particular direc-
134 tory for which {_POSIX_ACL_EXTENDED} is in effect may have a default ACL, a
135 conforming implementation shall support the default ACL interface described
136 here. If a default ACL does not exist on a directory, then any implementation-
137 defined default ACL(s) may be applied to the access or default ACLs of objects
138 created in that directory. If no default ACL is applied, the initial access control
139 information shall be obtained as specified in 5.3 and 5.4. +

140 23.1.4 Associating an ACL with an Object at Object Creation Time

141 When an object is created, its access ACL is always initialized. If a default ACL is
142 associated with a directory, two components may be used to determine the initial
143 access ACL for objects created within that directory: −

144 (1) The mode parameter to functions which can create objects may be used c
145 by an application to specify the maximum discretionary access permis-
146 sions to be associated with the resulting object. There are four POSIX.1
147 functions which can be used to create objects: creat(), mkdir(), mkfifo(),
148 and open() (with the O_CREAT flag).

149 (2) The default ACL may be used by the owner of a directory to specify the
150 maximum discretionary access permissions to be associated with objects
151 created within that directory.

152 The initial access control information is obtained as is specified in 5.3 and 5.4. −
153 Implementations may provide an additional default ACL that is applied if a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

42 23 Access Control Lists

154 default ACL as defined by this standard is not present. Such an implementation-
155 defined default ACL interface may apply different access and/or default ACLs to
156 created objects based upon implementation-defined criteria.

157 The physical ordering of the ACL entries of a newly created object shall be
158 unspecified.

159 23.1.5 ACL Access Check Algorithm

160 A process may request discretionary read, write, execute/search or any
161 implementation-defined access mode of an object protected by an access ACL. The
162 algorithm below matches specific attributes of the process to ACL entries. The c
163 process’s request is granted only if a matching ACL entry grants all of the c
164 requested access modes.

165 The access check algorithm shall check the ACL entries in the following relative c
166 order:

167 (1) the ACL_USER_OBJ entry

168 (2) any ACL_USER entries

169 (3) the ACL_GROUP_OBJ entry as well as any ACL_GROUP entries c

170 (4) the ACL_OTHER entry

171 Implementation-defined entries may be checked at any implementation-defined
172 points in the access check algorithm, as long as the above relative ordering is
173 maintained. Implementation-defined entries may grant or deny access but shall c
174 not alter the access permitted to any process that does not match those implemen-
175 tation entries.

176 If no ACL_USER_OBJ, ACL_USER, ACL_GROUP_OBJ, or ACL_GROUP entries c
177 apply and no implementation-defined entries apply, the permissions in the
178 ACL_OTHER entry shall be used to determine access.

179 Note, the algorithm presented is a logical description of the access check. The
180 physical code sequence may be different.

181 (1) If the effective user ID of the process matches the user ID of the
182 object owner
183 then
184 set matched entry to ACL_USER_OBJ entry

185 (2) else if the effective user ID of the process matches the user ID
186 specified in any ACL_USER tag type ACL entry,
187 then
188 set matched entry to the matching ACL_USER entry

189 (3) else if the effective group ID or any of the supplementary group IDs
190 of the process match the group ID of the object or match the group ID
191 specified in any ACL_GROUP or ACL_GROUP_OBJ tag type ACL +
192 entry
193 then

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.1 General Overview 43

194 if the requested access modes are granted by at least one entry
195 matched by the effective group ID or any of the supplementary
196 group IDs of the process
197 then
198 set matched entry to a granting entry
199 else
200 access is denied
201 endif

202 (4) else if the requested access modes are granted by the ACL_OTHER c
203 entry of the ACL,
204 then
205 set matched entry to the ACL_OTHER entry
206 endif

207 (5) If the requested access modes are granted by the matched entry
208 then
209 if the matched entry is an ACL_USER_OBJ or ACL_OTHER
210 entry
211 then
212 access is granted

213 else if the requested access modes are also granted by the
214 ACL_MASK entry or no ACL_MASK entry exists in the ACL
215 then
216 access is granted
217 else
218 access is denied
219 endif
220 else
221 access is denied
222 endif

223 23.1.6 ACL Functions

224 Functional interfaces are defined to manipulate ACLs and ACL entries. The func-
225 tions provide a portable interface for editing and manipulating the entries within
226 an ACL and the fields within an ACL entry.

227 Four groups of functions are defined to:

228 (1) manage the ACL working storage area

229 (2) manipulate ACL entries

230 (3) manipulate an ACL on an object

231 (4) translate an ACL into different formats.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

44 23 Access Control Lists

232 23.1.6.1 ACL Storage Management

233 These functions manage the storage areas used to contain working copies of
234 ACLs. An ACL in working storage shall not be used in any access control deci-
235 sions.

236 acl_dup() Duplicates an ACL in a working storage area

237 acl_free() Release the working storage area allocated to an ACL data
238 object

239 acl_init() Allocates and initializes an ACL working storage area

240 23.1.6.2 ACL Entry Manipulation

241 These functions manipulate ACL entries in working storage. The functions are
242 divided into several groups:

243 (1) Functions that manipulate complete entries in an ACL:

244 acl_copy_entry() Copies an ACL entry to another ACL entry

245 acl_create_entry() Creates a new entry in an ACL

246 acl_delete_entry() Deletes an entry from an ACL

247 acl_get_entry() Returns a descriptor to an ACL entry

248 acl_valid() Validates an ACL by checking for duplicate, miss-
249 ing, and ill-formed entries

250 (2) Functions that manipulate permissions within an ACL entry:

251 acl_add_perm() Adds a permission to a given permission set

252 acl_calc_mask() Sets the permission granted by the ACL_MASK
253 entry to the maximum permissions granted by the
254 ACL_GROUP, ACL_GROUP_OBJ, ACL_USER and
255 implementation-defined ACL entries

256 acl_clear_perms() Clears all permissions from a given permission set

257 acl_delete_perm() Deletes a permission from a given permission set

258 acl_get_permset() Returns the permissions in a given ACL entry

259 acl_set_permset() Sets the permissions in a given ACL entry

260 (3) Functions that manipulate the tag type and qualifier in an ACL entry:

261 acl_get_qualifier() Returns the qualifier in a given ACL entry

262 acl_get_tag_type() Returns the tag type in a given ACL entry

263 acl_set_qualifier() Sets the qualifier in a given ACL entry

264 acl_set_tag_type() Sets the tag type in a given ACL entry

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.1 General Overview 45

265 23.1.6.3 ACL Manipulation on an Object

266 These functions read the contents of an access ACL or a default ACL into working
267 storage and write an ACL in working storage to an object’s access ACL or default
268 ACL. The functions also delete a default ACL from an object:

269 acl_delete_def_file() Deletes the default ACL associated with an object

270 acl_get_fd() Reads the contents of an access ACL associated with a file
271 descriptor into working storage

272 acl_get_file() Reads the contents of an access ACL or default ACL asso-
273 ciated with an object into working storage

274 acl_set_fd() Writes the ACL in working storage to the object associ-
275 ated with a file descriptor as an access ACL

276 acl_set_file() Writes the ACL in working storage to an object as an
277 access ACL or default ACL

278 23.1.6.4 ACL Format Translation

279 The standard defines three different representations for ACLs:

280 external form The exportable, contiguous, persistent representation of an
281 ACL in user-managed space

282 internal form The internal representation of an ACL in working storage

283 text form The structured text representation of an ACL

284 These functions translate an ACL from one representation into another.

285 acl_copy_ext() Translates an internal form of an ACL to an external form of
286 an ACL

287 acl_copy_int() Translates an external form of an ACL to an internal form of
288 an ACL

289 acl_from_text() Translates a text form of an ACL to an internal form of an
290 ACL

291 acl_size() Returns the size in bytes required to store the external form
292 of an ACL that is the result of an acl_copy_ext()

293 acl_to_text() Translates an internal form of an ACL to a text form of an
294 ACL

295 23.1.7 POSIX.1 Functions Covered by ACLs

296 The following table lists the POSIX.1 interfaces that are changed to reflect Access
297 Control Lists. There are no changes to the syntax of these interfaces.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

46 23 Access Control Lists

298 Existing POSIX.1
299 Function Section300 iiiiiiiiiiiiiiiiiiii
301 access() 5.6.3
302 chmod() 5.6.4
303 creat() 5.3.2
304 fstat() 5.6.2
305 mkdir() 5.4.1
306 mkfifo() 5.4.2
307 open() 5.3.1
308 stat() 5.6.2

309 23.2 Header

310 The header <<ssyyss//aaccll..hh>> defines the symbols used in the ACL interfaces.

311 Some of the data types used by the ACL functions are not defined as part of this
312 standard but shall be implementation-defined. If {_POSIX_ACL} is defined, these
313 types shall be defined in the header <<ssyyss//aaccll..hh>>, which contains definitions for
314 at least the types shown in Table 23-1. c

315 Table 23-1 − ACL Data Types
316 Defined Type Description317 ii
318 Used as a descriptor for a specific ACL entry in ACL working
319 storage. This data type is non-exportable data.
320 acl_entry_t

321 Used for individual object access permissions. This data type
322 is exportable data.
323 acl_perm_t

324 Used for the set of object access permissions. This data type
325 is non-exportable data.
326 acl_permset_t

327 Used as a pointer to an ACL in ACL working storage. This
328 data type is non-exportable data.
329 acl_t

330 Used to distinguish different types of ACL entries. This data
331 type is exportable data.
332 acl_tag_t

333 Used to distinguish different types of ACLs (e.g., access,
334 default). This data type is exportable data.
335 acl_type_t

336 The symbolic constants defined in Table 23-2, Table 23-3, Table 23-4, Table 23-5, +
337 Table 23-6, shall be defined in the header <<ssyyss//aaccll..hh>>.

338 23.2.1 acl_entry_t

339 This typedef shall define an opaque, implementation-defined descriptor for an
340 ACL entry. The internal structure of an acl_entry_t is unspecified.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.2 Header 47

341 23.2.2 acl_perm_t

342 This typedef shall define a data type capable of storing an individual object access
343 permission.

344 Table 23-2 contains acl_perm_t values for acl_add_perm(), acl_clear_perms(), and
345 acl_delete_perm().

346 Table 23-2 − acl_perm_t Values

347 Constant Description348 iii
349 ACL_EXECUTE ACL execute permission
350 ACL_READ ACL read permission
351 ACL_WRITE ACL write permission

352 These constants shall be implementation-defined unique values.

353 23.2.3 acl_permset_t

354 This typedef shall define the opaque, implementation-defined descriptor for a set
355 of object access permissions. The internal structure of an acl_permset_t is
356 unspecified.

357 23.2.4 acl_t

358 This typedef shall define a pointer to an opaque, implementation-defined ACL in
359 ACL working storage, the internal structure of which is unspecified.

360 23.2.5 acl_tag_t

361 This typedef shall define a data type capable of storing an individual ACL entry
362 tag type.

363 Table 23-3 contains acl_tag_t values for acl_get_tag_type() and acl_set_tag_type().

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

48 23 Access Control Lists

364 Table 23-3 − acl_tag_t Values
365 Constant Description366 iii
367 ACL_GROUP ACL entry for a specific group
368 ACL_GROUP_OBJ ACL entry for the owning group
369 ACL entry that denotes the
370 maximum permissions allowed
371 on all other ACL entry types
372 except for ACL_USER_OBJ
373 and ACL_OTHER (including
374 implementation-defined types +
375 in the file group class)

376 ACL_MASK

377 ACL entry for users whose pro-
378 cess attributes are not matched
379 in any other ACL entry

380 ACL_OTHER

381 ACL_UNDEFINED_TAG Undefined ACL entry
382 ACL_USER ACL entry for a specific user
383 ACL_USER_OBJ ACL entry for the object owner

384 These constants shall be implementation-defined unique values.

385 23.2.6 acl_type_t

386 This typedef shall define a data type capable of storing an individual ACL type.

387 Table 23-4 contains acl_type_t values for acl_get_file() and acl_set_file().

388 Table 23-4 − acl_type_t Values
389 Constant Description390 ii
391 ACL_TYPE_ACCESS Indicates an access ACL
392 ACL_TYPE_DEFAULT Indicates a default ACL

393 These constants shall be implementation-defined unique values.

394 23.2.7 ACL Qualifier

395 Table 23-5 contains the value of undefined user IDs or group IDs for the ACL c
396 qualifier.

397 Table 23-5 − ACL Qualifier Constants
398 Constant Description c399 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii c
400 ACL_UNDEFINED_ID Undefined ID c

401 These constants shall be implementation-defined values.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.2 Header 49

402 23.2.8 ACL Entry

403 Table 23-6 contains the values used to denote ACL entries to be retrieved by the c
404 acl_get_entry() function. c

405 Table 23-6 − ACL Entry Constants cc
406 Constant Description cc407 iii cc
408 ACL_FIRST_ENTRY Return the first ACL entry in the ACL. cc
409 ACL_NEXT_ENTRY Return the next ACL entry in the ACL. cc

410 These constants shall be implementation-defined values.

411 23.3 Text Form Representation

412 This section defines the long and short text forms of ACLs. The long text form is
413 defined first in order to give a complete specification with no exceptions. The
414 short text form is defined second because it is specified relative to the long text
415 form.

416 23.3.1 Long Text Form for ACLs

417 The long text form is used for either input or output of ACLs and is defined as fol-
418 lows:

419 <acl_entry>
420 [<acl_entry>] ...

421 Each <acl_entry> line shall contain one ACL entry with three required colon-
422 separated fields: an ACL entry tag type, an ACL entry qualifier, and the discre-
423 tionary access permissions. An implementation may define additional colon-
424 separated fields after the required fields. Comments may be included on any
425 <acl_entry> line. If a comment starts at the beginning of a line, then the entire
426 line shall be interpreted as a comment.

427 The first field contains the ACL entry tag type. This standard defines the follow-
428 ing ACL entry tag type keywords, one of which shall appear in the first field:

429 uusseerr A uusseerr ACL entry specifies the access granted to either the file
430 owner or a specified user.

431 ggrroouupp An ggrroouupp ACL entry specifies the access granted to either the file
432 owning group or a specified group.

433 ootthheerr An ootthheerr ACL entry specifies the access granted to any process
434 that does not match any uusseerr, ggrroouupp, or implementation-defined
435 ACL entries.

436 mmaasskk A mmaasskk ACL entry specifies the maximum access which can be
437 granted by any ACL entry except the uusseerr entry for the file owner
438 and the ootthheerr entry.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

50 23 Access Control Lists

439 An implementation may define additional ACL entry types.

440 The second field contains the ACL entry qualifier (referred to in the remainder of
441 this section as qualifier). This standard defines the following qualifiers: c

442 uid This qualifier specifies a user name or a user ID number.

443 gid This qualifier specifies a group name or a group ID number.

444 empty This qualifier specifies that no uid or gid information is to be applied
445 to the ACL entry. An empty qualifier shall be represented by an
446 empty string or by white space.

447 An implementation may define additional qualifiers.

448 The third field contains the discretionary access permissions. This standard c
449 defines the following symbolic discretionary access permissions:

450 rr Read access

451 ww Write access

452 xx Execute/search access

453 −− No access by this ACL entry.

454 The discretionary access permissions field shall contain exactly one each of the
455 following characters in the following order: rr, ww, and xx. Each of these may be
456 replaced by the ‘‘-’’ character to indicate no access. An implementation may define c
457 additional characters following the required characters that represent
458 implementation-defined permissions.

459 A uusseerr entry with an empty qualifier shall specify the access granted to the file
460 owner. A uusseerr entry with a uid qualifier shall specify the access permissions
461 granted to the user name matching the uid value. If the uid value does not match
462 a user name, then the ACL entry shall specify the access permissions granted to
463 the user ID matching the numeric uid value. +

464 A ggrroouupp entry with an empty qualifier shall specify the access granted to the file
465 owning group. A ggrroouupp entry with a gid qualifier shall specify the access permis-
466 sions granted to the group name matching the gid value. If the gid value does not
467 match a group name, then the ACL entry shall specify the access permissions
468 granted to the group ID matching the numeric gid value. +

469 The mmaasskk and ootthheerr entries shall contain an empty qualifier. An implementa-
470 tion may define additional ACL entry types that use the empty qualifier.

471 A number-sign (#) starts a comment on an <acl_entry> line. A comment may start
472 at the beginning of a line, after the required fields and after any implementation-
473 defined, colon-separated fields. The end of the line denotes the end of the com-
474 ment. −

475 If an ACL entry contains permissions that are not also contained in the mmaasskk
476 entry, then the output text form for that <acl_entry> line shall be displayed as
477 described above followed by a number-sign (#), the string "effective: ", and the
478 effective access permissions for that ACL entry.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.3 Text Form Representation 51

479 White space is permitted in <acl_entry> lines as follows: at the start of the line; −
480 immediately before and after a ‘‘:’’ separator; immediately before the first
481 number-sign (#) character; at any point after the first number-sign (#) character.

482 Comments shall have no effect on the discretionary access check of the object with
483 which they are associated. An implementation shall define whether or not com-
484 ments are stored with an ACL.

485 If an implementation allows the colon character ‘‘:’’ to be present in an ACL entry
486 qualifier, then that implementation shall provide a method for distinguishing
487 between a colon character as a field separator in an ACL entry definition and a
488 colon character as a component of the ACL entry qualifier value. −

489 23.3.2 Short Text Form for ACLs

490 The short text form is used only for input of ACLs and is defined as follows:

491 <acl_entry>[,<acl_entry>]... c

492 Each <acl_entry> shall contain one ACL entry, as defined in 23.3.1, with two
493 exceptions.

494 The ACL entry tag type keyword shall appear in the first field in either its full
495 unabbreviated form or its single letter abbreviated form. The abbreviation for
496 uusseerr is ‘‘uu’’, the abbreviation for ggrroouupp is ‘‘gg’’, the abbreviation for ootthheerr is ‘‘oo’’,
497 and the abbreviation for mmaasskk is ‘‘mm’’. An implementation may define additional
498 ACL entry tag type abbreviations.

499 There are no exceptions for the second field in the short text form for ACLs.

500 The discretionary access permissions shall appear in the third field. The symbolic−
501 string shall contain at most one each of the following characters in any order: rr,
502 ww, and xx; implementations may define additional characters that may appear in
503 any order within the string. %

504 23.4 Functions

505 Support for the ACL facility functions described in this section is optional. If the
506 symbol {_POSIX_ACL} is defined, the implementation supports the ACL option c
507 and all of the ACL functions shall be implemented as described in this section. If c
508 {_POSIX_ACL} is not defined, the result of calling any of these functions is c
509 unspecified.

510 The error [ENOTSUP] shall be returned in those cases where the system supports
511 the ACL facility but the particular ACL operation cannot be applied because of
512 restrictions imposed by the implementation.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

52 23 Access Control Lists

513 23.4.1 Add a Permission to an ACL Permission Set

514 Function: acl_add_perm()

515 23.4.1.1 Synopsis

516 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

517 iinntt aaccll__aadddd__ppeerrmm ((aaccll__ppeerrmmsseett__tt permset_d,, aaccll__ppeerrmm__tt perm));; c

518 23.4.1.2 Description

519 The acl_add_perm() function shall add the permission contained in argument
520 perm to the permission set referred to by argument permset_d. An attempt to add
521 a permission that is already granted by the permission set shall not be considered
522 an error. −

523 Any existing descriptors that refer to permset_d shall continue to refer to that per-
524 mission set.

525 23.4.1.3 Returns

526 Upon successful completion, the function shall return a value of zero. Otherwise,
527 a value of −1 shall be returned and errno shall be set to indicate the error.

528 23.4.1.4 Errors

529 If any of the following conditions occur, the acl_add_perm() function shall return
530 −1 and set errno to the corresponding value:

531 [EINVAL] Argument permset_d is not a valid descriptor for a permission
532 set within an ACL entry.

533 Argument perm does not contain a valid acl_perm_t value. −

534 23.4.1.5 Cross-References

535 acl_clear_perms(), 23.4.3; acl_delete_perm(), 23.4.10; acl_get_permset(), 23.4.17;
536 acl_set_permset(), 23.4.23.

537 23.4.2 Calculate the File Group Class Mask

538 Function: acl_calc_mask()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 53

539 23.4.2.1 Synopsis

540 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

541 iinntt aaccll__ccaallcc__mmaasskk ((aaccll__tt ∗∗acl_p));; c

542 23.4.2.2 Description

543 The acl_calc_mask() function shall calculate and set the permissions associated
544 with the ACL_MASK ACL entry of the ACL referred to by acl_p. The value of the
545 new permissions shall be the union of the permissions granted by the
546 ACL_GROUP, ACL_GROUP_OBJ, ACL_USER, and any implementation-defined
547 tag types which match processes in the file group class contained in the ACL
548 referred to by acl_p. If the ACL referred to by acl_p already contains an c
549 ACL_MASK entry, its permissions shall be overwritten; if it does not contain an
550 ACL_MASK entry, one shall be added. If the ACL referred to by acl_p does not c
551 contain enough space for the new ACL entry, then additional working storage
552 may be allocated. If the working storage cannot be increased in the current loca-
553 tion, then it may be relocated and the previous working storage shall be released
554 and a pointer to the new working storage shall be returned via acl_p.

555 The order of existing entries in the ACL is undefined after this function.

556 Any existing ACL entry descriptors that refer to entries in the ACL shall continue
557 to refer to those entries. Any existing ACL pointers that refer to the ACL referred
558 to by acl_p shall continue to refer to the ACL.

559 23.4.2.3 Returns

560 Upon successful completion, the function shall return a value of zero. Otherwise,
561 a value of −1 shall be returned and errno shall be set to indicate the error.

562 23.4.2.4 Errors

563 If any of the following conditions occur, the acl_calc_mask() function shall return
564 −1 and set errno to the corresponding value:

565 [EINVAL] Argument acl_p does not point to a pointer to a valid ACL.

566 [ENOMEM] The acl_calc_mask() function is unable to allocate the memory
567 required for an ACL_MASK ACL entry. −

568 23.4.2.5 Cross-References

569 acl_get_entry(), 23.4.14; acl_valid(), 23.4.28.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

54 23 Access Control Lists

570 23.4.3 Clear All Permissions from an ACL Permission Set

571 Function: acl_clear_perms()

572 23.4.3.1 Synopsis

573 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

574 iinntt aaccll__cclleeaarr__ppeerrmmss ((aaccll__ppeerrmmsseett__tt permset_d));; c

575 23.4.3.2 Description

576 The acl_clear_perms() function shall clear all permissions from the permission set
577 referred to by argument permset_d. −

578 Any existing descriptors that refer to permset_d shall continue to refer to that per-
579 mission set.

580 23.4.3.3 Returns

581 Upon successful completion, the function shall return a value of zero. Otherwise,
582 a value of −1 shall be returned and errno shall be set to indicate the error.

583 23.4.3.4 Errors

584 If any of the following conditions occur, the acl_clear_perms() function shall
585 return −1 and set errno to the corresponding value:

586 [EINVAL] Argument permset_d is not a valid descriptor for a permission
587 set within an ACL entry. −

588 23.4.3.5 Cross-References

589 acl_add_perm(), 23.4.1; acl_delete_perm(), 23.4.10; acl_get_permset(), 23.4.17;
590 acl_set_permset(), 23.4.23.

591 23.4.4 Copy an ACL Entry

592 Function: acl_copy_entry()

593 23.4.4.1 Synopsis

594 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

595 iinntt aaccll__ccooppyy__eennttrryy ((aaccll__eennttrryy__tt dest_d,, aaccll__eennttrryy__tt src_d));; c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 55

596 23.4.4.2 Description

597 The acl_copy_entry() function shall copy the contents of the ACL entry indicated
598 by the src_d descriptor to the existing ACL entry indicated by the dest_d descrip-
599 tor. The src_d and dest_d descriptors may refer to entries in different ACLs.

600 The src_d, dest_d and any other ACL entry descriptors that refer to entries in +
601 either ACL shall continue to refer to those entries. The order of all existing
602 entries in both ACLs shall remain unchanged.

603 23.4.4.3 Returns

604 Upon successful completion, the function shall return a value of zero. Otherwise,
605 a value of −1 shall be returned and errno shall be set to indicate the error.

606 23.4.4.4 Errors

607 If any of the following conditions occur, the acl_copy_entry() function shall return
608 −1 and set errno to the corresponding value:

609 [EINVAL] Argument src_d or dest_d is not a valid descriptor for an ACL
610 entry.

611 Arguments src_d and dest_d reference the same ACL entry. −

612 23.4.4.5 Cross-References

613 acl_get_entry(), 23.4.14.

614 23.4.5 Copy an ACL From System to User Space

615 Function: acl_copy_ext()

616 23.4.5.1 Synopsis

617 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

618 ssssiizzee__tt aaccll__ccooppyy__eexxtt ((vvooiidd ∗∗buf_p,, aaccll__tt acl,, ssssiizzee__tt size));; c

619 23.4.5.2 Description

620 The acl_copy_ext() function shall copy an ACL, pointed to by acl, from system-
621 managed space to the user managed space pointed to by buf_p. The size parame- c
622 ter represents the size in bytes of the buffer pointed to by buf_p. The format of the
623 ACL placed in the user-managed space pointed to by buf_p shall be a contiguous,
624 persistent data item, the format of which is unspecified. It is the responsibility of
625 the invoker to allocate an area large enough to hold the copied ACL. The size of
626 the exportable, contiguous, persistent form of the ACL may be obtained by invok-
627 ing the acl_size() function.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

56 23 Access Control Lists

628 Any ACL entry descriptors that refer to an entry in the ACL referenced by acl
629 shall continue to refer to those entries. Any existing ACL pointers that refer to
630 the ACL referenced by acl shall continue to refer to the ACL.

631 23.4.5.3 Returns

632 Upon successful completion, the acl_copy_ext() function shall return the number
633 of bytes placed in the user-managed space pointed to by buf_p. Otherwise, a value
634 of (ssize_t) −1 shall be returned and errno shall be set to indicate the error. c

635 23.4.5.4 Errors

636 If any of the following conditions occur, the acl_copy_ext() function shall return a
637 value of (ssize_t) −1 and set errno to the corresponding value: c

638 [EINVAL] The size parameter is zero or negative.

639 Argument acl does not point to a valid ACL.

640 The ACL referenced by acl contains one or more improperly
641 formed ACL entries, or for some other reason cannot be
642 translated into the external form ACL. −

643 [ERANGE] The size parameter is greater than zero but smaller than the
644 length of the contiguous, persistent form of the ACL.

645 23.4.5.5 Cross-References

646 acl_copy_int(), 23.4.6; acl_size(), 23.4.26.

647 23.4.6 Copy an ACL From User to System Space

648 Function: acl_copy_int()

649 23.4.6.1 Synopsis

650 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

651 aaccll__tt aaccll__ccooppyy__iinntt ((ccoonnsstt vvooiidd ∗∗buf_p));; c

652 23.4.6.2 Description

653 The acl_copy_int() function shall copy an exportable, contiguous, persistent form
654 of an ACL, pointed to by buf_p, from user-managed space to system-managed
655 space.

656 This function may cause memory to be allocated. The caller should free any
657 releaseable memory, when the new ACL is no longer required, by calling
658 acl_free() with the (void ∗)acl_t as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 57

659 Upon successful completion, this function shall return a pointer that references
660 the ACL in ACL working storage.

661 23.4.6.3 Returns

662 Upon successful completion, the acl_copy_int() function shall return a pointer
663 referencing the ACL in ACL working storage. Otherwise, a value of (acl_t)NULL
664 shall be returned, and errno shall be set to indicate the error.

665 23.4.6.4 Errors

666 If any of the following conditions occur, the acl_copy_int() function shall return a
667 value of (acl_t)NULL and set errno to the corresponding value:

668 [EINVAL] The buffer pointed to by argument buf_p does not contain a valid c
669 external form ACL.

670 [ENOMEM] The ACL working storage requires more memory than is allowed
671 by the hardware or system-imposed memory management con-
672 straints. −

673 23.4.6.5 Cross-References

674 acl_copy_ext(), 23.4.5; acl_get_entry(), 23.4.14; acl_free(), 23.4.12.

675 23.4.7 Create a New ACL Entry

676 Function: acl_create_entry()

677 23.4.7.1 Synopsis

678 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

679 iinntt aaccll__ccrreeaattee__eennttrryy ((aaccll__tt ∗∗acl_p,, aaccll__eennttrryy__tt ∗∗entry_p));; c

680 23.4.7.2 Description

681 The acl_create_entry() function creates a new ACL entry in the ACL pointed to by
682 the contents of the pointer argument acl_p.

683 This function may cause memory to be allocated. The caller should free any
684 releaseable memory, when the ACL is no longer required, by calling acl_free()
685 with (void ∗)acl_t as an argument.

686 If the ACL working storage cannot be increased in the current location, then the
687 working storage for the ACL pointed to by acl_p may be relocated and the previ-
688 ous working storage shall be released. A pointer to the new working storage shall
689 be returned via acl_p. Upon successful completion, the acl_create_entry() function
690 shall return a descriptor for the new ACL entry via entry_p.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

58 23 Access Control Lists

691 The components of the new ACL entry are initialized in the following ways: the
692 ACL tag type component shall contain ACL_UNDEFINED_TAG, the qualifier
693 component shall contain ACL_UNDEFINED_ID, and the set of permissions shall
694 have no permissions enabled. Other features of a newly created ACL entry shall
695 be implementation-defined. Any existing ACL entry descriptors that refer to
696 entries in the ACL shall continue to refer to those entries.

697 23.4.7.3 Returns

698 Upon successful completion, the function shall return a value of zero. Otherwise,
699 a value of −1 shall be returned and errno shall be set to indicate the error.

700 23.4.7.4 Errors

701 If any of the following conditions occur, the acl_create_entry() function shall
702 return −1 and set errno to the corresponding value:

703 [EINVAL] Argument acl_p does not point to a pointer to a valid ACL.

704 [ENOMEM] The ACL working storage requires more memory than is allowed
705 by the hardware or system-imposed memory management con-
706 straints. −

707 23.4.7.5 Cross-References

708 acl_delete_entry(), 23.4.9; acl_get_entry(), 23.4.14.

709 23.4.8 Delete a Default ACL by Filename

710 Function: acl_delete_def_file()

711 23.4.8.1 Synopsis

712 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

713 iinntt aaccll__ddeelleettee__ddeeff__ffiillee ((ccoonnsstt cchhaarr ∗∗path_p));; c

714 23.4.8.2 Description

715 The acl_delete_def_file() function deletes a default ACL from the directory whose
716 pathname is pointed to by the argument path_p. The effective user ID of the pro- c
717 cess must match the owner of the directory or the process must have appropriate
718 privilege to delete the default ACL from path_p. If {_POSIX_CAP} is defined, then c
719 appropriate privilege shall include CAP_FOWNER. In addition, if
720 {_POSIX_MAC} is defined, then the process must have MAC write access to the c
721 directory.

722 If the argument path_p is not a directory, then the function shall fail. It shall not c
723 be considered an error if path_p is a directory and either c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 59

724 {_POSIX_ACL_EXTENDED} is not in effect for path_p, or path_p does not have a c
725 default ACL.

726 Upon successful completion, acl_delete_def_file() shall delete the default ACL
727 associated with the argument path_p. If acl_delete_def_file() is unsuccessful, the
728 default ACL associated with the argument path_p shall not be changed.

729 23.4.8.3 Returns

730 Upon successful completion, the function shall return a value of zero. Otherwise,
731 a value of −1 shall be returned and errno shall be set to indicate the error.

732 23.4.8.4 Errors

733 If any of the following conditions occur, the acl_delete_def_file() function shall
734 return −1 and set errno to the corresponding value:

735 [EACCES] Search permission is denied for a component of the path prefix
736 or the object exists and the process does not have appropriate
737 access rights.

738 If {_POSIX_MAC} is defined, MAC write access to path_p is c
739 denied.

740 [ENAMETOOLONG]
741 The length of the path_p argument exceeds {PATH_MAX}, or a
742 pathname component is longer than {NAME_MAX} while
743 {POSIX_NO_TRUNC} is in effect.

744 [ENOENT] The named object does not exist or the path_p argument points
745 to an empty string. −

746 [ENOTDIR] A component of the path prefix is not a directory.

747 Argument path_p does not refer to a directory.

748 [EPERM] The process does not have appropriate privilege to perform the
749 operation to delete the default ACL.

750 [EROFS] This function requires modification of a file system which is
751 currently read-only.

752 23.4.8.5 Cross-References

753 acl_get_file(), 23.4.16; acl_set_file(), 23.4.22. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

60 23 Access Control Lists

754 23.4.9 Delete an ACL Entry

755 Function: acl_delete_entry()

756 23.4.9.1 Synopsis

757 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

758 iinntt aaccll__ddeelleettee__eennttrryy ((aaccll__tt acl,, aaccll__eennttrryy__tt entry_d));; c

759 23.4.9.2 Description

760 The acl_delete_entry() function shall remove the ACL entry indicated by the
761 entry_d descriptor from the ACL pointed to by acl.

762 Any existing ACL entry descriptors that refer to entries in acl other than that
763 referred to by entry_d shall continue to refer to the same entries. The argument
764 entry_d and any other ACL entry descriptors that refer to the same ACL entry are
765 undefined after this function completes. Any existing ACL pointers that refer to
766 the ACL referred to by acl shall continue to refer to the ACL.

767 23.4.9.3 Returns

768 Upon successful completion, the function shall return a value of zero. Otherwise,
769 a value of −1 shall be returned and errno shall be set to indicate the error.

770 23.4.9.4 Errors

771 If any of the following conditions occur, the acl_delete_entry() function shall
772 return −1 and set errno to the corresponding value:

773 [EINVAL] Argument acl does not point to a valid ACL. Argument entry_d +
774 is not a valid descriptor for an ACL entry in acl.

775 [ENOSYS] This function is not supported by the implementation.

776 23.4.9.5 Cross-References

777 acl_copy_entry(), 23.4.4; acl_create_entry(), 23.4.7; acl_get_entry(), 23.4.14.

778 23.4.10 Delete Permissions from an ACL Permission Set

779 Function: acl_delete_perm()

780 23.4.10.1 Synopsis

781 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

782 iinntt aaccll__ddeelleettee__ppeerrmm ((aaccll__ppeerrmmsseett__tt permset_d,, aaccll__ppeerrmm__tt perm));; c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 61

783 23.4.10.2 Description

784 The acl_delete_perm() function shall delete the permission contained in argument
785 perm from the permission set referred to by argument permset_d. An attempt to
786 delete a permission that is not granted by the ACL entry shall not be considered
787 an error. −

788 Any existing descriptors that refer to permset_d shall continue to refer to that per-
789 mission set.

790 23.4.10.3 Returns

791 Upon successful completion, the function shall return a value of zero. Otherwise,
792 a value of −1 shall be returned and errno shall be set to indicate the error.

793 23.4.10.4 Errors

794 If any of the following conditions occur, the acl_delete_perm() function shall
795 return −1 and set errno to the corresponding value:

796 [EINVAL] Argument permset_d is not a valid descriptor for a permission
797 set within an ACL entry.

798 Argument perm does not contain a valid acl_perm_t value.

799 [ENOSYS] This function is not supported by the implementation.

800 23.4.10.5 Cross-References

801 acl_add_perm(), 23.4.1; acl_clear_perms(), 23.4.3; acl_get_permset(), 23.4.17;
802 acl_set_permset(), 23.4.23.

803 23.4.11 Duplicate an ACL

804 Function: acl_dup()

805 23.4.11.1 Synopsis

806 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

807 aaccll__tt aaccll__dduupp ((aaccll__tt acl));; c

808 23.4.11.2 Description

809 The acl_dup() function returns a pointer to a copy of the ACL pointed to by argu-
810 ment acl.

811 This function may cause memory to be allocated. When the new ACL is no longer c
812 required, the caller should free any releaseable memory by calling acl_free() with
813 the (void ∗)acl_t as an argument. c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

62 23 Access Control Lists

814 Any existing ACL pointers that refer to the ACL referred to by acl shall continue
815 to refer to the ACL.

816 23.4.11.3 Returns

817 Upon successful completion, the function shall return a pointer to the duplicate
818 ACL. Otherwise, a value of (acl_t)NULL shall be returned and errno shall be set
819 to indicate the error.

820 23.4.11.4 Errors

821 If any of the following conditions occur, the acl_dup() function shall return a
822 value of (acl_t)NULL and set errno to the corresponding value:

823 [EINVAL] Argument acl does not point to a valid ACL.

824 [ENOMEM] The ACL working storage requires more memory than is allowed
825 by the hardware or system-imposed memory management con-
826 straints. −

827 23.4.11.5 Cross-References

828 acl_free(), 23.4.12; acl_get_entry(), 23.4.14.

829 23.4.12 Release Memory Allocated to an ACL Data Object

830 Function: acl_free()

831 23.4.12.1 Synopsis

832 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

833 iinntt aaccll__ffrreeee ((vvooiidd ∗∗obj_p));; c

834 23.4.12.2 Description

835 The acl_free() function shall free any releasable memory currently allocated to the
836 ACL data object identified by obj_p. The argument obj_p may identify an ACL, an
837 ACL entry qualifier, or a pointer to a string allocated by one of the ACL functions.

838 If the item identified by obj_p is an acl_t, the acl_t and any existing descriptors
839 that refer to parts of the ACL shall become undefined. If the item identified by
840 obj_p is a string (char∗), then use of the char∗ shall become undefined. If the item
841 identified by obj_p is an ACL entry qualifier (void∗), then use of the void∗ shall
842 become undefined.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 63

843 23.4.12.3 Returns

844 Upon successful completion, the function shall return a value of zero. Otherwise,
845 a value of −1 shall be returned and errno shall be set to indicate the error.

846 23.4.12.4 Errors

847 If any of the following conditions occur, the acl_free() function shall return −1 and
848 set errno to the corresponding value:

849 [EINVAL] The value of the obj_p argument is invalid. −

850 23.4.12.5 Cross-References

851 acl_copy_int(), 23.4.6; acl_create_entry(), 23.4.7; acl_dup(), 23.4.11;
852 acl_from_text(), 23.4.13; acl_get_fd(), 23.4.15; acl_get_file(), 23.4.16;
853 acl_get_permset(), 23.4.17; acl_init(), 23.4.20.

854 23.4.13 Create an ACL from Text

855 Function: acl_from_text()

856 23.4.13.1 Synopsis

857 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

858 aaccll__tt aaccll__ffrroomm__tteexxtt ((ccoonnsstt cchhaarr ∗∗buf_p));; c

859 23.4.13.2 Description

860 The acl_from_text() function converts the text form of the ACL referred to by c
861 buf_p into the internal form of an ACL and returns a pointer to the working
862 storage that contains the ACL. The acl_from_text() function shall accept as input +
863 the long text form and short text form of an ACL as described in sections 23.3.1. +
864 and 23.3.2.

865 This function may cause memory to be allocated. The caller should free any
866 releaseable memory, when the new ACL is no longer required, by calling
867 acl_free() with the (void ∗)acl_t as an argument.

868 Permissions within each ACL entry within the short text form of the ACL shall be−
869 specified only as absolute values.

870 23.4.13.3 Returns

871 Upon successful completion, the function shall return a pointer to the internal c
872 representation of the ACL in working storage. Otherwise, a value of (acl_t)NULL
873 shall be returned and errno shall be set to indicate the error.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

64 23 Access Control Lists

874 23.4.13.4 Errors

875 If any of the following conditions occur, the acl_from_text() function shall return a
876 value of (acl_t)NULL and set errno to the corresponding value:

877 [EINVAL] Argument buf_p cannot be translated into an ACL.

878 [ENOMEM] The ACL working storage requires more memory than is allowed
879 by the hardware or system-imposed memory management con-
880 straints. −

881 23.4.13.5 Cross-References

882 acl_free(), 23.4.12; acl_get_entry(), 23.4.14; acl_to_text(), 23.4.27.

883 23.4.14 Get an ACL Entry

884 Function: acl_get_entry()

885 23.4.14.1 Synopsis

886 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

887 iinntt aaccll__ggeett__eennttrryy ((aaccll__tt acl,, c
888 iinntt entry_id,, c
889 aaccll__eennttrryy__tt ∗∗entry_p));; c

890 23.4.14.2 Description

891 The acl_get_entry() function shall obtain a descriptor for an ACL entry as
892 specified by entry_id within the ACL indicated by argument acl. If the value of
893 entry_id is ACL_FIRST_ENTRY, then the function shall return in entry_p a +
894 descriptor for the first ACL entry within acl. If a call is made to acl_get_entry() c
895 with entry_id set to ACL_NEXT_ENTRY when there has not been either an ini- c
896 tial successful call to acl_get_entry(), or a previous successful call to
897 acl_get_entry() following a call to acl_calc_mask(), acl_copy_int(),
898 acl_create_entry(), acl_delete_entry(), acl_dup(), acl_from_text(), acl_get_fd(),
899 acl_get_file(), acl_set_fd(), acl_set_file(), or acl_valid(), then the effect is
900 unspecified.

901 Upon successful execution, the acl_get_entry() function shall return a descriptor
902 for the ACL entry via entry_p.

903 Calls to acl_get_entry() shall not modify any ACL entries. Subsequent operations
904 using the returned ACL entry descriptor shall operate on the ACL entry within
905 the ACL in ACL working storage. The order of all existing entries in the ACL
906 shall remain unchanged. Any existing ACL entry descriptors that refer to entries
907 within the ACL shall continue to refer to those entries. Any existing ACL
908 pointers that refer to the ACL referred to by acl shall continue to refer to the
909 ACL.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 65

910 23.4.14.3 Returns

911 If the function successfully obtains an ACL entry, the function shall return a
912 value of 1. If the ACL has no ACL entries, the function shall return a value of c
913 zero. If the value of entry_id is ACL_NEXT_ENTRY and the last ACL entry in
914 the ACL has already been returned by a previous call to acl_get_entry(), the func-
915 tion shall return a value of zero until a successful call with entry_id of +
916 ACL_FIRST_ENTRY is made. Otherwise, a value of −1 shall be returned and
917 errno shall be set to indicate the error.

918 23.4.14.4 Errors

919 If any of the following conditions occur, the acl_get_entry() function shall return
920 −1 and set errno to the corresponding value:

921 [EINVAL] Argument acl does not point to a valid ACL. Argument entry_id +
922 is neither ACL_NEXT_ENTRY nor ACL_FIRST_ENTRY. −

923 23.4.14.5 Cross-References

924 acl_calc_mask(), 23.4.2; acl_copy_int(), 23.4.6; acl_create_entry(), 23.4.7;
925 acl_delete_entry(), 23.4.9; acl_dup(), 23.4.11; acl_from_text(), 23.4.13;
926 acl_get_fd(), 23.4.15; acl_get_file(), 23.4.16; acl_init(), 23.4.20; acl_set_fd(),
927 23.4.21; acl_set_file(), 23.4.22; acl_valid(), 23.4.28.

928 23.4.15 Get an ACL by File Descriptor

929 Function: acl_get_fd()

930 23.4.15.1 Synopsis

931 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

932 aaccll__tt aaccll__ggeett__ffdd ((iinntt fd));; c

933 23.4.15.2 Description

934 The acl_get_fd() function retrieves the access ACL for the object associated with c
935 the file descriptor, fd. If {_POSIX_MAC} is defined, then the process must have c
936 MAC read access to the object associated with fd. The ACL shall be placed into +
937 working storage and acl_get_fd() shall return a pointer to that storage.

938 This function may cause memory to be allocated. The caller should free any
939 releaseable memory, when the new ACL is no longer required, by calling
940 acl_free() with the (void ∗)acl_t as an argument.

941 The ACL in the working storage is an independent copy of the ACL associated
942 with the object referred to by fd. The ACL in the working storage shall not partici-
943 pate in any access control decisions.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

66 23 Access Control Lists

944 23.4.15.3 Returns

945 Upon successful completion, the function shall return a pointer to the ACL that
946 was retrieved. Otherwise, a value of (acl_t)NULL shall be returned and errno
947 shall be set to indicate the error.

948 23.4.15.4 Errors

949 If any of the following conditions occur, the acl_get_fd() function shall return a
950 value of (acl_t)NULL and set errno to the corresponding value:

951 [EACCES] If {_POSIX_MAC} is defined, MAC read access to the object is c
952 denied.

953 [EBADF] The fd argument is not a valid file descriptor.

954 [ENOMEM] The ACL working storage requires more memory than is allowed
955 by the hardware or system-imposed memory management con-
956 straints. −

957 23.4.15.5 Cross-References

958 acl_free(), 23.4.12; acl_get_entry(), 23.4.14; acl_get_file(), 23.4.16; acl_set_fd(), +
959 23.4.21.

960 23.4.16 Get an ACL by Filename

961 Function: acl_get_file()

962 23.4.16.1 Synopsis

963 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

964 aaccll__tt aaccll__ggeett__ffiillee ((ccoonnsstt cchhaarr ∗∗path_p,, aaccll__ttyyppee__tt type));; c

965 23.4.16.2 Description

966 The acl_get_file() function retrieves the access ACL associated with an object or −
967 the default ACL associated with a directory. The pathname for the object or
968 directory is pointed to by the argument path_p. If {_POSIX_MAC} is defined, then c
969 the process must have MAC read access to path_p. The ACL shall be placed into +
970 working storage and acl_get_file() shall return a pointer to that storage.

971 This function may cause memory to be allocated. The caller should free any
972 releaseable memory, when the new ACL is no longer required, by calling
973 acl_free() with the (void ∗)acl_t as an argument.

974 The value of the argument type is used to indicate whether the access ACL or the
975 default ACL associated with path_p is returned. If type is ACL_TYPE_ACCESS,
976 then the access ACL shall be returned. If type is ACL_TYPE_DEFAULT, then the
977 default ACL shall be returned. If type is ACL_TYPE_DEFAULT and no default

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 67

978 ACL is associated with path_p, then an ACL containing zero ACL entries shall be
979 returned. If the argument type specifies a type of ACL that cannot be associated
980 with path_p, then the function shall fail.

981 The ACL in the working storage is an independent copy of the ACL associated
982 with the object referred to by path_p. The ACL in the working storage shall not
983 participate in any access control decisions.

984 23.4.16.3 Returns

985 Upon successful completion, the function shall return a pointer to the ACL that
986 was retrieved. Otherwise, a value of (acl_t)NULL shall be returned and errno
987 shall be set to indicate the error.

988 23.4.16.4 Errors

989 If any of the following conditions occur, the acl_get_file() function shall return a
990 value of (acl_t)NULL and set errno to the corresponding value:

991 [EACCES] Search permission is denied for a component of the path prefix
992 or the object exists and the process does not have appropriate
993 access rights.

994 If {_POSIX_MAC} is defined, MAC read access to the object is c
995 denied.

996 Argument type specifies a type of ACL that cannot be associated
997 with path_p.

998 [EINVAL] Argument type is not ACL_TYPE_ACCESS,
999 ACL_TYPE_DEFAULT, or a valid implementation-defined
1000 value.

1001 [ENAMETOOLONG]
1002 The length of the path_p argument exceeds {PATH_MAX}, or a
1003 pathname component is longer than {NAME_MAX} while
1004 {POSIX_NO_TRUNC} is in effect.

1005 [ENOENT] The named object does not exist or the path_p argument points
1006 to an empty string.

1007 [ENOMEM] The ACL working storage requires more memory than is allowed
1008 by the hardware or system-imposed memory management con-
1009 straints. −

1010 [ENOTDIR] A component of the path prefix is not a directory.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

68 23 Access Control Lists

1011 23.4.16.5 Cross-References

1012 acl_delete_def_file(), 23.4.8; acl_free(), 23.4.12; acl_get_entry(), 23.4.14; +
1013 acl_get_fd(), 23.4.15; acl_set_file(), 23.4.22.

1014 23.4.17 Retrieve the Permission Set from an ACL Entry

1015 Function: acl_get_permset()

1016 23.4.17.1 Synopsis

1017 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1018 iinntt aaccll__ggeett__ppeerrmmsseett ((aaccll__eennttrryy__tt entry_d,, aaccll__ppeerrmmsseett__tt ∗permset_p));; c

1019 23.4.17.2 Description

1020 The acl_get_permset() function returns via permset_p a descriptor to the permis-
1021 sion set in the ACL entry indicated by entry_d. Subsequent operations using the −
1022 returned permission set descriptor operate on the permission set within the ACL
1023 entry. +

1024 Any ACL entry descriptors that refer to the entry referred to by entry_d shall con-
1025 tinue to refer to those entries.

1026 23.4.17.3 Returns

1027 Upon successful completion, the function shall return a value of zero. Otherwise,
1028 a value of −1 shall be returned and errno shall be set to indicate the error.

1029 23.4.17.4 Errors

1030 If any of the following conditions occur, the acl_get_permset() function shall
1031 return −1 and set errno to the corresponding value:

1032 [EINVAL] Argument entry_d is not a valid descriptor for an ACL entry. −

1033 23.4.17.5 Cross-References

1034 acl_add_perm(), 23.4.1; acl_clear_perms(), 23.4.3; acl_delete_perm(), 23.4.10;
1035 acl_set_permset(), 23.4.23.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 69

1036 23.4.18 Get ACL Entry Qualifier

1037 Function: acl_get_qualifier()

1038 23.4.18.1 Synopsis

1039 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1040 vvooiidd ∗∗aaccll__ggeett__qquuaalliiffiieerr ((aaccll__eennttrryy__tt entry_d));; c

1041 23.4.18.2 Description

1042 The acl_get_qualifier() function retrieves the qualifier of the tag for the ACL entry
1043 indicated by the argument entry_d into working storage and returns a pointer to
1044 that storage. −

1045 If the value of the tag type in the ACL entry referred to by entry_d is ACL_USER,
1046 then the value returned by acl_get_qualifier() shall be a pointer to type uid_t. If
1047 the value of the tag type in the ACL entry referred to by entry_d is ACL_GROUP,
1048 then the value returned by acl_get_qualifier() shall be a pointer to type gid_t. If
1049 the value of the tag type in the ACL entry referred to by entry_d is
1050 implementation-defined, then the value returned by acl_get_qualifier() shall be a
1051 pointer to an implementation-defined type. If the value of the tag type in the ACL
1052 entry referred to by entry_d is ACL_UNDEFINED_TAG, ACL_USER_OBJ, c
1053 ACL_GROUP_OBJ, ACL_OTHER, ACL_MASK, or an implementation-defined
1054 value for which a qualifier is not supported, then acl_get_qualifier() shall return a
1055 value of (void ∗)NULL and the function shall fail. Subsequent operations using c
1056 the returned pointer shall operate on an independent copy of the qualifier in c
1057 working storage.

1058 This function may cause memory to be allocated. The caller should free any
1059 releaseable memory, when the new qualifier is no longer required, by calling
1060 acl_free() with the void∗ as an argument.

1061 The argument entry_d and any other ACL entry descriptors that refer to entries
1062 within the ACL containing the entry referred to by entry_d shall continue to refer
1063 to those entries. The order of all existing entries in the ACL containing the entry
1064 referred to by entry_d shall remain unchanged.

1065 23.4.18.3 Returns

1066 Upon successful completion, the function shall return a pointer to the tag qualifier
1067 that was retrieved into ACL working storage. Otherwise, a value of (void ∗)NULL
1068 shall be returned and errno shall be set to indicate the error.

1069 23.4.18.4 Errors

1070 If any of the following conditions occur, the acl_get_qualifier() function shall
1071 return a value of (void ∗)NULL and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

70 23 Access Control Lists

1072 [EINVAL] Argument entry_d is not a valid descriptor for an ACL entry.

1073 The value of the tag type in the ACL entry referenced by argu-
1074 ment entry_d is not ACL_USER, ACL_GROUP, nor a valid
1075 implementation-defined value.

1076 [ENOMEM] The value to be returned requires more memory than is allowed
1077 by the hardware or system-imposed memory management con-
1078 straints. −

1079 23.4.18.5 Cross-References

1080 acl_create_entry(), 23.4.7; acl_free(), 23.4.12; acl_get_entry(), 23.4.14;
1081 acl_get_tag_type(), 23.4.19; acl_set_qualifier(), 23.4.24; acl_set_tag_type(), 23.4.25.

1082 23.4.19 Get ACL Entry Tag Type

1083 Function: acl_get_tag_type()

1084 23.4.19.1 Synopsis

1085 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1086 iinntt aaccll__ggeett__ttaagg__ttyyppee ((aaccll__eennttrryy__tt entry_d,, aaccll__ttaagg__tt ∗∗tag_type_p));; c

1087 23.4.19.2 Description

1088 The acl_get_tag_type() function returns the tag type for the ACL entry indicated
1089 by the argument entry_d. Upon successful completion, the location referred to by −
1090 the argument tag_type_p shall be set to the tag type of the ACL entry referred to
1091 by entry_d.

1092 The argument entry_d and any other ACL entry descriptors that refer to entries
1093 in the same ACL shall continue to refer to those entries. The order of all existing
1094 entries in the ACL shall remain unchanged.

1095 23.4.19.3 Returns

1096 Upon successful completion, the function shall set the location referred to by
1097 tag_type_p to the tag type that was retrieved and shall return a value of zero.
1098 Otherwise, a value of −1 shall be returned, the location referred to by tag_type_p, c
1099 shall not be changed, and errno shall be set to indicate the error.

1100 23.4.19.4 Errors

1101 If any of the following conditions occur, the acl_get_tag_type() function shall
1102 return −1 and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 71

1103 [EINVAL] Argument entry_d is not a valid descriptor for an ACL entry. −

1104 23.4.19.5 Cross-References

1105 acl_create_entry(), 23.4.7; acl_get_entry(), 23.4.14; acl_get_qualifier(), 23.4.18;
1106 acl_set_qualifier(), 23.4.24; acl_set_tag_type(), 23.4.25.

1107 23.4.20 Initialize ACL Working Storage

1108 Function: acl_init()

1109 23.4.20.1 Synopsis

1110 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1111 aaccll__tt aaccll__iinniitt ((iinntt count));; c

1112 23.4.20.2 Description

1113 The acl_init() function allocates and initializes working storage for an ACL of at
1114 least count ACL entries. A pointer to the working storage is returned. The work-
1115 ing storage allocated to contain the ACL is freed by a call to acl_free(). When the −
1116 area is first allocated, it shall contain an ACL that contains no ACL entries. The
1117 initial state of any implementation-defined attributes of the ACL shall be
1118 implementation-defined.

1119 This function may cause memory to be allocated. The caller should free any
1120 releaseable memory, when the new ACL is no longer required, by calling
1121 acl_free() with the (void ∗)acl_t as an argument.

1122 23.4.20.3 Returns

1123 Upon successful completion, this function shall return a pointer to the working
1124 storage. Otherwise, a value of (acl_t)NULL shall be returned and errno shall be
1125 set to indicate the error.

1126 23.4.20.4 Errors

1127 If any of the following conditions occur, the acl_init() function shall return a value
1128 of (acl_t)NULL and set errno to the corresponding value:

1129 [EINVAL] The value of count is less than zero.

1130 [ENOMEM] The acl_t to be returned requires more memory than is allowed
1131 by the hardware or system-imposed memory management con-
1132 straints. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

72 23 Access Control Lists

1133 23.4.20.5 Cross-References

1134 acl_free(), 23.4.12.

1135 23.4.21 Set an ACL by File Descriptor

1136 Function: acl_set_fd()

1137 23.4.21.1 Synopsis

1138 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1139 iinntt aaccll__sseett__ffdd ((iinntt fd,, aaccll__tt acl));; c

1140 23.4.21.2 Description

1141 The acl_set_fd() function associates an access ACL with the object referred to by
1142 fd. The effective user ID of the process must match the owner of the object or the c
1143 process must have appropriate privilege to set the access ACL on the object. If
1144 {_POSIX_CAP} is defined, then appropriate privilege shall include c
1145 CAP_FOWNER. In addition, if {_POSIX_MAC} is defined, then the process must c
1146 have MAC write access to the object.

1147 The acl_set_fd() function will succeed only if the ACL referred to by acl is valid as+
1148 defined by the acl_valid() function.

1149 Upon successful completion, acl_set_fd() shall set the access ACL of the object −
1150 referred to by argument fd to the ACL contained in the argument acl. The object’s
1151 previous access ACL shall no longer be in effect. The invocation of this function
1152 may result in changes to the object’s file permission bits. If acl_set_fd() is unsuc- +
1153 cessful, the access ACL and the file permission bits of the object referred to by +
1154 argument fd shall not be changed.

1155 The ordering of entries within the ACL referred to by acl may be changed in some
1156 implementation-defined manner.

1157 Existing ACL entry descriptors that refer to entries within the ACL referred to by
1158 acl shall continue to refer to those entries. Existing ACL pointers that refer to the
1159 ACL referred to by acl shall continue to refer to the ACL.

1160 23.4.21.3 Returns

1161 Upon successful completion, the function shall return a value of zero. Otherwise,
1162 a value of −1 shall be returned and errno shall be set to indicate the error.

1163 23.4.21.4 Errors

1164 If any of the following conditions occur, the acl_set_fd() function shall return −1
1165 and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 73

1166 [EACCES] If {_POSIX_MAC} is defined, MAC write access to the object is c
1167 denied. −

1168 [EBADF] The fd argument is not a valid file descriptor.

1169 [EINVAL] Argument acl does not point to a valid ACL. The function
1170 acl_valid() may be used to determine what errors are in the
1171 ACL. +

1172 fpathconf() indicates that {_POSIX_ACL_EXTENDED} is in +
1173 effect for the object referenced by the argument fd, but the ACL +
1174 has more entries than the value returned by fpathconf() for +
1175 {_POSIX_ACL_PATH_MAX} for the object.

1176 [ENOSPC] The directory or file system that would contain the new ACL
1177 cannot be extended or the file system is out of file allocation
1178 resources. −

1179 [EPERM] The process does not have appropriate privilege to perform the
1180 operation to set the ACL.

1181 [EROFS] This function requires modification of a file system which is
1182 currently read-only.

1183 23.4.21.5 Cross-References

1184 acl_delete_def_file(), 23.4.8; acl_get_entry(), 23.4.14; acl_get_fd(), 23.4.15;
1185 acl_get_file(), 23.4.16; acl_set_file(), 23.4.22; acl_valid(), 23.4.28.

1186 23.4.22 Set an ACL by Filename

1187 Function: acl_set_file()

1188 23.4.22.1 Synopsis

1189 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1190 iinntt aaccll__sseett__ffiillee ((ccoonnsstt cchhaarr ∗∗path_p,, aaccll__ttyyppee__tt type,, aaccll__tt acl));; c

1191 23.4.22.2 Description

1192 The acl_set_file() function associates an access ACL with an object or associates a
1193 default ACL with a directory. The pathname for the object or directory is pointed
1194 to by the argument path_p. The effective user ID of the process must match the c
1195 owner of the object or the process must have appropriate privilege to set the
1196 access ACL or the default ACL on path_p. If {_POSIX_CAP} is defined, then c
1197 appropriate privilege shall include CAP_FOWNER. In addition, if
1198 {_POSIX_MAC} is defined, then the process must have MAC write access to the c
1199 object.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

74 23 Access Control Lists

1200 The value of the argument type is used to indicate whether the access ACL or the
1201 default ACL associated with path_p is being set. If type is ACL_TYPE_ACCESS,
1202 then the access ACL shall be set. If type is ACL_TYPE_DEFAULT, then the
1203 default ACL shall be set. If the argument type specifies a type of ACL that cannot
1204 be associated with path_p, then the function shall fail.

1205 The acl_set_file() function will succeed only if the access or default ACL is valid as
1206 defined by the acl_valid() function.

1207 If {_POSIX_ACL_EXTENDED} is not in effect for path_p, then the function shall
1208 fail if:

1209 (1) the value of type is ACL_TYPE_DEFAULT, or

1210 (2) the value of type is ACL_TYPE_ACCESS and acl is not a minimum ACL.

1211 If the value of type is ACL_TYPE_ACCESS or ACL_TYPE_DEFAULT, then the
1212 function shall fail if the number of entries in acl is greater than the value path-
1213 conf() returns for {_POSIX_ACL_PATH_MAX} for path_p. c

1214 Upon successful completion, acl_set_file() shall set the access ACL or the default −
1215 ACL, as indicated by type_d, of the object path_p to the ACL contained in the
1216 argument acl. The object’s previous access ACL or default ACL, as indicated by
1217 type_d, shall no longer be in effect. The invocation of this function may result in
1218 changes to the object’s file permission bits. If acl_set_file() is unsuccessful, the +
1219 access ACL, the default ACL, and the file permission bits of the object referred to +
1220 by argument path_p shall not be changed.

1221 The ordering of entries within the ACL referred to by acl may be changed in some
1222 implementation-defined manner.

1223 Existing ACL entry descriptors that refer to entries within the ACL referred to by
1224 acl shall continue to refer to those entries. Existing ACL pointers that refer to the
1225 ACL referred to by acl shall continue to refer to the ACL.

1226 23.4.22.3 Returns

1227 Upon successful completion, the function shall return a value of zero. Otherwise,
1228 a value of −1 shall be returned and errno shall be set to indicate the error.

1229 23.4.22.4 Errors

1230 If any of the following conditions occur, the acl_set_file() function shall return −1
1231 and set errno to the corresponding value:

1232 [EACCES] Search permission is denied for a component of the path prefix
1233 or the object exists and the process does not have appropriate
1234 access rights.

1235 If {_POSIX_MAC} is defined, MAC write access to path_p is c
1236 denied.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 75

1237 Argument type specifies a type of ACL that cannot be associated
1238 with path_p. −

1239 [EINVAL] Argument acl does not point to a valid ACL. The function
1240 acl_valid() may be used to determine what errors are in the
1241 ACL.

1242 Argument type is not ACL_TYPE_ACCESS,
1243 ACL_TYPE_DEFAULT, or a valid implementation-defined
1244 value. +

1245 pathconf() indicates that {_POSIX_ACL_EXTENDED} is in +
1246 effect for the object referenced by the argument path_p, but the +
1247 ACL has more entries than the value returned by pathconf() for +
1248 {_POSIX_ACL_PATH_MAX} for the object.

1249 [ENAMETOOLONG]
1250 The length of the path_p argument exceeds {PATH_MAX}, or a
1251 pathname component is longer than {NAME_MAX} while
1252 {POSIX_NO_TRUNC} is in effect.

1253 [ENOENT] The named object does not exist or the path_p argument points
1254 to an empty string.

1255 [ENOSPC] The directory or file system that would contain the new ACL
1256 cannot be extended or the file system is out of file allocation
1257 resources. −

1258 [ENOTDIR] A component of the path prefix is not a directory.

1259 [EPERM] The process does not have appropriate privilege to perform the
1260 operation to set the ACL.

1261 [EROFS] This function requires modification of a file system which is
1262 currently read-only.

1263 23.4.22.5 Cross-References

1264 acl_delete_def_file(), 23.4.8; acl_get_entry(), 23.4.14; acl_get_fd(), 23.4.15;
1265 acl_get_file(), 23.4.16; acl_set_fd(), 23.4.21; acl_valid(), 23.4.28.

1266 23.4.23 Set the Permissions in an ACL Entry

1267 Function: acl_set_permset()

1268 23.4.23.1 Synopsis

1269 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1270 iinntt aaccll__sseett__ppeerrmmsseett ((aaccll__eennttrryy__tt entry_d,, aaccll__ppeerrmmsseett__tt permset_d));; c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

76 23 Access Control Lists

1271 23.4.23.2 Description

1272 The acl_set_permset() function shall set the permissions of the ACL entry indi-
1273 cated by argument entry_d to the permissions contained in the argument
1274 permset_d. −

1275 Any ACL entry descriptors that refer to the entry containing the permission set
1276 referred to by permset_d shall continue to refer to those entries. Any ACL entry
1277 descriptors that refer to the entry referred to by entry_d shall continue to refer to
1278 that entry.

1279 23.4.23.3 Returns

1280 Upon successful completion, the function shall return a value of zero. Otherwise,
1281 a value of −1 shall be returned and errno shall be set to indicate the error.

1282 23.4.23.4 Errors

1283 If any of the following conditions occur, the acl_set_permset() function shall return
1284 −1 and set errno to the corresponding value:

1285 [EINVAL] Argument entry_d is not a valid descriptor for an ACL entry.

1286 Argument permset_d is not a valid descriptor for a permission
1287 set within an ACL entry.

1288 Argument permset_d contains values which are not valid
1289 acl_permset_t values. −

1290 23.4.23.5 Cross-References

1291 acl_add_perm(), 23.4.1; acl_clear_perms(), 23.4.3; acl_delete_perm(), 23.4.10;
1292 acl_get_permset(), 23.4.17.

1293 23.4.24 Set ACL Entry Tag Qualifier

1294 Function: acl_set_qualifier()

1295 23.4.24.1 Synopsis

1296 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1297 iinntt aaccll__sseett__qquuaalliiffiieerr ((aaccll__eennttrryy__tt entry_d,, c
1298 ccoonnsstt vvooiidd ∗∗tag_qualifier_p));; c

1299 23.4.24.2 Description

1300 The acl_set_qualifier() function shall set the qualifier of the tag for the ACL entry
1301 indicated by the argument entry_d to the value referred to by the argument
1302 tag_qualifier_p. +

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 77

1303 If the value of the tag type in the ACL entry referred to by entry_d is ACL_USER,
1304 then the value referred to by tag_qualifier_p shall be of type uid_t. If the value of
1305 the tag type in the ACL entry referred to by entry_d is ACL_GROUP, then the
1306 value referred to by tag_qualifier_p shall be of type gid_t. If the value of the tag
1307 type in the ACL entry referred to by entry_d is ACL_UNDEFINED_TAG, c
1308 ACL_USER_OBJ, ACL_GROUP_OBJ, ACL_OTHER or ACL_MASK, then
1309 acl_set_qualifier() shall return an error. If the value of the tag type in the ACL
1310 entry referred to by entry_d is an implementation-defined value, then the value
1311 referred to by tag_qualifier_p shall be implementation-defined.

1312 Any ACL entry descriptors that refer to the entry referred to by entry_d shall con-−
1313 tinue to refer to that entry. This function may cause memory to be allocated. The
1314 caller should free any releaseable memory, when the ACL is no longer required,
1315 by calling acl_free() with a pointer to the ACL as an argument.

1316 23.4.24.3 Returns

1317 Upon successful completion, the function shall return a value of zero. Otherwise,
1318 a value of −1 shall be returned and errno shall be set to indicate the error.

1319 23.4.24.4 Errors

1320 If any of the following conditions occur, the acl_set_qualifier() function shall
1321 return −1 and set errno to the corresponding value:

1322 [EINVAL] Argument entry_d is not a valid descriptor for an ACL entry.

1323 The tag type of the ACL entry referred to by the argument
1324 entry_d is not ACL_USER, ACL_GROUP, nor a valid
1325 implementation-defined value.

1326 The value pointed to by the argument tag_qualifier_p is not
1327 valid.

1328 [ENOMEM] The acl_set_qualifier() function is unable to allocate the memory
1329 required for an ACL tag qualifier. −

1330 23.4.24.5 Cross-References

1331 acl_get_qualifier(), 23.4.18.

1332 23.4.25 Set ACL Entry Tag Type

1333 Function: acl_set_tag_type()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

78 23 Access Control Lists

1334 23.4.25.1 Synopsis

1335 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1336 iinntt aaccll__sseett__ttaagg__ttyyppee ((aaccll__eennttrryy__tt entry_d,, aaccll__ttaagg__tt tag_type));; c

1337 23.4.25.2 Description

1338 The acl_set_tag_type() function shall set the tag type for the ACL entry referred to
1339 by the argument entry_d to the value of the argument tag_type. −

1340 Any ACL entry descriptors that refer to the entry referred to by entry_d shall con-
1341 tinue to refer to that entry.

1342 23.4.25.3 Returns

1343 Upon successful completion, the function shall return a value of zero. Otherwise,
1344 a value of −1 shall be returned and errno shall be set to indicate the error.

1345 23.4.25.4 Errors

1346 If any of the following conditions occur, the acl_set_tag_type() function shall
1347 return −1 and set errno to the corresponding value:

1348 [EINVAL] Argument entry_d is not a valid descriptor for an ACL entry.

1349 Argument tag_type is not a valid tag type. −

1350 23.4.25.5 Cross-References

1351 acl_get_tag_type(), 23.4.19.

1352 23.4.26 Get the Size of an ACL

1353 Function: acl_size()

1354 23.4.26.1 Synopsis

1355 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1356 ssssiizzee__tt aaccll__ssiizzee ((aaccll__tt acl));; c

1357 23.4.26.2 Description

1358 The acl_size() function shall return the size, in bytes, of the buffer required to
1359 hold the exportable, contiguous, persistent form of the ACL pointed to by argu-
1360 ment acl, when converted by acl_copy_ext().

1361 Any existing ACL entry descriptors that refer to entries in acl shall continue to −
1362 refer to the same entries. Any existing ACL pointers that refer to the ACL

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 79

1363 referred to by acl shall continue to refer to the ACL. The order of ACL entries
1364 within acl shall remain unchanged.

1365 23.4.26.3 Returns

1366 Upon successful completion, the acl_size() function shall return the size in bytes
1367 of the contiguous, persistent form of the ACL. Otherwise, a value of (ssize_t) −1
1368 shall be returned and errno shall be set to indicate the error.

1369 23.4.26.4 Errors

1370 If any of the following conditions occur, the acl_size() function shall return
1371 (ssize_t) −1 and set errno to the corresponding value:

1372 [EINVAL] Argument acl does not point to a valid ACL. −

1373 23.4.26.5 Cross-References

1374 acl_copy_ext(), 23.4.5.

1375 23.4.27 Convert an ACL to Text

1376 Function: acl_to_text()

1377 23.4.27.1 Synopsis

1378 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1379 cchhaarr ∗∗aaccll__ttoo__tteexxtt ((aaccll__tt acl,, ssssiizzee__tt ∗∗len_p));; c

1380 23.4.27.2 Description

1381 The acl_to_text() function translates the ACL pointed to by argument acl into a
1382 NULL terminated character string. If the pointer len_p is not NULL, then the −
1383 function shall return the length of the string (not including the NULL terminator)
1384 in the location pointed to by len_p. The format of the text string returned by −
1385 acl_to_text() shall be the long text form defined in 23.3.1. c

1386 This function allocates any memory necessary to contain the string and returns a +
1387 pointer to the string. The caller should free any releaseable memory, when the +
1388 new string is no longer required, by calling acl_free() with the (void ∗)char as an +
1389 argument. +

1390 Any existing ACL entry descriptors that refer to entries in acl shall continue to
1391 refer to the same entries. Any existing ACL pointers that refer to the ACL
1392 referred to by acl shall continue to refer to the ACL. The order of ACL entries
1393 within acl shall remain unchanged.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

80 23 Access Control Lists

1394 23.4.27.3 Returns

1395 Upon successful completion, the function shall return a pointer to the long text
1396 form of an ACL. Otherwise, a value of (char ∗)NULL shall be returned and errno
1397 shall be set to indicate the error.

1398 23.4.27.4 Errors

1399 If any of the following conditions occur, the acl_to_text() function shall return a
1400 value of (char ∗)NULL and set errno to the corresponding value:

1401 [EINVAL] Argument acl does not point to a valid ACL.

1402 The ACL denoted by acl contains one or more improperly formed
1403 ACL entries, or for some other reason cannot be translated into a
1404 text form of an ACL.

1405 [ENOMEM] The character string to be returned requires more memory than
1406 is allowed by the hardware or system-imposed memory manage-
1407 ment constraints. −

1408 23.4.27.5 Cross-References

1409 acl_free(), 23.4.12; acl_from_text(). 23.4.13.

1410 23.4.28 Validate an ACL

1411 Function: acl_valid()

1412 23.4.28.1 Synopsis

1413 ##iinncclluuddee <<ssyyss//aaccll..hh>> c

1414 iinntt aaccll__vvaalliidd ((aaccll__tt acl));; c

1415 23.4.28.2 Description

1416 The acl_valid() function checks the ACL referred to by the argument acl for vali-
1417 dity.

1418 The three required entries (ACL_USER_OBJ, ACL_GROUP_OBJ, and
1419 ACL_OTHER) shall exist exactly once in the ACL. If the ACL contains any
1420 ACL_USER, ACL_GROUP, or any implementation-defined entries in the file
1421 group class, then one ACL_MASK entry shall also be required. The ACL shall
1422 contain at most one ACL_MASK entry.

1423 The qualifier field shall be unique among all entries of the same POSIX.1e ACL
1424 facility defined tag type. The tag type field shall contain valid values including
1425 any implementation-defined values. Validation of the values of the qualifier field
1426 is implementation-defined.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

23.4 Functions 81

1427 The ordering of entries within the ACL referred to by acl may be changed in some
1428 implementation-defined manner.

1429 Existing ACL entry descriptors that refer to entries within the ACL referred to by
1430 acl shall continue to refer to those entries. Existing ACL pointers that refer to the
1431 ACL referred to by acl shall continue to refer to the ACL.

1432 If multiple errors occur in the ACL, the order of detection of the errors and, as a
1433 result, the ACL entry descriptor returned by acl_valid() shall be implementation-
1434 defined.

1435 23.4.28.3 Returns

1436 Upon successful completion, the function shall return a value of zero. Otherwise,
1437 a value of −1 shall be returned and errno shall be set to indicate the error.

1438 23.4.28.4 Errors

1439 If any of the following conditions occur, the acl_valid() function shall return −1
1440 and set errno to the corresponding value:

1441 [EINVAL] Argument acl does not point to a valid ACL.

1442 One or more of the required ACL entries is not present in acl.

1443 The ACL contains entries that are not unique. −

1444 23.4.28.5 Cross-References

1445 acl_get_entry(), 23.4.14; acl_get_fd(), 23.4.15; acl_get_file(), 23.4.16; acl_init(),
1446 23.4.20; acl_set_fd(), 23.4.21; acl_set_file(), 23.4.22.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

82 23 Access Control Lists

1 Section 24: Audit

2 24.1 General Overview

3 There are four major functional components of the POSIX.1 audit interface
4 specification:

5 (1) Interfaces for a conforming application to construct and write records to
6 an audit log and control the auditing of the current process

7 (2) Interfaces for reading an audit log and manipulating audit records

8 (3) The definition of a standard set of events, based on the POSIX.1 function
9 interfaces, that shall be reportable in conforming implementations

10 (4) The definition of the contents of audit records.

11 This standard defines which interfaces require an appropriate privilege, and the
12 relevant capabilities if the POSIX capability option is in use.

13 Support for the interfaces defined in this section is optional but shall be provided
14 if the symbol {_POSIX_AUD} is defined.

15 24.1.1 Audit Logs

16 The standard views the destination of audit records that are recorded, and the
17 source of records read by an audit post-processing application, as an ‘‘audit log’’.
18 Audit logs map to the POSIX abstraction of a ‘‘file’’: that is, POSIX file interfaces
19 such as open() can generally be used to gain access to audit logs, subject to the
20 access controls of the system.

21 As viewed at the POSIX interface, a log contains a sequence of audit records;
22 interfaces are provided to write records to a log, and to read records from it.

23 A conforming implementation shall support a ‘‘system audit log’’: that is, a log
24 that is the destination of system-generated audit records (e.g. reporting on use of c
25 security-relevant POSIX.1 interfaces), and of application-generated records that
26 an application sends to that log. The system audit log may correspond to different
27 files at different times. An application that sends records to the system audit log
28 does not have to be able to open() the corresponding file; instead an appropriate
29 privilege is required. This protects the integrity of the system audit log. A post-
30 processing application that reads records from the system audit log can gain
31 access to the log through open() of the file that currently corresponds to it.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.1 General Overview 83

32 The internal format of audit logs, and of the records within them, is unspecified
33 (because of this, the POSIX read() and write() interfaces should not generally be
34 used to access audit logs).

35 24.1.2 Audit Records

36 Audit records describe events; that is, there is a correspondence between some
37 actual event that occurred and the audit record reporting it. An audit record pro-
38 vides a description of one event. With an audit record, a report is given of what
39 happened, who will be held accountable for it, what it affected, and when.

40 Audit records are generated in two ways:

41 g By a system conforming to the POSIX.1 audit option, to report on use of its
42 security relevant interfaces. This is known as system auditing, and the
43 records are known as system-generated records.

44 g By an application with the appropriate privilege, to report on its own activi-
45 ties. These are known as application-generated records.

46 This standard does not specify the method by which audit records are written to
47 the audit log nor does it specify the internal format in which audit records are
48 stored. The standard specifies only the interfaces by which application-generated
49 records are delivered to the system and by which system- and application-
50 generated records are reported to a conforming application.

51 Note that the standard does not specify the manner by which system-generated
52 records are delivered to the system audit log; this is left up to the implementation.

53 An audit record that is generated by an application, or an auditable event that
54 occurs in a system conforming to the POSIX.1 audit option, may or may not actu-
55 ally be reported to a conforming application. This standard specifies that these
56 events shall be reportable on a conforming implementation, but not that they
57 always be reported. The record will be reported only if {_POSIX_AUD} was
58 defined at the time the event occurred and was defined at the time the event com-
59 pleted. The results are indeterminate if {_POSIX_AUD} was not defined through
60 the lifetime of the event. There may also be other implementation-specific con-
61 trols on the events that are actually reported (in particular, a conforming imple-
62 mentation may have some configurable selectivity of the events that are reported).

63 24.1.2.1 Audit Record Contents

64 Although there is no requirement on how the system stores an audit record, logi-
65 cally it appears to the post-processing application, and to a self-auditing applica-
66 tion constructing a record, to have several parts:

67 g one or more headers, see below

68 g one or more sets of subject attributes, describing the process(es) that
69 caused the event to be reported

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

84 24 Audit

70 g zero or more sets of event-specific data

71 g zero or more sets of object attributes, describing objects affected by the
72 event.

73 Records are required to have at least one header and set of subject attributes.
74 Conforming implementations and self-auditing applications may add further
75 parts, of any type; the contents of each of the required parts is also extensible.

76 A post-processing application can obtain a descriptor to each of the parts, and
77 using these descriptors can then obtain the contents of each part. An audit record
78 header contains, amongst other things, the event type, time and result. There is
79 also a record format indicator, currently limited to defining that the data in the
80 record is in the format used by the current system. The header also contains a
81 version number, identifying the version of this standard to which the record con-
82 tent conforms. Post-processing applications should examine this value to ensure
83 that the version is one for which they can process the information in the record.

84 The event type in the header defines the minimum set of information found in the
85 record. This standard specifies the required content for POSIX.1 events that are
86 required to be auditable: that is, the content of the event-specific and object parts
87 of the record; the event type for these system-generated events is an integer.
88 Implementations may define additional content for such events, and additional
89 events and their content. Self-auditing applications may add further events, with
90 application-specific types and contents; the event type for these application-
91 generated events is a text string.

92 To ensure that users can be made individually accountable for their security-
93 relevant actions, an ‘‘audit identifier’’, or audit ID, that an implementation can
94 use to uniquely identify each accountable user, is included in the header of each
95 record. If the record is related to an event that is not associated with any indivi-
96 dual user (e.g., events recorded before a user has completed authentication, or
97 events from daemons), the implementation may report a null audit ID for that
98 record.

99 24.1.3 Audit Interfaces

100 Self-auditing applications need a standard means of constructing records and
101 adding them into an audit log. Additionally, applications having the appropriate
102 privilege may need to suspend system auditing of their actions. However, the
103 request to suspend system auditing is advisory and may be rejected by the imple-
104 mentation.

105 Portable audit post-processing utilities need a standard means to access records
106 in an audit log and a standard means to analyze the content of the records.

107 Several groups of functions are defined for use by portable applications. These
108 functions are used to:

109 (1) Construct audit records

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.1 General Overview 85

110 (2) Write audit records

111 (3) Control system auditing of the current process

112 (4) Read audit records

113 (5) Analyze an audit record

114 (6) Save audit records in user-managed store and return them to system
115 managed store.

116 The following sections provide an overview of those functions.

117 24.1.3.1 Accessing an Audit Log

118 Audit logs are accessed via the POSIX.1 open() and close() functions. The system
119 audit log is also written directly by the aud_write() function (see below).

120 24.1.3.2 Constructing Audit Records

121 Functions are provided to get access to an unused audit record in working store,
122 and to duplicate an existing record:

123 aud_init_record() Get access to an unused audit record in working store.

124 aud_dup_record() Create a duplicate of an existing audit record in working
125 store.

126 Various other functions manipulate audit records. New sections can be added to
127 an audit record:

128 aud_put_hdr() Add an empty header to an audit record

129 aud_put_subj() Add an empty set of subject attributes to an audit record

130 aud_put_event() Add an empty set of event-specific data to an audit record

131 aud_put_obj() Add an empty set of object attributes to an audit record

132 And data can be added to each type of section:

133 aud_put_hdr_info() Add a data item to a header in an audit record

134 aud_put_subj_info() Add a data item to a set of subject attributes in an audit
135 record

136 aud_put_event_info() Add a data item to a set of event-specific data in an audit
137 record

138 aud_put_obj_info() Add a data item to a set of object attributes in an audit
139 record.

140 Data items can also be deleted from each type of section:

141 aud_delete_hdr_info() Delete a data item from a header in an audit record

142 aud_delete_subj_info() Delete a data item from a set of subject attributes in an
143 audit record

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

86 24 Audit

144 aud_delete_event_info() Delete a data item from a set of event-specific data in
145 an audit record

146 aud_delete_obj_info() Delete a data item from a set of object attributes in an
147 audit record.

148 And whole sections can be deleted too:

149 aud_delete_hdr() Delete a header from an audit record

150 aud_delete_subj() Delete a set of subject attributes from an audit record

151 aud_delete_event()Delete a set of event-specific data from an audit record

152 aud_delete_obj() Delete a set of object attributes from an audit record.

153 A function is provided to obtain the audit ID of the user accountable for the
154 actions of a specified process:

155 aud_get_id() Get the audit ID of a process with a specified process ID.
156 This allows, for example, a server process to include the
157 audit ID of a client in a record it generates.

158 A function is provided to check the validity of an audit record:

159 aud_valid() Validates an audit record by checking for, at least, a valid
160 header.

161 24.1.3.3 Writing Audit Records

162 A single function is provided to write a record to an audit log:

163 aud_write() When a program wants to write a record to an audit log, it
164 calls aud_write(). The system then adds the record to the
165 log. This could be used by a self-auditing application that
166 has constructed the record, or by an audit post-processing
167 application that has read the record from an audit log and
168 now wants to preserve it in another log for later processing. −
169 Appropriate privilege is required to use this interface to
170 write to the system audit log.

171 24.1.3.4 Controlling System Auditing

172 A single function is provided to allow a self-auditing application to control system
173 auditing of its operations:

174 aud_switch() Suspend or resume system auditing of the current process,
175 or query the current state of system auditing for the current
176 process. The system may or may not actually suspend
177 (either partially or completely) its auditing of the process,
178 depending on the implementation-specific audit policy
179 currently in use. Appropriate privilege is required to use −
180 this interface.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.1 General Overview 87

181 24.1.3.5 Reading Audit Records

182 A single function is provided to read an audit record from an audit log into system
183 managed store.

184 aud_read() Read the next record from the audit log and return a
185 descriptor to it in working store. The descriptor can then be
186 used as an argument to any of the audit functions that
187 manipulate audit records.

188 24.1.3.6 Analyzing an Audit Record

189 Functions are provided to get descriptors for the various sections of an audit
190 record, and to get data items from within each type of section:

191 aud_get_hdr() Get the descriptor for a header from an audit record.

192 aud_get_hdr_info() Get an item from within a header of an audit record.

193 aud_get_subj() Get the descriptor for a subject attribute set from an
194 audit record.

195 aud_get_subj_info() Get an item from within a subject attribute set from an
196 audit record.

197 aud_get_event() Get the descriptor for a set of event-specific data from
198 an audit record.

199 aud_get_event_info() Get an item from within a set of event-specific data
200 from an audit record.

201 aud_get_obj() Get a descriptor for an object attribute set from an
202 audit record.

203 aud_get_obj_info() Get an item from within an object attribute set in an
204 audit record.

205 To allow a post-processing application to interact with an audit administrator,
206 either to display records or to obtain record selection criteria from the administra-
207 tor, interfaces are provided to convert a record to text, to convert between the
208 internal and human-readable forms of event types and audit IDs, and to find out
209 all the system event types reportable in the audit log:

210 aud_rec_to_text() Convert an entire audit record into human-readable text.

211 aud_evid_to_text() Map a numeric identifier for a system audit event to a text
212 string.

213 aud_evid_from_text() Map a text string, representing an system audit event type,
214 to a numeric audit event.

215 aud_id_to_text() Map an audit ID to text identifying an individual user.

216 aud_id_from_text() Map text identifying an individual user to an audit ID.

217 aud_get_all_evid() Get a list of all system generated audit event types currently
218 reportable on the system. This interface retrieves both

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

88 24 Audit

219 POSIX.1 and implementation-specific event types.

220 24.1.3.7 Storing Audit Records

221 A pair of functions are provided for placing audit records in user-managed space
222 and conversely, returning audit records to system-managed space; for the former,
223 a function is provided that determines how much space is needed. This facility
224 provides applications with the ability to save selected records outside an audit log
225 for later processing.

226 aud_copy_ext() The aud_copy_ext() function is provided to convert the
227 record to a ‘‘byte-copyable’’ format in user-managed space.

228 aud_copy_int() The aud_copy_int() function is provided to convert the
229 record from a ‘‘byte-copyable’’ format in user-managed space
230 into system-dependent, internal format in system-managed
231 space.

232 aud_size() Return the size of user-managed space needed to hold a
233 record.

234 Note that it is also possible to transfer an audit record from one log to another,
235 without using user-managed space, by use of aud_read() and aud_write().

236 Finally, an interface is provided to allow an application to free any memory allo-
237 cated by the various audit functions:

238 aud_free() Many of the above interfaces may allocate memory space.
239 The aud_free() interface frees all the releasable space.

240 24.1.4 Summary of POSIX.1 System Interface Impact

241 When {_POSIX_AUD} is defined, there is no impact on the interface syntax of any
242 POSIX.1 function, nor on the function semantics defined by POSIX.1. However,
243 use of some POSIX.1 functions may cause audit records to be reported, see section
244 24.2.1.1, below.

245 24.2 Audit Record Content

246 Section 24.1.2.1, defines the overall structure of an audit record, viewed through
247 these interfaces, as consisting of headers, subject attribute sets, sets of event-
248 specific data items, and object attribute sets. This section specifies the minimum
249 set of event types which shall be reportable in a conforming implementation, and
250 for each of these event types defines the minimum required contents of the set of
251 event-specific items for the event and the minimum required object attribute sets.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 89

252 24.2.1 Auditable Interfaces and Event Types

253 This section defines the minimum set of audit event types that shall be reportable
254 by a conforming system.

255 Two kinds of auditing are defined. First there is auditing, by the system, of
256 operations performed by programs at the system interface level. Second there is
257 auditing by applications of their own operations.

258 24.2.1.1 Auditing at the System Interface

259 The following interfaces, which are derived from POSIX.1 and the POSIX.1e
260 options, are defined as the minimum set of system interface functions that shall
261 be reportable on a conforming implementation. For each interface, a correspond-
262 ing POSIX.1e audit event is defined. For each defined event, a numeric constant
263 uniquely identifying the audit event is defined in the <<ssyyss//aauuddiitt..hh>> header.
264 For all the interfaces except fork(), a single audit record shall be reportable for
265 each occasion that the interface is used.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

90 24 Audit

266 If {_POSIX_AUD} is defined, the following interfaces shall be auditable: c

267 Table 24-1 − Interfaces and Corresponding Audit Events c

268 Interface Event Type c269 hhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhh c
270 aud_switch() AUD_AET_AUD_SWITCH c
271 aud_write() AUD_AET_AUD_WRITE c
272 chdir() AUD_AET_CHDIR c
273 chmod() AUD_AET_CHMOD c
274 chown() AUD_AET_CHOWN c
275 creat() AUD_AET_CREAT c
276 dup() AUD_AET_DUP c
277 dup2() AUD_AET_DUP c
278 exec() AUD_AET_EXEC c
279 execl() AUD_AET_EXEC c
280 execlp() AUD_AET_EXEC c
281 execv() AUD_AET_EXEC c
282 execvp() AUD_AET_EXEC c
283 execle() AUD_AET_EXEC c
284 execve() AUD_AET_EXEC c
285 _exit() AUD_AET_EXIT c
286 fork() AUD_AET_FORK c
287 kill() AUD_AET_KILL c
288 link() AUD_AET_LINK c
289 mkdir() AUD_AET_MKDIR c
290 mkfifo() AUD_AET_MKFIFO c
291 open() AUD_AET_OPEN c
292 opendir() AUD_AET_OPEN c
293 pipe() AUD_AET_PIPE c
294 rename() AUD_AET_RENAME c
295 rmdir() AUD_AET_RMDIR c
296 setgid() AUD_AET_SETGID c
297 setuid() AUD_AET_SETUID c
298 unlink() AUD_AET_UNLINK c
299 utime() AUD_AET_UTIME c

300 The aud_write() function is auditable only when an attempt to write to the sys-
301 tem audit log fails.

302 The fcntl() function when used with command F_DUPFD also generates audit
303 events of type AUD_AET_DUP.

304 If {_POSIX_ACL} is defined, the following interfaces shall be auditable: c

305 Interface Event Type c306 hhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh c
307 acl_delete_def_file() AUD_AET_ACL_DELETE_DEF_FILE c
308 acl_set_fd() AUD_AET_ACL_SET_FD c
309 acl_set_file() AUD_AET_ACL_SET_FILE c

310 If {_POSIX_CAP} is defined, the following interfaces shall be auditable: c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 91

311 Interface Event Type c312 hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhh c
313 cap_set_fd() AUD_AET_CAP_SET_FD c
314 cap_set_file() AUD_AET_CAP_SET_FILE c
315 cap_set_proc() AUD_AET_CAP_SET_PROC c

316 If {_POSIX_INF} is defined, the following interfaces shall be auditable: c

317 Interface Event Type c318 hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhh c
319 inf_set_fd() AUD_AET_INF_SET_FD c
320 inf_set_file() AUD_AET_INF_SET_FILE c
321 inf_set_proc() AUD_AET_INF_SET_PROC c

322 If {_POSIX_MAC} is defined, the following interfaces shall be auditable: c

323 Interface Event Type c324 hhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhh c
325 mac_set_fd() AUD_AET_MAC_SET_FD c
326 mac_set_file() AUD_AET_MAC_SET_FILE c
327 mac_set_proc() AUD_AET_MAC_SET_PROC c

328 Event types recording use of other system interfaces shall be implementation-
329 defined; a complete set of such events shall be obtainable through the
330 aud_get_all_evid() interface.

331 24.2.1.2 Auditing by Applications

332 No specific types are defined for auditing by applications. The event types used
333 by applications are character strings (to reduce the chances of different applica-
334 tions using the same types and ensure they do not clash with the integer event
335 types used for system-generated events) and applications are free to add their
336 own audit event types. Applications which generate their own audit records will
337 use the aud_write() function passing the event type in the record header.

338 24.2.2 Audit Event Types and Record Content

339 This clause defines the minimum required content of audit records for each of the
340 standard event types. The required contents of the header is the same for all
341 records, and is defined in aud_get_hdr_info(); the required content of the set of
342 subject attributes is similar for all records, and is defined in aud_get_subj_info();
343 the required contents of a set of object attributes is defined in aud_get_obj_info().
344 This section defines the required minimum content for the set of items specific to
345 each event, and the required minimum object attribute sets for each event. A con-
346 forming implementation may include additional items in the required header, set
347 of subject attributes, set of event-specific items, and object attribute sets, or may
348 add additional sets, but the required content must be reported before these
349 implementation-specific additions.

350 A header, subject attribute set, set of event-specific items, and object attribute set
351 from an audit record are not C-language structures; each is a separate logical sec-
352 tion within the record, with components accessed using the aud_get_∗_info()
353 interfaces described below. An argument item_id of these interfaces identifies the
354 component to access; a value for this argument for each component is defined in

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

92 24 Audit

355 the tables below.

356 Unless otherwise specified, event-specific data contains the argument values
357 requested for the operation. If the argument is not available (for example, if the
358 caller supplied a NULL or invalid pointer for a pathname), the
359 aud_get_event_info() function shall return an aud_info_t structure with a zero len
360 member. Pathname values reported as arguments may be the exact values
361 passed as arguments, or may be expanded by the implementation to full path-
362 names.

363 24.2.2.1 AUD_AET_ACL_DELETE_DEF_FILE

364 This event will be encountered only if {_POSIX_ACL} was defined when the audit c
365 log was generated.

366 Calls on aud_get_event_info() for the audit record of an
367 AUD_AET_ACL_DELETE_DEF_FILE event shall return aud_info_t structures
368 for the following event-specific items, with aud_info_type members as specified:

369 Type Description item_id c370 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
371 AUD_TYPE_STRING Pathname AUD_PATHNAME c

372 The Pathname contains the value passed as an argument to the
373 acl_delete_def_file() function.

374 If the call succeeded a set of object attributes shall also be available from the
375 record, describing the object affected; if an ACL is reported in the set of object
376 attributes it shall contain the ACL before the event. If the call failed due to
377 access controls, and a set of object attributes is still available from the record, it
378 shall describe the object at which the failure occurred. Otherwise it is unspecified
379 whether a set of object attributes is available, or what object is defined by such a
380 set.

381 24.2.2.2 AUD_AET_ACL_SET_FD

382 This event will be encountered only if {_POSIX_ACL} was defined when the audit c
383 log was generated.

384 Calls on aud_get_event_info() for the audit record of an AUD_AET_ACL_SET_FD
385 event shall return aud_info_t structures for the following event-specific items,
386 with aud_info_type members as specified:

387 Type Description item_id c388 hhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhh c
389 AUD_TYPE_INT File desc AUD_FILE_ID c
390 AUD_TYPE_ACL_TYPE ACL type AUD_ACL_TYPE c
391 AUD_TYPE_ACL ACL AUD_ACL c

392 The File desc, ACL type , and ACL contain the values passed as arguments to the
393 acl_set_fd() function.

394 If the call succeeded a set of object attributes shall also be available from the
395 record, describing the object affected; if an ACL is reported in the set of object
396 attributes it shall contain the ACL before the event. If the call failed due to

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 93

397 access controls, and a set of object attributes is still available from the record, it
398 shall describe the object at which the failure occurred. Otherwise it is unspecified
399 whether a set of object attributes is available, or what object is defined by such a
400 set.

401 24.2.2.3 AUD_AET_ACL_SET_FILE

402 This event will be encountered only if {_POSIX_ACL} was defined when the audit c
403 log was generated.

404 Calls on aud_get_event_info() for the audit record of an
405 AUD_AET_ACL_SET_FILE event shall return aud_info_t structures for the fol-
406 lowing event-specific items, with aud_info_type members as specified:

407 Type Description item_id c408 hhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
409 AUD_TYPE_STRING Pathname AUD_PATHNAME c
410 AUD_TYPE_ACL_TYPE ACL type AUD_ACL_TYPE c
411 AUD_TYPE_ACL ACL AUD_ACL c

412 The Pathname , ACL type , and ACL contain the values passed as arguments to
413 the acl_set_file() function.

414 If the call succeeded a set of object attributes shall also be available from the
415 record, describing the object affected; if an ACL is reported in the set of object
416 attributes it shall contain the ACL before the event. If the call failed due to
417 access controls, and a set of object attributes is still available from the record, it
418 shall describe the object at which the failure occurred. Otherwise it is unspecified
419 whether a set of object attributes is available, or what object is defined by such a
420 set.

421 24.2.2.4 AUD_AET_AUD_SWITCH

422 Calls on aud_get_event_info() for the audit record of an
423 AUD_AET_AUD_SWITCH event shall return aud_info_t structures for the follow-
424 ing event-specific items, with aud_info_type members as specified:

425 Type Description item_id c426 hhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhh c
427 AUD_TYPE_AUD_STATE Audit state AUD_AUDIT_STATE c

428 The Audit state contains the value passed as an argument to the aud_switch()
429 function: AUD_STATE_ON, AUD_STATE_OFF or AUD_STATE_QUERY.

430 24.2.2.5 AUD_AET_AUD_WRITE

431 Calls on aud_get_event_info() for the audit record of an AUD_AET_AUD_WRITE
432 event are not required to report any event-specific data. This event is required to
433 be reportable only if an attempt to use aud_write(), to write a record to the sys-
434 tem audit log, fails (e.g. due to lack of appropriate privilege). The header of the c
435 record shall give details of the attempt to use aud_write(), and the set of subject
436 attributes shall relate to the caller of aud_write(); that is, the record is not
437 required to contain data from the record that the application tried to write to the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

94 24 Audit

438 system audit log.

439 24.2.2.6 AUD_AET_CAP_SET_FD

440 This event will be encountered only if {_POSIX_CAP} was defined when the audit c
441 log was generated.

442 Calls on aud_get_event_info() for the audit record of an AUD_AET_CAP_SET_FD
443 event shall return aud_info_t structures for the following event-specific items,
444 with aud_info_type members as specified:

445 Type Description item_id c446 hhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhh hhhhhhhhhhhhhh c
447 AUD_TYPE_INT File desc AUD_FILE_ID c
448 AUD_TYPE_CAP Capability state AUD_CAP c

449 The File desc and Capability state contain the values passed as arguments to the
450 cap_set_fd() function.

451 If the call succeeded a set of object attributes shall also be available from the
452 record, describing the object affected; if a file capability state is reported in the set
453 of object attributes it shall contain the file capability state before the event. If the
454 call failed due to access controls, and a set of object attributes is still available
455 from the record, it shall describe the object at which the failure occurred. Other-
456 wise it is unspecified whether a set of object attributes is available, or what object
457 is defined by such a set.

458 24.2.2.7 AUD_AET_CAP_SET_FILE

459 This event will be encountered only if {_POSIX_CAP} was defined when the audit c
460 log was generated.

461 Calls on aud_get_event_info() for the audit record of an
462 AUD_AET_CAP_SET_FILE event shall return aud_info_t structures for the fol-
463 lowing event-specific items, with aud_info_type members as specified:

464 Type Description item_id c465 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
466 AUD_TYPE_STRING Pathname AUD_PATHNAME c
467 AUD_TYPE_CAP Capability state AUD_CAP c

468 The Pathname and Capability state contain the values passed as arguments to the
469 cap_set_file() function.

470 If the call succeeded a set of object attributes shall also be available from the
471 record, describing the object affected. If a file capability state is reported in the
472 set of object attributes it shall contain the file capability state before the event. If
473 the call failed due to access controls, and a set of object attributes is still available
474 from the record, it shall describe the object at which the failure occurred. Other-
475 wise it is unspecified whether a set of object attributes is available, or what object
476 is defined by such a set.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 95

477 24.2.2.8 AUD_AET_CAP_SET_PROC

478 This event will be encountered only if {_POSIX_CAP} was defined when the audit c
479 log was generated.

480 Calls on aud_get_event_info() for the audit record of an
481 AUD_AET_CAP_SET_PROC event shall return aud_info_t structures for the fol-
482 lowing event-specific items, with aud_info_type members as specified:

483 Type Description item_id c484 hhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhh hhhhhhhhhh c
485 AUD_TYPE_CAP Capability state AUD_CAP c

486 The Capability state records the value passed as an argument to the
487 cap_set_proc() function. If a capability state is reported in the set of subject attri-
488 butes in the record, this shall record the process capability state of the process
489 before the event.

490 24.2.2.9 AUD_AET_CHDIR

491 Calls on aud_get_event_info() for the audit record of an AUD_AET_CHDIR event
492 shall return aud_info_t structures for the following event-specific items, with
493 aud_info_type members as specified:

494 Type Description item_id c495 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
496 AUD_TYPE_STRING Pathname AUD_PATHNAME c

497 The Pathname contains the value passed as an argument to the chdir() function.

498 24.2.2.10 AUD_AET_CHMOD

499 Calls on aud_get_event_info() for the audit record of an AUD_AET_CHMOD event
500 shall return aud_info_t structures for the following event-specific items, with
501 aud_info_type members as specified:

502 Type Description item_id c503 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
504 AUD_TYPE_STRING Pathname AUD_PATHNAME c
505 AUD_TYPE_MODE Mode AUD_MODE c

506 The Pathname and Mode contain the values passed as arguments to the chmod()
507 function.

508 If the call succeeded a set of object attributes shall also be available from the
509 record, describing the object affected; if a mode is reported in the set of object
510 attributes it shall contain the mode before the event. If the call failed due to
511 access controls, and a set of object attributes is still available from the record, it
512 shall describe the object at which the failure occurred. Otherwise it is unspecified
513 whether a set of object attributes is available, or what object is defined by such a
514 set.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

96 24 Audit

515 24.2.2.11 AUD_AET_CHOWN

516 Calls on aud_get_event_info() for the audit record of an AUD_AET_CHOWN event
517 shall return aud_info_t structures for the following event-specific items, with
518 aud_info_type members as specified:

519 Type Description item_id c520 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
521 AUD_TYPE_STRING Pathname AUD_PATHNAME c
522 AUD_TYPE_UID Owner AUD_UID c
523 AUD_TYPE_GID Group AUD_GID c

524 The Pathname , Owner , and Group contain the values passed as arguments to the
525 chown() function.

526 If the call succeeded a set of object attributes shall also be available from the
527 record, describing the object affected; if an owner and group are reported in the
528 set of object attributes they shall contain the object owner and group before the
529 event. If the call failed due to access controls, and a set of object attributes is still
530 available from the record, it shall describe the object at which the failure
531 occurred. Otherwise it is unspecified whether a set of object attributes is avail-
532 able, or what object is defined by such a set.

533 24.2.2.12 AUD_AET_CREAT

534 Calls on aud_get_event_info() for the audit record of an AUD_AET_CREAT event
535 shall return aud_info_t structures for the following event-specific items, with
536 aud_info_type members as specified:

537 Type Description item_id c538 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
539 AUD_TYPE_STRING Pathname AUD_PATHNAME c
540 AUD_TYPE_MODE Mode AUD_MODE c
541 AUD_TYPE_INT Return value (file descriptor) AUD_RETURN_ID c

542 The Pathname and Mode contain the values passed as arguments to the creat()
543 function.

544 If the call succeeded a set of object attributes shall also be available from the
545 record, describing the object created. If the call failed due to access controls, and
546 a set of object attributes is still available from the record, it shall describe the
547 object at which the failure occurred. Otherwise it is unspecified whether a set of
548 object attributes is available, or what object is defined by such a set.

549 24.2.2.13 AUD_AET_DUP

550 Calls on aud_get_event_info() for the audit record of an AUD_AET_DUP event
551 shall return aud_info_t structures for the following event-specific items, with
552 aud_info_type members as specified:

553 Type Description item_id c554 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
555 AUD_TYPE_INT File descriptor AUD_FILE_ID c
556 AUD_TYPE_INT Return value (file descriptor) AUD_RETURN_ID c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 97

557 This event is recorded for any of the functions dup(), dup2(), or fcntl() with com-
558 mand F_DUPFD.

559 The File descriptor contains the value passed as the first argument to the func-
560 tion.

561 24.2.2.14 AUD_AET_EXEC

562 Calls on aud_get_event_info() for the audit record of an AUD_AET_EXEC event
563 shall return aud_info_t structures for the following event-specific items, with
564 aud_info_type members as specified:

565 Type Description item_id c566 hhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
567 AUD_TYPE_STRING Pathname AUD_PATHNAME c
568 AUD_TYPE_STRING_ARRAY Command-args AUD_CMD_ARGS c
569 (Records arg0...argn) c
570 AUD_TYPE_STRING_ARRAY Env_args (Records envp) AUD_ENVP c
571 AUD_TYPE_UID Effective UID AUD_UID_ID c
572 AUD_TYPE_GID Effective GID AUD_GID_ID c
573 AUD_TYPE_CAP Process capability state AUD_CAP c

574 This event is recorded for any of the functions exec(), execl(), execlp(), execv(),
575 execvp(), execle(), or execve().

576 The Pathname contains the value passed as an argument to the function.

577 An implementation may choose not to report the value of Command_args. If this
578 is the case, or the arrays pointed to by the argument contained any invalid
579 pointers, the aud_get_event_info() function shall return an aud_info_t with a zero
580 aud_info_length member.

581 For calls other than execle() and execve(), the aud_get_event_info() function may
582 return an aud_info_t with a zero aud_info_length member for Env_args. For exe-
583 cle() and execve() an implementation may choose not to report the value of
584 Env_args. If this is the case, or the arrays pointed to by the arguments contained
585 any invalid pointers, the aud_get_event_info() function shall return an aud_info_t
586 with a zero aud_info_length member.

587 The Effective UID and GID are those in effect after the call to exec(). The values
588 previous to the call to exec() are reportable in the record’s subject attributes. The
589 aud_info_length member of the aud_info_t reporting these values may be zero
590 length if the effective UID and GID of the process are the same before and after
591 the exec().

592 If {_POSIX_CAP} was in effect when the record was generated, then the process
593 capability state in the event-specific data shall record the state at the end of the
594 call, and if a process capability state is reported in the subject attributes in the
595 audit record, it shall be that at the start of the call. If {_POSIX_CAP} was not in
596 effect when the record was generated, the aud_get_event_info() function shall
597 return an aud_info_t with a zero aud_info_length member for the process capabil-
598 ity state.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

98 24 Audit

599 If the call succeeded a set of object attributes shall also be available from the
600 record, describing the object executed. If the call failed due to access controls, and
601 a set of object attributes is still available from the record, it shall describe the
602 object at which the failure occurred. Otherwise it is unspecified whether a set of
603 object attributes is available, or what object is defined by such a set.

604 24.2.2.15 AUD_AET_EXIT

605 Calls on aud_get_event_info() for the audit record of an AUD_AET_EXIT event
606 shall return aud_info_t structures for the following event-specific items, with
607 aud_info_type members as specified:

608 Type Description item_id c609 hhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
610 AUD_TYPE_INT Exit code AUD_EXIT_CODE c

611 The Exit code contains the value passed as an argument to the _exit() function.

612 24.2.2.16 AUD_AET_FORK

613 Calls on aud_get_event_info() for the audit record of an AUD_AET_FORK event
614 shall return aud_info_t structures for the following event-specific items, with
615 aud_info_type members as specified:

616 Type Description item_id c617 hhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
618 AUD_TYPE_PID Return value AUD_RETURN_ID c

619 The audit record shall be reportable on behalf of the parent, when the Return
620 value shall be the child’s process ID, thus the parent’s process ID is recorded in
621 the record header, and the child’s is the return value. A conforming implementa-
622 tion may also report a record for the child process; in this case the Return value
623 shall be zero. No events that are reported for the child shall be reported before
624 the parent’s AUD_AET_FORK record.

625 24.2.2.17 AUD_AET_INF_SET_FD

626 This event will be encountered only if {_POSIX_INF} was defined when the audit c
627 log was generated.

628 Calls on aud_get_event_info() for the audit record of an AUD_AET_INF_SET_FD
629 event shall return aud_info_t structures for the following event-specific items,
630 with aud_info_type members as specified:

631 Type Description item_id c632 hhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhh c
633 AUD_TYPE_INT File desc AUD_FILE_ID c
634 AUD_TYPE_INF Label AUD_INF_LBL c

635 The File desc and Label contain the values passed as arguments to the
636 inf_set_fd() function.

637 If the call succeeded a set of object attributes shall also be available from the
638 record, describing the object affected; if an information label is reported in the set
639 of object attributes it shall contain the information label before the event. If the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 99

640 call failed due to access controls, and a set of object attributes is still available
641 from the record, it shall describe the object at which the failure occurred. Other-
642 wise it is unspecified whether a set of object attributes is available, or what object
643 is defined by such a set.

644 24.2.2.18 AUD_AET_INF_SET_FILE

645 This event will be encountered only if {_POSIX_INF} was defined when the audit c
646 log was generated.

647 Calls on aud_get_event_info() for the audit record of an
648 AUD_AET_INF_SET_FILE event shall return aud_info_t structures for the fol-
649 lowing event-specific items, with aud_info_type members as specified:

650 Type Description item_id c651 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
652 AUD_TYPE_STRING Pathname AUD_PATHNAME c
653 AUD_TYPE_INF Label AUD_INF_LBL c

654 The Pathname and Label contain the values passed as arguments to the
655 inf_set_file() function.

656 If the call succeeded a set of object attributes shall also be available from the
657 record, describing the object affected; if an information label is reported in the set
658 of object attributes it shall contain the information label before the event. If the
659 call failed due to access controls, and a set of object attributes is still available
660 from the record, it shall describe the object at which the failure occurred. Other-
661 wise it is unspecified whether a set of object attributes is available, or what object
662 is defined by such a set.

663 24.2.2.19 AUD_AET_INF_SET_PROC

664 This event will be encountered only if {_POSIX_INF} was defined when the audit c
665 log was generated.

666 Calls on aud_get_event_info() for the audit record of an
667 AUD_AET_INF_SET_PROC event shall return aud_info_t structures for the fol-
668 lowing event-specific items, with aud_info_type members as specified:

669 Type Description item_id c670 hhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhh c
671 AUD_TYPE_INF Label AUD_INF_LBL c

672 The Label contains the value passed as an argument to the inf_set_proc() func-
673 tion. If an information label is reported in the record header it shall contain the
674 process’s information label before the event.

675 24.2.2.20 AUD_AET_KILL

676 Calls on aud_get_event_info() for the audit record of an AUD_AET_KILL event
677 shall return aud_info_t structures for the following event-specific items, with
678 aud_info_type members as specified:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

100 24 Audit

679 Type Description item_id c680 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhh hhhhhhhhhh c
681 AUD_TYPE_PID Pid AUD_PID c
682 AUD_TYPE_INT Signal Number AUD_SIG c

683 The Pid and Signal Number shall record the values passed as arguments to the
684 kill() function.

685 If the call succeeded, or if the call failed because of access control restrictions, sets
686 of object attributes shall also be available from the record, one describing each
687 object to which the signal was directed. In addition, following the content nor-
688 mally required from each set of object attributes, there shall also be available
689 from each an item:

690 Type Description item_id c691 iii c
692 AUD_TYPE_AUD_STATUS The audit status of the event AUD_STATUS c

693 recording whether the signal was successfully sent to that object. If the call failed
694 for reasons other than access control, it is not defined whether any sets of object
695 attributes are available.

696 24.2.2.21 AUD_AET_LINK

697 Calls on aud_get_event_info() for the audit record of an AUD_AET_LINK event
698 shall return aud_info_t structures for the following event-specific items, with
699 aud_info_type members as specified:

700 Type Description item_id c701 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
702 AUD_TYPE_STRING Path1 AUD_PATHNAME c
703 AUD_TYPE_STRING Path2 AUD_LINKNAME c

704 The Path1 and Path2 contain the values passed as arguments to the link() func-
705 tion. Path1 contains the pathname of the existing file, Path2 contains the path-
706 name of the new directory entry to be created.

707 If the call succeeded a set of object attributes shall also be available from the
708 record, describing the file to which the link is made. If the call failed due to
709 access controls, and a set of object attributes is still available from the record, it
710 shall describe the object at which the failure occurred. Otherwise it is unspecified
711 whether a set of object attributes is available, or what object is defined by such a
712 set.

713 24.2.2.22 AUD_AET_MAC_SET_FD

714 This event will be encountered only if {_POSIX_MAC} was defined when the audit c
715 log was generated.

716 Calls on aud_get_event_info() for the audit record of an AUD_AET_MAC_SET_FD
717 event shall return aud_info_t structures for the following event-specific items,
718 with aud_info_type members as specified:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 101

719 Type Description item_id c720 hhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhh c
721 AUD_TYPE_INT File desc AUD_FILE_ID c
722 AUD_TYPE_MAC Label AUD_MAC_LBL c

723 The File desc and Label contain the values passed as arguments to the
724 mac_set_fd() call.

725 If the call succeeded a set of object attributes shall also be available from the
726 record, describing the object affected; if a MAC label is reported in the set of object
727 attributes it shall contain the MAC label before the event. If the call failed due to
728 access controls, and a set of object attributes is still available from the record, it
729 shall describe the object at which the failure occurred. Otherwise it is unspecified
730 whether a set of object attributes is available, or what object is defined by such a
731 set.

732 24.2.2.23 AUD_AET_MAC_SET_FILE

733 This event will be encountered only if {_POSIX_MAC} was defined when the audit c
734 log was generated.

735 Calls on aud_get_event_info() for the audit record of an
736 AUD_AET_MAC_SET_FILE event shall return aud_info_t structures for the fol-
737 lowing event-specific items, with aud_info_type members as specified:

738 Type Description item_id c739 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
740 AUD_TYPE_STRING Pathname AUD_PATHNAME c
741 AUD_TYPE_MAC Label AUD_MAC_LBL c

742 The Pathname and Label contain the values passed as arguments to the
743 mac_set_file() call.

744 If the call succeeded a set of object attributes shall also be available from the
745 record, describing the object affected; if a MAC label is reported in the set of object
746 attributes it shall contain the MAC label before the event. If the call failed due to
747 access controls, and a set of object attributes is still available from the record, it
748 shall describe the object at which the failure occurred. Otherwise it is unspecified
749 whether a set of object attributes is available, or what object is defined by such a
750 set.

751 24.2.2.24 AUD_AET_MAC_SET_PROC

752 This event will be encountered only if {_POSIX_MAC} was defined when the audit c
753 log was generated.

754 Calls on aud_get_event_info() for the audit record of an
755 AUD_AET_MAC_SET_PROC event shall return aud_info_t structures for the fol-
756 lowing event-specific items, with aud_info_type members as specified:

757 Type Description item_id c758 hhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhh c
759 AUD_TYPE_MAC Label AUD_MAC_LBL c

760 The Label contains the value passed as an argument to the mac_set_proc() func-
761 tion. If a MAC label is reported in the record header it shall contain the process

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

102 24 Audit

762 MAC label before the event.

763 24.2.2.25 AUD_AET_MKDIR

764 Calls on aud_get_event_info() for the audit record of an AUD_AET_MKDIR event
765 shall return aud_info_t structures for the following event-specific items, with
766 aud_info_type members as specified:

767 Type Description item_id c768 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
769 AUD_TYPE_STRING Pathname AUD_PATHNAME c
770 AUD_TYPE_MODE Mode AUD_MODE c

771 The Pathname and Mode contain the values passed as arguments to the mkdir()
772 function.

773 If the call succeeded a set of object attributes shall also be available from the
774 record, describing the object created. If the call failed due to access controls, and
775 a set of object attributes is still available from the record, it shall describe the
776 object at which the failure occurred. Otherwise it is unspecified whether a set of
777 object attributes is available, or what object is defined by such a set.

778 24.2.2.26 AUD_AET_MKFIFO

779 Calls on aud_get_event_info() for the audit record of an AUD_AET_MKFIFO
780 event shall return aud_info_t structures for the following event-specific items,
781 with aud_info_type members as specified:

782 Type Description item_id c783 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
784 AUD_TYPE_STRING Pathname AUD_PATHNAME c
785 AUD_TYPE_MODE Mode AUD_MODE c

786 The Pathname and Mode contain the values passed as arguments to the mkfifo()
787 function.

788 If the call succeeded a set of object attributes shall also be available from the
789 record, describing the object created. If the call failed due to access controls, and
790 a set of object attributes is still available from the record, it shall describe the
791 object at which the failure occurred. Otherwise it is unspecified whether a set of
792 object attributes is available, or what object is defined by such a set.

793 24.2.2.27 AUD_AET_OPEN

794 Calls on aud_get_event_info() for the audit record of an AUD_AET_OPEN event
795 shall return aud_info_t structures for the following event-specific items, with
796 aud_info_type members as specified:

797 Type Description item_id c798 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
799 AUD_TYPE_STRING Pathname AUD_PATHNAME c
800 AUD_TYPE_INT Oflag AUD_OFLAG c
801 AUD_TYPE_MODE Mode AUD_MODE c
802 AUD_TYPE_INT Return value (file descriptor) AUD_RETURN_ID c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 103

803 The Pathname , Oflag and Mode contain the values passed as arguments to the
804 open() function. If the O_CREAT flag is not set in Oflag, the aud_get_event_info()
805 function shall return an aud_info_t with a zero aud_info_length field if an attempt
806 is made to read Mode.

807 If the call succeeded a set of object attributes shall also be available from the
808 record, describing the object opened. If the call failed due to access controls, and a
809 set of object attributes is still available from the record, it shall describe the object
810 at which the failure occurred. Otherwise it is unspecified whether a set of object
811 attributes is available, or what object is defined by such a set.

812 24.2.2.28 AUD_AET_PIPE

813 Calls on aud_get_event_info() for the audit record of an AUD_AET_PIPE event
814 shall return aud_info_t structures for the following event-specific items, with
815 aud_info_type members as specified:

816 Type Description item_id c817 hhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhh c
818 AUD_TYPE_INT Read file descriptor AUD_RD_FILE_ID c
819 AUD_TYPE_INT Write file descriptor AUD_WR_FILE_ID c

820 If the call succeeded, the File descriptors shall contain the values returned to the
821 caller. Otherwise, the aud_get_event_info() function shall return aud_info_t
822 structures with zero aud_info_length members for these items.

823 24.2.2.29 AUD_AET_RENAME

824 Calls on aud_get_event_info() for the audit record of an AUD_AET_RENAME
825 event shall return aud_info_t structures for the following event-specific items,
826 with aud_info_type members as specified:

827 Type Description item_id c828 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhh c
829 AUD_TYPE_STRING Old pathname AUD_OLD_PATHNAME c
830 AUD_TYPE_STRING New pathname AUD_NEW_PATHNAME c

831 The pathnames contain the values passed as arguments to the rename() call.

832 If the call succeeded a set of object attributes shall also be available from the
833 record, describing the object renamed; the name reported in the set of object attri-
834 butes shall contain the name before the event. If the call failed due to access con-
835 trols, and a set of object attributes is still available from the record, it shall
836 describe the object at which the failure occurred. Otherwise it is unspecified
837 whether a set of object attributes is available, or what object is defined by such a
838 set.

839 24.2.2.30 AUD_AET_RMDIR

840 Calls on aud_get_event_info() for the audit record of an AUD_AET_RMDIR event
841 shall return aud_info_t structures for the following event-specific items, with
842 aud_info_type members as specified:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

104 24 Audit

843 Type Description item_id c844 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
845 AUD_TYPE_STRING Pathname AUD_PATHNAME c

846 The pathname contains the value passed as an argument to the rmdir() call.

847 If the call succeeded a set of object attributes shall also be available from the
848 record, describing the object removed. If the call failed due to access controls, and
849 a set of object attributes is still available from the record, it shall describe the
850 object at which the failure occurred. Otherwise it is unspecified whether a set of
851 object attributes is available, or what object is defined by such a set.

852 24.2.2.31 AUD_AET_SETGID

853 Calls on aud_get_event_info() for the audit record of an AUD_AET_SETGID event
854 shall return aud_info_t structures for the following event-specific items, with
855 aud_info_type members as specified:

856 Type Description item_id c857 hhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhh c
858 AUD_TYPE_GID gid AUD_GID c

859 The gid contains the value passed as an argument. The value before the call is
860 reportable in the subject attributes.

861 24.2.2.32 AUD_AET_SETUID

862 Calls on aud_get_event_info() for the audit record of an AUD_AET_SETUID event
863 shall return aud_info_t structures for the following event-specific items, with
864 aud_info_type members as specified:

865 Type Description item_id c866 hhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhh c
867 AUD_TYPE_UID uid AUD_UID c

868 The uid contains the value passed as an argument. The value before the call is
869 reportable in the subject attributes.

870 24.2.2.33 AUD_AET_UNLINK

871 Calls on aud_get_event_info() for the audit record of an AUD_AET_UNLINK
872 event shall return aud_info_t structures for the following event-specific items,
873 with aud_info_type members as specified:

874 Type Description item_id c875 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
876 AUD_TYPE_STRING Pathname AUD_PATHNAME c

877 The Pathname contains the value passed as an argument to the unlink() function.

878 If the call succeeded a set of object attributes shall also be available from the
879 record, describing the object unlinked. If the call failed due to access controls,
880 and a set of object attributes is still available from the record, it shall describe the
881 object at which the failure occurred. Otherwise it is unspecified whether a set of
882 object attributes is available, or what object is defined by such a set.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.2 Audit Record Content 105

883 24.2.2.34 AUD_AET_UTIME

884 Calls on aud_get_event_info() for the audit record of an AUD_AET_UTIME event
885 shall return aud_info_t structures for the following event-specific items, with
886 aud_info_type members as specified:

887 Type Description item_id c888 hhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhh c
889 AUD_TYPE_STRING Pathname AUD_PATHNAME c
890 AUD_TYPE_TIME Access time AUD_ATIME c
891 AUD_TYPE_TIME Modification time AUD_MTIME c

892 The Pathname contains the value passed as an argument to the utime() function.
893 The Access time and Modification time contain the values from the timebuf struc-
894 ture passed as an argument.

895 If the call succeeded a set of object attributes shall also be available from the
896 record, describing the object affected. If the call failed due to access controls, and
897 a set of object attributes is still available from the record, it shall describe the
898 object at which the failure occurred. Otherwise it is unspecified whether a set of
899 object attributes is available, or what object is defined by such a set.

900 24.3 Header

901 Some of the data types used by the audit functions are not defined as part of this
902 standard, but shall be implementation-defined. If {_POSIX_AUD} is defined, c
903 these types shall be defined in the header <<ssyyss//aauuddiitt..hh>>, which contains
904 definitions for at least the types shown in the following table.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

106 24 Audit

905 Table 24-2 − Audit Data Types c

906 Defined Type Description c907 iii c
908 Used to access the set of event-specific data within an audit c c
909 record. This data type is non-exportable data. c c
910 aud_evinfo_t c

911 Used to access the header of an audit record. This data type c c
912 is non-exportable data. c c
913 aud_hdr_t c

914 Item in an audit record header used to provide individual c c
915 accountability for the audit event. This data type is export- c c
916 able data. c c

917 aud_id_t c

918 Defines the type, size and location of various items from an c c
919 audit record. This data type is non-exportable data. c c
920 aud_info_t c

921 Used to access an object attribute set within an audit record. c c
922 This data type is non-exportable data. c c
923 aud_obj_t c

924 Item in an object attribute set that defines the type of the c c
925 object. This data type is exportable data. c c
926 aud_obj_type_t c

927 A pointer to an opaque audit record. This data type is non- c c
928 exportable data. c c
929 aud_rec_t c

930 Controls whether system-generated records are auditable for c c
931 a process. This data type is exportable data. c c
932 aud_state_t c

933 Item in an audit record header giving the success/failure c c
934 status of the audit event. This data type is exportable data. c c
935 aud_status_t c

936 Used to access the subject attribute set within an audit c c
937 record. This data type is non-exportable data. c c
938 aud_subj_t c

939 The time of an audit event. This data type is exportable data. c c940 aud_time_t c

941 Further details of these types are given below.

942 In addition, the header <<ssyyss//aauuddiitt..hh>> shall define the following constants:

943 g All the AUD_AET_∗ constants defined in section 24.2.2, for the POSIX-
944 defined event types

945 g All the constants defined in sections 24.2.2, 24.4.17, 24.4.19, 24.4.22, and
946 24.4.24, (including AUD_FIRST_ITEM and AUD_NEXT_ITEM) for the
947 item_id arguments that can be supplied to the aud_get_∗_info() functions

948 g The following miscellaneous constants:

949 Table 24-3 − Other Constants c

950 Constant Description951 ii
952 AUD_SYSTEM_LOG Value of the filedes argument for aud_write().
953 AUD_NATIVE Value of the format item in a record header.
954 AUD_LAST_ITEM Value of the position argument for the
955 aud_put_∗_info() functions.
956 AUD_STD_NNNN_N Value
957 of the version item in a record header.

958 The NNNN_N in AUD_STD_NNNN_N is merely a placeholder for the year c
959 (e.g., 1997) this standard is approved and standard (e.g., _1 implying
960 POSIX.1) it is placed into.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.3 Header 107

961 Further constants are identified in the rest of this section.

962 24.3.1 aud_evinfo_t

963 This typedef shall define an opaque, implementation-defined descriptor for the set
964 of event-specific data in an audit record. The internal structure of an
965 aud_evinfo_t is unspecified.

966 24.3.2 aud_hdr_t

967 This typedef shall define an opaque, implementation-defined descriptor for an
968 audit record header. The internal structure of an aud_hdr_t is unspecified.

969 24.3.3 aud_id_t

970 The aud_id_t obtainable from an audit record header is an implementation-
971 defined typedef for holding a value which uniquely identifies a user.

972 24.3.4 aud_info_t

973 The aud_info_t structure defines the type, length and location of some data from
974 an audit record. The aud_info_t structure shall contain at least the following
975 members:

976 Table 24-4 − aud_info_t members

977 Defined Type Name Description978 iii
979 int aud_info_type The type of the data
980 size_t aud_info_length The length of the data
981 void ∗ aud_info_p Pointer to the data

982 The aud_info_type member may be used to interpret the data referenced by the
983 aud_info_p member. Values for aud_info_type shall be defined in the header
984 <<ssyyss//aauuddiitt..hh>>. At least the following values of aud_info_type shall be defined,
985 and shall have the specified interpretation:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

108 24 Audit

986 Table 24-5 − Values for aud_info_type Member

987 Value of aud_info_type Interpretation of aud_info_p988 iii
989 AUD_TYPE_ACL acl_t∗
990 AUD_TYPE_ACL_TYPE acl_type_t∗
991 AUD_TYPE_AUD_ID aud_id_t∗
992 AUD_TYPE_AUD_OBJ_TYPE aud_obj_type_t∗
993 AUD_TYPE_AUD_STATE aud_state_t∗
994 AUD_TYPE_AUD_STATUS aud_status_t∗
995 AUD_TYPE_AUD_TIME aud_time_t∗
996 AUD_TYPE_CAP cap_t∗
997 AUD_TYPE_CHAR char∗
998 AUD_TYPE_GID gid_t∗
999 AUD_TYPE_INF inf_t∗
1000 AUD_TYPE_INT int∗
1001 AUD_TYPE_LONG long∗
1002 AUD_TYPE_MAC mac_t∗
1003 AUD_TYPE_MODE mode_t∗
1004 AUD_TYPE_OPAQUE void∗
1005 AUD_TYPE_PID pid_t∗
1006 AUD_TYPE_SHORT short∗
1007 AUD_TYPE_STRING char∗, pointing to a null terminated
1008 character string
1009 AUD_TYPE_STRING_ARRAY char∗∗
1010 AUD_TYPE_TIME time_t∗
1011 AUD_TYPE_UID uid_t∗

1012 With the exception of AUD_TYPE_STRING and AUD_TYPE_OPAQUE,
1013 aud_info_p should be interpreted as a pointer to zero or more items of the type
1014 specified. In the case of AUD_TYPE_STRING, aud_info_p should interpreted as
1015 a (char ∗) value. For AUD_TYPE_OPAQUE aud_info_p is interpreted as a
1016 pointer to zero or more bytes of opaque data.

1017 A conforming implementation may define further values for aud_info_type , that
1018 can be treated in the same way as AUD_TYPE_OPAQUE.

1019 In all cases, the aud_info_length member gives the length, in bytes, of the data to
1020 which aud_info_p points.

1021 24.3.5 aud_obj_t

1022 This typedef shall define an opaque, implementation-defined descriptor for a set
1023 of object attributes in an audit record. The internal structure of an aud_obj_t is
1024 unspecified.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.3 Header 109

1025 24.3.6 aud_obj_type_t

1026 The aud_obj_type_t obtainable from an object attribute set indicates the object
1027 type. This data type shall support a unique value for each of the object types for
1028 which object attribute sets can be generated in the implementation. The imple-
1029 mentation shall define in <<ssyyss//aauuddiitt..hh>> at least the following unique values:

1030 Table 24-6 − aud_obj_type_t Values

1031 Defined Type Description1032 iii
1033 AUD_OBJ_BLOCK_DEV Block device
1034 AUD_OBJ_CHAR_DEV Character device
1035 AUD_OBJ_DIR Directory
1036 AUD_OBJ_FIFO FIFO object
1037 AUD_OBJ_FILE Regular file
1038 AUD_OBJ_PROC Process object

1039 24.3.7 aud_rec_t

1040 This typedef shall define a pointer to an opaque data item capable of holding a
1041 specific audit record, the format and storage of which are unspecified. Thus, an
1042 application cannot depend on performing normal byte-copy operations on the data
1043 item to which an aud_rec_t points.

1044 24.3.8 aud_state_t

1045 An aud_state_t describes whether system events are being audited for a process.
1046 An implementation shall define in <<ssyyss//aauuddiitt..hh>> at least the following unique
1047 values for this type:

1048 Table 24-7 − aud_state_t Values

1049 Defined Type Description1050 iii
1051 AUD_STATE_OFF System events not audited
1052 AUD_STATE_ON System events audited
1053 AUD_STATE_QUERY Enquiry value for aud_switch()

1054 24.3.9 aud_status_t

1055 The aud_status_t item obtainable from an audit record header indicates the
1056 status of the event. This data type shall define in <<ssyyss//aauuddiitt..hh>> at least the
1057 following unique values for this type:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

110 24 Audit

1058 Table 24-8 − aud_status_t Values

1059 Defined Type Description1060 ii
1061 AUD_FAIL_PRIV The event failed because the process did not have appropriate
1062 privilege (see below).
1063 AUD_FAIL_DAC The event failed because of DAC access checks.
1064 AUD_FAIL_MAC The event failed because of MAC access checks.
1065 AUD_FAIL_OTHER The event failed for some reason not included in
1066 other AUD_FAIL_∗ values.
1067 AUD_PRIV_USED The event completed successfully; appropriate privilege was
1068 used (see below).
1069 AUD_SUCCESS The event completed successfully.

1070 The value AUD_PRIV_USED indicates that the operation succeeded, but would
1071 not have done so if the process had not had appropriate privilege. −

1072 If the process fails a DAC or MAC access check, and does not have appropriate
1073 privilege to override this check, and does not fail any other checks for appropriate
1074 privilege, then the AUD_FAIL_DAC or AUD_FAIL_MAC status, respectively, c
1075 shall be reported in preference to the AUD_FAIL_PRIV one.

1076 A conforming implementation may add additional status values.

1077 24.3.10 aud_subj_t

1078 This typedef shall define an opaque, implementation-defined descriptor for the set
1079 of subject attributes in an audit record. The internal structure of an aud_subj_t is
1080 unspecified.

1081 24.3.11 aud_time_t

1082 An aud_time_t structure specifies a single time value and shall include at least
1083 the following members:

1084 Table 24-9 − aud_time_t Members

1085 Defined Type Name Description1086 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1087 time_t sec Seconds
1088 long nsec Nanoseconds

1089 The nsec member specifies the subsecond portion of time; it is valid only if greater
1090 than or equal to zero, and less than the number of nanoseconds in a second (1000
1091 million). A conforming implementation shall provide the subsecond portion of
1092 time to a resolution of at least 20 milliseconds (1/50 of a second).

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.3 Header 111

1093 24.4 Functions

1094 The functions in this section comprise the set of services that permit a process to
1095 construct, write, read and analyze audit records. Support for the audit facility
1096 functions described in this section is optional. If the symbol {_POSIX_AUD} is c
1097 defined the implementation supports the audit option and all of the audit func- c
1098 tions shall be implemented as described in this section. If {_POSIX_AUD} is not c
1099 defined, the result of calling any of these functions is unspecified. c

1100 The error [ENOTSUP] shall be returned in those cases where the system supports
1101 the audit facility but the particular audit operation cannot be applied because of
1102 restrictions imposed by the implementation.

1103 24.4.1 Copy an Audit Record From System to User Space

1104 Function: aud_copy_ext()

1105 24.4.1.1 Synopsis

1106 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1107 ssssiizzee__tt aauudd__ccooppyy__eexxtt ((vvooiidd ∗∗aud_rec_ext_p,, aauudd__rreecc__tt aud_rec_int,,
1108 ssssiizzee__tt size));;

1109 24.4.1.2 Description

1110 The aud_copy_ext() function shall copy an audit record, pointed to by aud_rec_int ,
1111 from system-managed space to user-managed space (pointed to by aud_rec_ext_p).
1112 The size argument represents the size in bytes of the buffer pointed to by the
1113 aud_rec_ext_p argument.

1114 The aud_copy_ext() function will do any conversions necessary to convert the
1115 record from internal format. The audit record returned by aud_copy_ext() will be
1116 a contiguous, persistent data item. It is the responsibility of the user to allocate a
1117 record buffer large enough to hold the copied record. The size of the buffer needed
1118 can be obtained by a call to the aud_size() function.

1119 The aud_copy_ext() call shall not affect the record pointed to by aud_rec_int.

1120 It is the responsibility of the user to release any space required to store the con-
1121 verted record.

1122 24.4.1.3 Returns

1123 Upon successful completion, the aud_copy_ext() function returns the size of the
1124 converted record placed in aud_rec_ext_p. Otherwise, a value of ((ssize_t)−1) shall
1125 be returned and errno shall be set to indicate the error.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

112 24 Audit

1126 24.4.1.4 Errors

1127 If any of the following conditions occur, the aud_copy_ext() function shall return
1128 ((ssize_t)−1) and set errno to the corresponding value:

1129 [EINVAL] The value for the aud_rec_int argument is invalid.

1130 The size argument is zero or negative. −

1131 [ERANGE] The size argument is greater than zero but smaller than the
1132 length of the audit record.

1133 24.4.1.5 Cross-References

1134 aud_copy_int(), 24.4.2; aud_size(), 24.4.38; aud_valid(), 24.4.40.

1135 24.4.2 Copy an Audit Record From User to System Space

1136 Function: aud_copy_int()

1137 24.4.2.1 Synopsis

1138 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1139 aauudd__rreecc__tt aauudd__ccooppyy__iinntt ((ccoonnsstt vvooiidd ∗∗aud_rec_ext_p));;

1140 24.4.2.2 Description

1141 The aud_copy_int() function shall copy an audit record, pointed to by
1142 aud_rec_ext_p , from user-managed space to system-managed space. Upon success-
1143 ful completion, the function shall return an aud_rec_t pointing to the internal ver-
1144 sion of the audit record.

1145 Once copied to system-managed space, the record can be manipulated by the
1146 aud_get_∗() functions, and other functions that manipulate audit records.

1147 The record pointed to by aud_rec_ext_p must have been obtained from a previous,
1148 successful call to aud_copy_ext() for this function to work successfully.

1149 This function may cause memory to be allocated. The caller should free any
1150 releasable memory, when the new record is no longer required, by calling
1151 aud_free() with the (void∗)aud_rec_t as an argument.

1152 The aud_copy_int() call shall not affect the record pointed to by aud_rec_ext_p .

1153 24.4.2.3 Returns

1154 Upon successful completion, the aud_copy_int() function returns an audit record
1155 pointer set to point to the internal version of the audit record. Otherwise, a value
1156 of (aud_rec_t)NULL shall be returned, the caller shall not have to free any releas-
1157 able memory, and errno shall be set to indicate the error.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 113

1158 24.4.2.4 Errors

1159 If any of the following conditions occur, the aud_copy_int() function shall return
1160 (aud_rec_t)NULL and set errno to the corresponding value:

1161 [EINVAL] The value of the aud_rec_ext_p argument is invalid.

1162 [ENOMEM] The function requires more memory than is allowed by the
1163 hardware or system-imposed memory management constraints. −

1164 24.4.2.5 Cross-References

1165 aud_copy_ext(), 24.4.1; aud_free(), 24.4.14; aud_get_event(), 24.4.16;
1166 aud_get_hdr(), 24.4.18; aud_get_obj(), 24.4.21; aud_get_subj(). 24.4.23.

1167 24.4.3 Delete Set of Event-specific Data from a Record

1168 Function: aud_delete_event()

1169 24.4.3.1 Synopsis

1170 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1171 iinntt aauudd__ddeelleettee__eevveenntt ((aauudd__eevviinnffoo__tt aud_event_d));;

1172 24.4.3.2 Description

1173 The aud_delete_event() function deletes a set of event-specific data from an audit
1174 record, including any data items within the set. The set to be deleted is defined
1175 by the aud_event_d descriptor. Upon successful execution, the set of event-specific
1176 data shall no longer be accessible, and the aud_event_d descriptor shall become
1177 undefined.

1178 Calls to this function shall not affect the status of descriptors for any other set of
1179 data in this or any other audit record.

1180 24.4.3.3 Returns

1181 Upon successful completion, the aud_delete_event() function returns 0. Other-
1182 wise, it returns a value of −1 and errno is set to indicate the error. The audit
1183 record shall not be changed if the return value is −1.

1184 24.4.3.4 Errors

1185 If any of the following conditions occur, the aud_delete_event() function shall
1186 return -1 and set errno to the corresponding value:

1187 [EINVAL] Argument aud_event_d is not a valid descriptor for a set of
1188 event-specific data within an audit record. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

114 24 Audit

1189 24.4.3.5 Cross-References

1190 aud_delete_event_info(), 24.4.4; aud_init_record(), 24.4.27; aud_put_event (),
1191 24.4.28; aud_valid(), 24.4.40; aud_write(), 24.4.41.

1192 24.4.4 Delete Item from Set of Event-specific Data

1193 Function: aud_delete_event_info()

1194 24.4.4.1 Synopsis

1195 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1196 iinntt aauudd__ddeelleettee__eevveenntt__iinnffoo ((aauudd__eevviinnffoo__tt aud_event_d,,
1197 iinntt item_id));;

1198 24.4.4.2 Description

1199 The aud_delete_event_info() function deletes a data item from a set of event-
1200 specific data in an audit record. Upon successful execution of
1201 aud_delete_event_info(), the item defined by item_id shall no longer be accessible
1202 in the set of event-specific data defined by aud_event_d.

1203 The value of item_id specifies an item within the set of event-specific data. For
1204 system-generated records, the items available are dependent upon the event type
1205 of the audit record being examined; for each POSIX-defined event type the
1206 minimum set of items that shall be available, together with values of item_id to
1207 access them, are specified in section 24.2.2. For application-generated records,
1208 the values of item_id match the calls on aud_put_event_info () that put the items
1209 into the set of event-specific data.

1210 Calls to this function shall not affect the status of descriptors for any other data
1211 item in this or any other audit record.

1212 24.4.4.3 Returns

1213 Upon successful completion, the aud_delete_event_info() function returns 0. Oth-
1214 erwise, it returns a value of −1 and errno is set to indicate the error. The audit
1215 record shall not be changed if the return value is −1.

1216 24.4.4.4 Errors

1217 If any of the following conditions occur, the aud_delete_event_info() function shall
1218 return −1 and set errno to the corresponding value:

1219 [EINVAL] Argument aud_event_d is not a valid descriptor for a set of
1220 event-specific data within an audit record.

1221 Argument item_id does not reference a valid data item within
1222 aud_event_d. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 115

1223 24.4.4.5 Cross-References

1224 aud_delete_event(), 24.4.3; aud_init_record(), 24.4.27; aud_put_event (), 24.4.28;
1225 aud_put_event_info (), 24.4.29; aud_valid(), 24.4.40; aud_write(), 24.4.41.

1226 24.4.5 Delete Header from an Audit Record

1227 Function: aud_delete_hdr()

1228 24.4.5.1 Synopsis

1229 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1230 iinntt aauudd__ddeelleettee__hhddrr ((aauudd__hhddrr__tt aud_hdr_d));;

1231 24.4.5.2 Description

1232 The aud_delete_hdr() function deletes a header from an audit record, including
1233 any data items within the header. The header to be deleted is defined by the
1234 aud_hdr_d descriptor. Upon successful execution, the header shall no longer be
1235 accessible in the record, and the aud_hdr_d descriptor shall become undefined.

1236 Calls to this function shall not affect the status of descriptors for any other set of
1237 data in this or any other audit record.

1238 24.4.5.3 Returns

1239 Upon successful completion, the aud_delete_hdr() function returns 0. Otherwise,
1240 it returns a value of −1 and errno is set to indicate the error. The audit record
1241 shall not be changed if the return value is −1.

1242 24.4.5.4 Errors

1243 If any of the following conditions occur, the aud_delete_hdr() function shall return
1244 -1 and set errno to the corresponding value:

1245 [EINVAL] Argument aud_hdr_d is not a valid descriptor for a header
1246 within an audit record. −

1247 24.4.5.5 Cross-References

1248 aud_delete_hdr_info(), 24.4.6; aud_init_record(), 24.4.27; aud_put_hdr (), 24.4.30;
1249 aud_valid(), 24.4.40; aud_write(), 24.4.41.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

116 24 Audit

1250 24.4.6 Delete Item from Audit Record Header

1251 Function: aud_delete_hdr_info()

1252 24.4.6.1 Synopsis

1253 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1254 iinntt aauudd__ddeelleettee__hhddrr__iinnffoo ((aauudd__hhddrr__tt aud_hdr_d,,
1255 iinntt item_id));;

1256 24.4.6.2 Description

1257 The aud_delete_hdr_info() function deletes a data item from a header in an audit
1258 record. Upon successful execution of aud_delete_hdr_info(), the item defined by
1259 item_id shall no longer be accessible in the header defined by aud_hdr_d.

1260 The value of item_id specifies an item within the audit record header. For records
1261 read from an audit log, the minimum set of items that shall be available from the
1262 first header, together with values of item_id to access them, are specified in sec-
1263 tion 24.4.19. For application-generated records the values of item_id match the
1264 calls on aud_put_hdr_info() that put the items into the header.

1265 Calls to this function shall not affect the status of descriptors for any other data
1266 item in this or any other audit record.

1267 24.4.6.3 Returns

1268 Upon successful completion, the aud_delete_hdr_info() function returns 0. Other-
1269 wise, it returns a value of −1 and errno is set to indicate the error. The audit
1270 record shall not be changed if the return value is −1.

1271 24.4.6.4 Errors

1272 If any of the following conditions occur, the aud_delete_hdr_info() function shall
1273 return −1 and set errno to the corresponding value:

1274 [EINVAL] Argument aud_hdr_d is not a valid descriptor for a header
1275 within an audit record.

1276 Argument item_id does not reference a valid data item within
1277 aud_hdr_d. −

1278 24.4.6.5 Cross-References

1279 aud_delete_hdr(), 24.4.5; aud_init_record(), 24.4.27; aud_put_hdr (), 24.4.30;
1280 aud_put_hdr_info(), 24.4.31; aud_valid(), 24.4.40; aud_write(), 24.4.41.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 117

1281 24.4.7 Delete Set of Object Attributes from a Record

1282 Function: aud_delete_obj()

1283 24.4.7.1 Synopsis

1284 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1285 iinntt aauudd__ddeelleettee__oobbjj ((aauudd__oobbjj__tt aud_obj_d));;

1286 24.4.7.2 Description

1287 The aud_delete_obj() function deletes a set of object attributes from an audit
1288 record, including any data items within the set. The set to be deleted is defined
1289 by the aud_obj_d descriptor. Upon successful execution, the set of object attri-
1290 butes shall no longer be accessible in the record, and the aud_obj_d descriptor
1291 shall become undefined.

1292 Calls to this function shall not affect the status of descriptors for any other set of
1293 data in this or any other audit record.

1294 24.4.7.3 Returns

1295 Upon successful completion, the aud_delete_obj() function returns 0. Otherwise,
1296 it returns a value of −1 and errno is set to indicate the error. The audit record
1297 shall not be changed if the return value is −1.

1298 24.4.7.4 Errors

1299 If any of the following conditions occur, the aud_delete_obj() function shall return
1300 -1 and set errno to the corresponding value:

1301 [EINVAL] Argument aud_obj_d is not a valid descriptor for a set of object
1302 attributes within an audit record. −

1303 24.4.7.5 Cross-References

1304 aud_delete_obj_info(), 24.4.8; aud_init_record(), 24.4.27; aud_put_obj (), 24.4.32;
1305 aud_valid(), 24.4.40; aud_write(), 24.4.41.

1306 24.4.8 Delete Item from Set of Object Attributes

1307 Function: aud_delete_obj_info()

1308 24.4.8.1 Synopsis

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

118 24 Audit

1309 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1310 iinntt aauudd__ddeelleettee__oobbjj__iinnffoo ((aauudd__oobbjj__tt aud_obj_d,,
1311 iinntt item_id));;

1312 24.4.8.2 Description

1313 The aud_delete_obj_info() function deletes a data item from a set of object attri-
1314 butes in an audit record. Upon successful execution of aud_delete_obj_info(), the
1315 item defined by item_id shall no longer be accessible in the set of object attributes
1316 defined by aud_obj_d.

1317 The value of item_id specifies an item within the set of object attributes. For
1318 system-generated records, the minimum set of items that shall be available,
1319 together with values of item_id to access them, are specified in section 24.4.22.
1320 For application-generated records, the values of item_id match the calls on
1321 aud_put_obj_info() that put the items into the set of object attributes.

1322 Calls to this function shall not affect the status of descriptors for any other data
1323 item in this or any other audit record.

1324 24.4.8.3 Returns

1325 Upon successful completion, the aud_delete_obj_info() function returns 0. Other-
1326 wise, it returns a value of −1 and errno is set to indicate the error. The audit
1327 record shall not be changed if the return value is −1.

1328 24.4.8.4 Errors

1329 If any of the following conditions occur, the aud_delete_obj_info() function shall
1330 return −1 and set errno to the corresponding value:

1331 [EINVAL] Argument aud_obj_d is not a valid descriptor for a set of object
1332 attributes within an audit record.

1333 Argument item_id does not reference a valid data item within
1334 aud_obj_d. −

1335 24.4.8.5 Cross-References

1336 aud_delete_obj(), 24.4.7; aud_init_record(), 24.4.27; aud_put_obj (), 24.4.32;
1337 aud_put_obj_info(), 24.4.33; aud_valid(), 24.4.40; aud_write(), 24.4.41.

1338 24.4.9 Delete Set of Subject Attributes from a Record

1339 Function: aud_delete_subj()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 119

1340 24.4.9.1 Synopsis

1341 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1342 iinntt aauudd__ddeelleettee__ssuubbjj ((aauudd__ssuubbjj__tt aud_subj_d));;

1343 24.4.9.2 Description

1344 The aud_delete_subj() function deletes a set of subject attributes from an audit
1345 record, including any data items within the set. The set to be deleted is defined
1346 by the aud_subj_d descriptor. Upon successful execution, the set of subject attri-
1347 butes shall no longer be accessible in the record, and the aud_subj_d descriptor
1348 shall become undefined.

1349 Calls to this function shall not affect the status of descriptors for any other set of
1350 data in this or any other audit record.

1351 24.4.9.3 Returns

1352 Upon successful completion, the aud_delete_subj() function returns 0. Otherwise,
1353 it returns a value of −1 and errno is set to indicate the error. The audit record
1354 shall not be changed if the return value is −1.

1355 24.4.9.4 Errors

1356 If any of the following conditions occur, the aud_delete_subj() function shall
1357 return -1 and set errno to the corresponding value:

1358 [EINVAL] Argument aud_subj_d is not a valid descriptor for a set of sub-
1359 ject attributes within an audit record. −

1360 24.4.9.5 Cross-References

1361 aud_delete_subj_info(), 24.4.10; aud_init_record(), 24.4.27; aud_put_subj (),
1362 24.4.34; aud_valid(), 24.4.40; aud_write(), 24.4.41.

1363 24.4.10 Delete Item from Set of Subject Attributes

1364 Function: aud_delete_subj_info()

1365 24.4.10.1 Synopsis

1366 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1367 iinntt aauudd__ddeelleettee__ssuubbjj__iinnffoo ((aauudd__ssuubbjj__tt aud_subj_d,,
1368 iinntt item_id));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

120 24 Audit

1369 24.4.10.2 Description

1370 The aud_delete_subj_info() function deletes a data item from a set of subject attri-
1371 butes in an audit record. Upon successful execution of aud_delete_subj_info(), the
1372 item defined by item_id shall no longer be accessible in the set of subject attri-
1373 butes defined by aud_subj_d.

1374 The value of item_id specifies an item within the set of subject attributes. For
1375 system-generated records, the minimum set of items that shall be available,
1376 together with values of item_id to access them, are specified in section 24.4.24.
1377 For application-generated records, the values of item_id match the calls on
1378 aud_put_subj_info () that put the items into the set of subject attributes.

1379 Calls to this function shall not affect the status of descriptors for any other data
1380 item in this or any other audit record.

1381 24.4.10.3 Returns

1382 Upon successful completion, the aud_delete_subj_info() function returns 0. Oth-
1383 erwise, it returns a value of −1 and errno is set to indicate the error. The audit
1384 record shall not be changed if the return value is −1.

1385 24.4.10.4 Errors

1386 If any of the following conditions occur, the aud_delete_subj_info() function shall
1387 return −1 and set errno to the corresponding value:

1388 [EINVAL] Argument aud_subj_d is not a valid descriptor for a set of sub-
1389 ject attributes within an audit record.

1390 Argument item_id does not reference a valid data item within
1391 aud_subj_d. −

1392 24.4.10.5 Cross-References

1393 aud_delete_subj(), 24.4.9; aud_init_record(), 24.4.27; aud_put_subj (), 24.4.34;
1394 aud_put_subj_info (), 24.4.35; aud_valid(), 24.4.40; aud_write(), 24.4.41.

1395 24.4.11 Duplicate an Audit Record

1396 Function: aud_dup_record ()

1397 24.4.11.1 Synopsis

1398 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1399 aauudd__rreecc__tt aauudd__dduupp__rreeccoorrdd ((aud_rec_t ar));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 121

1400 24.4.11.2 Description

1401 The aud_dup_record () function creates a duplicate of the audit record pointed to
1402 by argument ar. The duplicate shall be independent of the original record; subse-
1403 quent operations on either shall not affect the other. Upon successful execution,
1404 the aud_dup_record () function returns a pointer to the duplicate record.

1405 Any existing descriptors that refer to ar shall continue to refer to that record.
1406 Calls to aud_dup_record () shall not affect the status of any existing records.

1407 This function may cause memory to be allocated. The caller should free any
1408 releasable memory, when the new record is no longer required, by calling
1409 aud_free() with the (void∗)aud_rec_t as an argument.

1410 24.4.11.3 Returns

1411 Upon successful completion, the aud_dup_record () function returns an aud_rec_t
1412 pointing to the new record. Otherwise, a value of (aud_rec_t)NULL shall be
1413 returned, the caller shall not have to free any releasable memory, and errno is set
1414 to indicate the error.

1415 24.4.11.4 Errors

1416 If any of the following conditions occur, the aud_dup_record () function shall
1417 return (aud_rec_t)NULL and set errno to the corresponding value:

1418 [EINVAL] Argument ar does not point to a valid audit record.

1419 [ENOMEM] The function requires more memory than is allowed by the
1420 hardware or system-imposed memory management constraints. −

1421 24.4.11.5 Cross-References

1422 aud_free(), 24.4.14; aud_init_record(), 24.4.27; aud_valid(), 24.4.40; aud_write(),
1423 24.4.41.

1424 24.4.12 Map Text to Event Type

1425 Function: aud_evid_from_text()

1426 24.4.12.1 Synopsis

1427 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1428 iinntt aauudd__eevviidd__ffrroomm__tteexxtt ((ccoonnsstt cchhaarr ∗∗text));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

122 24 Audit

1429 24.4.12.2 Description

1430 The aud_evid_from_text() function returns the audit event type of the system
1431 audit event identified by the string pointed to by text. The means by which this
1432 information is obtained is unspecified.

1433 24.4.12.3 Returns

1434 Upon successful completion, the aud_evid_from_text() function returns the event
1435 type associated with text. On error, or if the requested entry is not found a value
1436 of -1 is returned and errno is set to indicate the error.

1437 24.4.12.4 Errors

1438 If any of the following conditions occur, the aud_evid_from_text() function shall
1439 return a value of -1 and set errno to the corresponding value:

1440 [EINVAL] The text argument does not identify a valid system audit event
1441 type. −

1442 24.4.12.5 Cross-References

1443 aud_evid_to_text(), 24.4.13; aud_get_hdr_info(), 24.4.19; aud_put_hdr_info(),
1444 24.4.31.

1445 24.4.13 Map Event Type to Text

1446 Function: aud_evid_to_text()

1447 24.4.13.1 Synopsis

1448 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1449 cchhaarr ∗∗aauudd__eevviidd__ttoo__tteexxtt ((iinntt event_type,, ssssiizzee__tt ∗∗aud_info_length));;

1450 24.4.13.2 Description

1451 The aud_evid_to_text() function shall transform the system audit event_type into
1452 a human-readable, null terminated character string identifying an event type.
1453 The means by which this information is obtained is unspecified. The function
1454 shall return the address of the string, and set the location pointed to by
1455 aud_info_length to the length of the string (not including the null terminator).

1456 This function may cause memory to be allocated. The caller should free any
1457 releasable memory when the string is no longer required, by calling the aud_free()
1458 function with the string address (cast to a (void∗)) as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 123

1459 24.4.13.3 Returns

1460 Upon successful completion, the aud_evid_to_text() function returns a pointer to a
1461 string containing the event name associated with event_type. On error, or if the
1462 requested entry is not found, (char ∗)NULL is returned, the caller shall not have
1463 to free any releasable memory, and errno is set to indicate the error.

1464 24.4.13.4 Errors

1465 If any of the following conditions occur, the aud_evid_to_text() function shall
1466 return (char ∗)NULL and set errno to the corresponding value:

1467 [EINVAL] The event_type argument does not contain a valid system audit
1468 event type.

1469 [ENOMEM] The string to be returned requires more memory than is allowed
1470 by the hardware or system-imposed memory management con-
1471 straints. −

1472 24.4.13.5 Cross-References

1473 aud_evid_from_text(); 24.4.12. aud_get_hdr_info(), 24.4.19; aud_put_hdr_info(),
1474 24.4.31.

1475 24.4.14 Release Memory Allocated to an Audit Data Object

1476 Function: aud_free()

1477 24.4.14.1 Synopsis

1478 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1479 iinntt aauudd__ffrreeee ((vvooiidd ∗∗obj_p));;

1480 24.4.14.2 Description

1481 The function aud_free() shall free any releasable memory currently allocated to
1482 the item identified by obj_p . This may identify an audit record (i.e., be a
1483 (void∗)aud_rec_t) or a pointer to a string or event list allocated by one of the audit
1484 functions.

1485 If the item identified by obj_p is an aud_rec_t, the aud_rec_t and any existing
1486 descriptors and aud_info_t items that refer to parts of the audit record shall
1487 become undefined. If it is a string (char∗), then use of the char∗ shall become
1488 undefined.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

124 24 Audit

1489 24.4.14.3 Returns

1490 Upon successful completion, the aud_free() function returns 0. Otherwise, a
1491 value of −1 shall be returned and errno shall be set to indicate the error, and the
1492 memory shall not be freed.

1493 24.4.14.4 Errors

1494 If any of the following conditions occur, the aud_free() function shall return −1
1495 and set errno to the corresponding value:

1496 [EINVAL] The obj_p argument does not identify an audit record, string or
1497 event list allocated by one of the audit functions. −

1498 24.4.14.5 Cross-References

1499 aud_copy_int(), 24.4.2; aud_dup_record (), 24.4.11; aud_get_all_evid(), 24.4.15;
1500 aud_get_event(), 24.4.16; aud_get_event_info(), 24.4.17; aud_get_hdr(), 24.4.18;
1501 aud_get_hdr_info(), 24.4.19; aud_get_obj(), 24.4.21; aud_get_obj_info(), 24.4.22;
1502 aud_get_subj(), 24.4.23; aud_get_subj_info(), 24.4.24; aud_id_to_text(), 24.4.26;
1503 aud_init_record(), 24.4.27; aud_read(), 24.4.36; aud_rec_to_text(), 24.4.37;
1504 aud_valid(), 24.4.40.

1505 24.4.15 Get All Audit Event Types

1506 Function: aud_get_all_evid()

1507 24.4.15.1 Synopsis

1508 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1509 iinntt ∗∗aauudd__ggeett__aallll__eevviidd ((vvooiidd))

1510 24.4.15.2 Description

1511 The aud_get_all_evid() function returns the list of event types for system-
1512 generated events currently reportable on a conforming implementation. Each
1513 event type is a non-negative integer; the list is terminated by a negative value.
1514 The means by which this information is obtained is unspecified. These event
1515 types can be converted into textual format by the aud_evid_to_text() function.

1516 This function may cause memory to be allocated. The caller should free any
1517 releasable memory when the event list is no longer required, by calling the
1518 aud_free() function with the event list address (cast to a void∗) as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 125

1519 24.4.15.3 Returns

1520 Upon successful completion, the aud_get_all_evid() function returns a pointer to a
1521 list of the system-generated event types currently reportable on a conforming
1522 implementation. Otherwise, (int ∗)NULL is returned, the caller shall not have to
1523 free any releasable memory, and errno is set to indicate the error.

1524 24.4.15.4 Errors

1525 If any of the following conditions occur, the aud_get_all_evid() function shall
1526 return (int ∗)NULL and set errno to the corresponding value:

1527 [ENOMEM] The event types to be returned require more memory than is
1528 allowed by the hardware or system-imposed memory manage-
1529 ment constraints. −

1530 24.4.15.5 Cross-References

1531 aud_free(), 24.4.14; aud_evid_from_text(), 24.4.12; aud_evid_to_text(), 24.4.13.

1532 24.4.16 Get Audit Record Event-specific Data Descriptor

1533 Function: aud_get_event()

1534 24.4.16.1 Synopsis

1535 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1536 iinntt aauudd__ggeett__eevveenntt ((aauudd__rreecc__tt ar,,
1537 iinntt index,,
1538 aauudd__eevviinnffoo__tt ∗∗aud_event_p));;

1539 24.4.16.2 Description

1540 The aud_get_event() function returns a descriptor to a set of event-specific data
1541 from an audit record. The function accepts an audit record pointer ar returned
1542 from a previously successful call to aud_read(), aud_init_record() or
1543 aud_dup_record (). If aud_event_p is not NULL, then upon successful execution
1544 the aud_get_event() function shall return a descriptor via aud_event_p for the set
1545 of event-specific data identified by index. The descriptor returned by this call can
1546 then be used in subsequent calls on aud_get_event_info() to extract the data items
1547 from the set of event-specific data from the audit record. If aud_event_p is NULL,
1548 then the value of the index argument is ignored and the function just returns a
1549 value as described below.

1550 Calls to aud_get_event() shall not affect the status of any other existing descrip-
1551 tors. Calls on the various aud_get_∗() functions can be interleaved without affect-
1552 ing each other.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

126 24 Audit

1553 This function may cause memory to be allocated. The caller should free any
1554 releasable memory, when the record is no longer required, by calling aud_free()
1555 with the (void∗)aud_rec_t as an argument.

1556 A descriptor for the first set of event-specific data in the record is obtained by sup-
1557 plying an index of 1. While the standard does not require more than one set of
1558 event-specific data to be present in a record, an implementation or application
1559 may add additional sets that can be read by supplying values of index that are
1560 greater than 1.

1561 24.4.16.3 Returns

1562 Upon successful completion, the aud_get_event() function returns a non-negative
1563 value. This value indicates the number of sets of event-specific data in the record.

1564 In the event of failure the aud_get_event() function returns a value of −1, the
1565 caller shall not have to free any releasable memory, and errno is set to indicate
1566 the error. The aud_evinfo_t referenced by aud_event_p shall not be affected if the
1567 return value is -1.

1568 24.4.16.4 Errors

1569 If any of the following conditions occur, the aud_get_event() function shall return
1570 -1 and set errno to the corresponding value:

1571 [EINVAL] Argument ar does not point to a valid audit record.

1572 Argument index does not identify a valid set of event-specific
1573 data in the record.

1574 [ENOMEM] The function requires more memory than is allowed by the
1575 hardware or system-imposed memory management constraints. −

1576 24.4.16.5 Cross-References

1577 aud_free(), 24.4.14; aud_get_event_info(), 24.4.17; aud_put_event (), 24.4.28;
1578 aud_read(), 24.4.36; aud_valid(), 24.4.40.

1579 24.4.17 Examine Audit Record Event-specific Data

1580 Function: aud_get_event_info()

1581 24.4.17.1 Synopsis

1582 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1583 iinntt aauudd__ggeett__eevveenntt__iinnffoo ((aauudd__eevviinnffoo__tt aud_event_d,,
1584 iinntt item_id,,
1585 aauudd__iinnffoo__tt ∗∗aud_event_info_p));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 127

1586 24.4.17.2 Description

1587 The aud_get_event_info() function returns a data item from within a set of event-
1588 specific data. The set of event-specific data within an audit record to be examined
1589 is identified by aud_event_d which was obtained from a previous successful call to
1590 aud_get_event() or aud_put_event (). If aud_event_info_p is not NULL, then upon
1591 successful execution the aud_get_event_info() function shall return via
1592 aud_event_info_p an aud_info_t for the data identified by item_id. If
1593 aud_event_info_p is NULL, then the value of the item_id argument is ignored, and
1594 the function just returns a value as described in the Returns section below.

1595 The value of item_id may specify a named item within the set of event-specific
1596 data, or may specify the ‘first’ item or the ‘next’ item. The named items available
1597 are dependent upon the event type of the audit record being examined; for each
1598 POSIX-defined event type the minimum set of items that shall be available,
1599 together with values of item_id to access them, are specified in section 24.2.2.

1600 If item_id is AUD_FIRST_ITEM, then this specifies the first item of event-specific
1601 data in the set. A call of aud_get_event_info() with item_id set to
1602 AUD_NEXT_ITEM shall return the item that follows the previous one read; for
1603 POSIX-defined events, the required items are returned in the order they are
1604 defined for each event type in section 24.2.2; implementations may report addi-
1605 tional items after the required items. If AUD_NEXT_ITEM is used when there
1606 has not been a previous successful call of this function for this set of event infor-
1607 mation, the effect is unspecified.

1608 Any existing descriptors shall not be affected by use of this function. Calls on the
1609 various aud_get_∗() functions can be interleaved without affecting each other.

1610 This function may cause memory to be allocated. The caller should free any
1611 releasable memory, when the record containing aud_event_d is no longer
1612 required, by calling aud_free() with the aud_rec_t for the record (cast to a (void∗))
1613 as an argument.

1614 24.4.17.3 Returns

1615 Upon successful completion, the aud_get_event_info() function returns a non-
1616 negative value. This value indicates the number of items of event-specific data in
1617 the set.

1618 In the event of failure the aud_get_event_info() function returns a value of −1, the
1619 caller shall not have to free any releasable memory, and errno is set to indicate
1620 the error. The aud_info_t referenced by aud_event_info_p shall not be affected if
1621 the return value is -1.

1622 24.4.17.4 Errors

1623 If any of the following conditions occur, the aud_get_event_info() function shall
1624 return -1 and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

128 24 Audit

1625 [EINVAL] Argument aud_event_d is not a valid descriptor for a set of
1626 event-specific data within an audit record.

1627 Argument item_id does not identify a valid item from the set of
1628 event-specific data.

1629 [ENOMEM] The function requires more memory than is allowed by the
1630 hardware or system-imposed memory management constraints. −

1631 24.4.17.5 Cross-References

1632 aud_free(), 24.4.14; aud_get_event(), 24.4.16; aud_put_event_info (), 24.4.29;
1633 aud_read(), 24.4.36; aud_valid(), 24.4.40.

1634 24.4.18 Get an Audit Record Header Descriptor

1635 Function: aud_get_hdr()

1636 24.4.18.1 Synopsis

1637 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1638 iinntt aauudd__ggeett__hhddrr ((aauudd__rreecc__tt ar,,
1639 iinntt index,,
1640 aauudd__hhddrr__tt ∗∗aud_hdr_p));;

1641 24.4.18.2 Description

1642 The aud_get_hdr() function returns a descriptor to the header of an audit record.
1643 The function accepts an audit record pointer ar returned from a previously suc-
1644 cessful call to aud_read(), aud_init_record() or aud_dup_record (). If aud_hdr_p
1645 is not NULL, then upon successful execution the aud_get_hdr() function shall
1646 return a descriptor via aud_hdr_p for the header identified by index. The descrip-
1647 tor returned by this call can then be used in subsequent calls to
1648 aud_get_hdr_info() to extract the data from the audit record header. If
1649 aud_hdr_p is NULL, then the value of the index argument is ignored, and the
1650 function just returns a value as described below.

1651 Calls to aud_get_hdr() shall not affect the status of any other existing descriptors.
1652 Calls on the various aud_get_∗() functions can be interleaved without affecting
1653 each other.

1654 This function may cause memory to be allocated. The caller should free any
1655 releasable memory, when the record is no longer required, by calling aud_free()
1656 with the (void∗)aud_rec_t as an argument.

1657 A descriptor for the first header in the record is obtained by supplying an index of
1658 1. While the standard does not require more than one header to be present in a
1659 record, an implementation or application may add additional headers that can be
1660 read by supplying values of index that are greater than 1.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 129

1661 24.4.18.3 Returns

1662 Upon successful completion, the aud_get_hdr() function returns a non-negative
1663 value. This value indicates the number of headers in the record.

1664 In the event of failure the aud_get_hdr() function returns a value of −1, the caller
1665 shall not have to free any releasable memory, and errno is set to indicate the
1666 error. The aud_hdr_t referenced by aud_hdr_p shall not be affected if the return
1667 value is -1.

1668 24.4.18.4 Errors

1669 If any of the following conditions occur, the aud_get_hdr() function shall return -1
1670 and set errno to the corresponding value:

1671 [EINVAL] Argument ar does not point to a valid audit record.

1672 Argument index does not identify a valid header in the record.

1673 [ENOMEM] The function requires more memory than is allowed by the
1674 hardware or system-imposed memory management constraints. −

1675 24.4.18.5 Cross-References

1676 aud_free(), 24.4.14; aud_get_hdr_info(), 24.4.19; aud_put_hdr (), 24.4.30;
1677 aud_read(), 24.4.36; aud_valid(), 24.4.40.

1678 24.4.19 Examine an Audit Record Header

1679 Function: aud_get_hdr_info()

1680 24.4.19.1 Synopsis

1681 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1682 iinntt aauudd__ggeett__hhddrr__iinnffoo ((aauudd__hhddrr__tt aud_hdr_d,,
1683 iinntt item_id,,
1684 aauudd__iinnffoo__tt ∗∗aud_hdr_info_p));;

1685 24.4.19.2 Description

1686 The aud_get_hdr_info() function returns a data item from within a header of an
1687 audit record. The audit record header to be examined is identified by aud_hdr_d
1688 which was obtained from a previous successful call to aud_get_hdr() or
1689 aud_put_hdr (). If aud_hdr_info_p is not NULL, then upon successful execution
1690 the aud_get_hdr_info() function shall return via aud_hdr_info_p an aud_info_t for
1691 the item of event-specific data identified by item_id. If aud_hdr_info_p is NULL,
1692 then the value of the item_id argument is ignored, and the function just returns a
1693 value as described in the Returns section below.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

130 24 Audit

1694 The value of item_id may specify a named item within the set of header data, or
1695 may specify the ‘first’ item or the ‘next’ item.

1696 The minimum set of named items to be available from the first header of an audit
1697 record is specified in the table below, together with values of item_id to access the
1698 items. If a record contains more than one header, the contents of the second and
1699 subsequent headers is not specified by this standard.

1700 Table 24-10 − aud_hdr_info_p Values

1701 Type Description item_id Notes1702 iii
1703 AUD_TYPE_SHORT The format of the audit record AUD_FORMAT (1)
1704 AUD_TYPE_SHORT The version number of the record AUD_VERSION (2)
1705 AUD_TYPE_AUD_ID The audit ID of the process AUD_AUD_ID (3)
1706 AUD_TYPE_INT or The event type of the record AUD_EVENT_TYPE (4)
1707 AUD_TYPE_STRING
1708 AUD_TYPE_AUD_TIME The time the event occurred AUD_TIME
1709 AUD_TYPE_AUD_STATUS The audit status of the event AUD_STATUS
1710 AUD_TYPE_INT Value returned for event (errno) AUD_ERRNO (5)

1711 Notes on the table:

1712 (1) Only one value is currently defined for the format item: AUD_NATIVE.
1713 All data in any given record shall be in the same format.

1714 (2) The version item provides a means of identifying the version of the
1715 POSIX.1e audit option to which the audit record conforms. Conforming
1716 applications can make use of the version to provide for backward compa-
1717 tibility or to ignore records which they are not prepared to handle.

1718 Currently only one value for version is defined: AUD_STD_NNNN_N. c
1719 This identifies records which conform to the initial version of this stan-
1720 dard. Further revisions of this standard may define additional values for
1721 the header version. The NNNN_N is merely a placeholder for the year c
1722 (e.g., 1997) this standard is approved and standard (e.g., _1 implying
1723 POSIX.1) it is placed into.

1724 (3) If the record is not associated with any accountable user (e.g., it was
1725 recorded before a user had completed authentication), then the
1726 aud_get_hdr_info() function shall return an aud_info_t with a zero
1727 aud_info_length member.

1728 (4) The event type is an integer if this is a system-generated event, or a
1729 string if it is an application-generated event.

1730 (5) For system-generated events, the return value reported contains the
1731 errno on return from the function audited; if the operation succeeded (as
1732 shown by the status), this value is undefined. For application-generated
1733 records there may be no errno reported.

1734 If item_id is AUD_FIRST_ITEM, then this specifies the first of the items of infor-
1735 mation from the header. A call of aud_get_hdr_info() with item_id set to
1736 AUD_NEXT_ITEM shall return the item that follows the previous one read; for
1737 the POSIX-defined header, the required items are returned in the order they are

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 131

1738 defined in the table above; implementations may report additional items after the
1739 required items. If AUD_NEXT_ITEM is used when there has not been a previous
1740 successful call of this function for this header, the effect is unspecified.

1741 This function may cause memory to be allocated. The caller should free any
1742 releasable memory, when the record containing aud_hdr_d is no longer required,
1743 by calling aud_free() with the aud_rec_t for the record (cast to a (void∗)) as an
1744 argument.

1745 Any existing descriptors shall not be affected by use of this function. Calls on the
1746 various aud_get_∗() functions can be interleaved without affecting each other.

1747 24.4.19.3 Returns

1748 Upon successful completion, the aud_get_hdr_info() function returns a non-
1749 negative value. This value indicates the number of items of header information in
1750 the set.

1751 In the event of failure the aud_get_hdr_info() function returns a value of −1, the
1752 caller shall not have to free any releasable memory, and errno is set to indicate
1753 the error. The aud_info_t referenced by aud_hdr_info_p shall not be affected if
1754 the return value is -1.

1755 24.4.19.4 Errors

1756 If any of the following conditions occur, the aud_get_hdr_info() function shall
1757 return -1 and set errno to the corresponding value:

1758 [EINVAL] Argument aud_hdr_d is not a valid descriptor for an audit
1759 record header within an audit record.

1760 Argument item_id does not identify a valid item from the
1761 header.

1762 [ENOMEM] The function requires more memory than is allowed by the
1763 hardware or system-imposed memory management constraints. −

1764 24.4.19.5 Cross-References

1765 aud_free(), 24.4.14; aud_get_hdr(), 24.4.18; aud_put_hdr_info(), 24.4.31;
1766 aud_read(), 24.4.36; aud_valid(), 24.4.40.

1767 24.4.20 Get a Process Audit ID

1768 Function: aud_get_id()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

132 24 Audit

1769 24.4.20.1 Synopsis

1770 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>
1771 ##iinncclluuddee <<ssyyss//ttyyppeess..hh>>

1772 aauudd__iidd__tt aauudd__ggeett__iidd ((ppiidd__tt pid));;

1773 24.4.20.2 Description

1774 The aud_get_id() function returns the audit ID of the user who is accountable for
1775 auditable actions of the existing process identified by pid.

1776 It is unspecified whether appropriate privilege is required to use this function.

1777 24.4.20.3 Returns

1778 Upon successful completion, the aud_get_id() function returns the audit ID of the
1779 nominated process. Otherwise, a value of ((aud_id_t)−1) is returned and errno is
1780 set to indicate the error.

1781 24.4.20.4 Errors

1782 If any of the following conditions occur, the aud_get_id() function shall return a
1783 value of ((aud_id_t)−1) and set errno to the corresponding value:

1784 [EINVAL] The value of the pid_t argument is invalid. −

1785 24.4.20.5 Cross-References

1786 aud_id_to_text(), 24.4.26; aud_put_hdr_info(), 24.4.31; aud_write(), 24.4.41.

1787 24.4.21 Get an Audit Record Object Descriptor

1788 Function: aud_get_obj()

1789 24.4.21.1 Synopsis

1790 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1791 iinntt aauudd__ggeett__oobbjj ((aauudd__rreecc__tt ar,,
1792 iinntt index,,
1793 aauudd__oobbjj__tt ∗∗aud_obj_p));;

1794 24.4.21.2 Description

1795 The aud_get_obj() function returns a descriptor to a set of object attributes from
1796 an audit record. The function accepts an audit record pointer ar returned from a
1797 previously successful call to aud_read(), aud_init_record() or aud_dup_record ().
1798 If aud_obj_p is not NULL, then upon successful execution the aud_get_obj() func-
1799 tion shall return a descriptor via aud_obj_p for the set of object data identified by

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 133

1800 index. The descriptor returned by this call can then be used in subsequent calls
1801 to aud_get_obj_info() to extract the object data for that object. If aud_obj_p is
1802 NULL, then the function just returns a value as described below.

1803 Calls to aud_get_obj() shall not affect the status of any other existing descriptors.
1804 Calls on the various aud_get_∗() functions can be interleaved without affecting
1805 each other.

1806 This function may cause memory to be allocated. The caller should free any
1807 releasable memory, when the record is no longer required, by calling aud_free()
1808 with the (void∗)aud_rec_t as an argument.

1809 A descriptor for the first set of object attributes in the record is obtained by sup-
1810 plying an index of 1. Any additional sets can be read by supplying values of index
1811 that are greater than 1.

1812 24.4.21.3 Returns

1813 Upon successful completion, the aud_get_obj() function returns a non-negative
1814 value. This value indicates the number of sets of object attributes in the record.

1815 In the event of failure the aud_get_obj() function returns a value of −1, the caller
1816 shall not have to free any releasable memory, and errno is set to indicate the
1817 error. The aud_obj_t referenced by aud_obj_p shall not be affected if the return
1818 value is -1.

1819 24.4.21.4 Errors

1820 If any of the following conditions occur, the aud_get_obj() function shall return -1
1821 and set errno to the corresponding value:

1822 [EINVAL] Argument ar does not point to a valid audit record.

1823 Argument index does not identify a valid set of object attributes
1824 in the record.

1825 [ENOMEM] The function requires more memory than is allowed by the
1826 hardware or system-imposed memory management constraints. −

1827 24.4.21.5 Cross-References

1828 aud_free(), 24.4.14; aud_get_obj_info(), 24.4.22; aud_put_obj (), 24.4.32;
1829 aud_read(), 24.4.36; aud_valid(), 24.4.40.

1830 24.4.22 Examine Audit Record Object Data

1831 Function: aud_get_obj_info()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

134 24 Audit

1832 24.4.22.1 Synopsis

1833 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1834 iinntt aauudd__ggeett__oobbjj__iinnffoo ((aauudd__oobbjj__tt aud_obj_d,,
1835 iinntt item_id,,
1836 aauudd__iinnffoo__tt ∗∗aud_obj_info_p));;

1837 24.4.22.2 Description

1838 The aud_get_obj_info() function returns a data item from within a set of object
1839 data. For system-generated events recording use of an interface that changes
1840 object attributes, the attributes reported are those at the start of the event. The
1841 set of object data to be examined is identified by aud_obj_d which was obtained
1842 from a previous successful call to aud_get_obj() or aud_put_obj (). If
1843 aud_obj_info_p is not NULL, then upon successful execution the
1844 aud_get_obj_info() function shall return via aud_obj_info_p an aud_info_t for the
1845 object attribute identified by item_id. If aud_obj_info_p is NULL, then the value
1846 of the item_id argument is ignored, and the function just returns a value as
1847 described in the Returns section below.

1848 The value of item_id may specify a named item within the set of object data or
1849 may specify the ‘first’ item or the ‘next’ item.

1850 The minimum set of named items that shall be available for system generated
1851 events that are required to report object attributes is specified in the table below,
1852 together with values of item_id to access them:

1853 Table 24-11 − aud_obj_info_p Values

1854 Type Description item_id Notes1855 ii
1856 AUD_TYPE_AUD_OBJ_TYPE The type of the object AUD_TYPE
1857 AUD_TYPE_UID The user ID of the object owner AUD_UID (1)
1858 AUD_TYPE_GID The group ID of the object owner AUD_GID (2)
1859 AUD_TYPE_MODE The mode bits of the object AUD_MODE (3)
1860 AUD_TYPE_STRING The name of the object AUD_NAME (4)
1861 AUD_TYPE_ACL The ACL of the object AUD_ACL (5)
1862 AUD_TYPE_MAC The MAC label of the object AUD_MAC_LBL (6)
1863 AUD_TYPE_INF The information label of the object AUD_INF_LBL (7)
1864 AUD_TYPE_CAP The capability set of the object AUD_CAP +

1865 Notes on the table:

1866 (1) For a process object, the object owner is the effective UID of the process.

1867 (2) For a process object, the object group is the effective GID of the process.

1868 (3) For a process object, the aud_get_obj_info() function may return an
1869 aud_info_t with a zero aud_info_length member for the mode bits.

1870 (4) This item contains the name of the object, which shall provide sufficient
1871 information to identify the object.

1872 (5) This item contains an acl_t recording the ACL of the object at the start of
1873 the event. If {_POSIX_ACL} was not defined at that time, or the object c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 135

1874 does not have a POSIX.1e conformant ACL, the aud_get_obj_info() func-
1875 tion shall return an aud_info_t with a zero aud_info_length member.

1876 (6) This item contains a mac_t recording the MAC label of the object at the
1877 start of the event. If {_POSIX_MAC} was not defined at that time, the c
1878 aud_get_obj_info() function shall return an aud_info_t with a zero
1879 aud_info_length member.

1880 (7) This item contains an inf_t recording the information label of the object
1881 at the start of the event. If {_POSIX_INF} was not defined at that time, c
1882 the aud_get_obj_info() function shall return an aud_info_t with a zero
1883 aud_info_length member. +

1884 (8) This item contains a cap_t recording the capability set of the object at the+
1885 start of the event. If {_POSIX_CAP} was not in effect at that time or if the+
1886 object does not have a POSIX.1e conformant capability set, the +
1887 aud_get_obj_info() function shall return an aud_info_t with a zero +
1888 aud_info_length member.

1889 If item_id is AUD_FIRST_ITEM, this specifies the first of the items of information
1890 from the set. A call of aud_get_obj_info() with item_id set to AUD_NEXT_ITEM
1891 shall return the item that follows the previous one read; for system-generated
1892 events that are required to report object attributes, the required items are
1893 returned in the order they are defined in the table above; implementations may
1894 report additional items after the required items. If AUD_NEXT_ITEM is used
1895 when there has not been a previous successful call of this function for this set of
1896 object attributes, the effect is unspecified.

1897 Only the object type and object owner items are required. The other specified
1898 items are optional. If an item is not available, the function aud_get_obj_info()
1899 shall return a aud_info_t with a zero aud_info_length member.

1900 Any existing descriptors shall not be affected by use of this function. Calls on the
1901 various aud_get_∗() functions can be interleaved without affecting each other.

1902 This function may cause memory to be allocated. The caller should free any
1903 releasable memory, when the record containing aud_obj_d is no longer required,
1904 by calling aud_free() with the aud_rec_t for the record (cast to a (void∗)) as an
1905 argument.

1906 24.4.22.3 Returns

1907 Upon successful completion, the aud_get_obj_info() function returns a non-
1908 negative value. This value indicates the number of items of object attributes in
1909 the set.

1910 In the event of failure the aud_get_obj_info() function returns a value of −1, the
1911 caller shall not have to free any releasable memory, and errno is set to indicate
1912 the error. The aud_info_t referenced by aud_obj_info_p shall not be affected if the
1913 return value is -1.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

136 24 Audit

1914 24.4.22.4 Errors

1915 If any of the following conditions occur, the aud_get_obj_info() function shall
1916 return -1 and set errno to the corresponding value: If any of the following condi-
1917 tions occur, this function will fail and set errno to one of the following values:

1918 [EINVAL] Argument aud_obj_d is not a valid descriptor for a set of object
1919 attributes within an audit record.

1920 Argument item_id does not identify a valid item from the set of
1921 object attributes.

1922 [ENOMEM] The function requires more memory than is allowed by the
1923 hardware or system-imposed memory management constraints. −

1924 24.4.22.5 Cross-References

1925 aud_free(), 24.4.14; aud_get_obj(), 24.4.21; aud_put_obj_info(), 24.4.33;
1926 aud_read(), 24.4.36; aud_valid(), 24.4.40.

1927 24.4.23 Get an Audit Record Subject Descriptor

1928 Function: aud_get_subj()

1929 24.4.23.1 Synopsis

1930 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1931 iinntt aauudd__ggeett__ssuubbjj ((aauudd__rreecc__tt ar,,
1932 iinntt index,,
1933 aauudd__ssuubbjj__tt ∗∗aud_subj_p));;

1934 24.4.23.2 Description

1935 The aud_get_subj() function returns a descriptor to a set of subject attributes
1936 from an audit record. The function accepts an audit record pointer ar returned
1937 from a previously successful call to aud_read(), aud_init_record() or
1938 aud_dup_record (). If aud_subj_p is not NULL, then upon successful execution the
1939 aud_get_subj() function shall return a descriptor via aud_subj_p for the set of
1940 subject attributes identified by index. The descriptor returned by this call can
1941 then be used in subsequent calls to aud_get_subj_info() to extract the attributes
1942 for that process. If aud_subj_p is NULL, then the function just returns a value as
1943 described below.

1944 Calls to aud_get_subj() shall not affect the status of any other existing descrip-
1945 tors. Calls on the various aud_get_∗() functions can be interleaved without affect-
1946 ing each other.

1947 This function may cause memory to be allocated. The caller should free any
1948 releasable memory, when the record is no longer required, by calling aud_free()
1949 with the (void∗)aud_rec_t as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 137

1950 A descriptor for the first set of subject attributes in the record is obtained by sup-
1951 plying an index of 1. While the standard does not require more than one set of
1952 subject attributes to be present in a record, an implementation or application may
1953 add additional sets that can be read by supplying values of index that are greater
1954 than 1.

1955 24.4.23.3 Returns

1956 Upon successful completion, the aud_get_subj() function returns a non-negative
1957 value. This value indicates the number of sets of subject attributes in the record.

1958 In the event of failure the aud_get_subj() function returns a value of −1, the caller
1959 shall not have to free any releasable memory, and errno is set to indicate the
1960 error. The aud_subj_t referenced by aud_subj_p shall not be affected if the return
1961 value is -1.

1962 24.4.23.4 Errors

1963 If any of the following conditions occur, the aud_get_subj() function shall return
1964 -1 and set errno to the corresponding value:

1965 [EINVAL] Argument ar does not point to a valid audit record.

1966 Argument index does not identify a valid set of subject attributes
1967 in the record.

1968 [ENOMEM] The function requires more memory than is allowed by the
1969 hardware or system-imposed memory management constraints. −

1970 24.4.23.5 Cross-References

1971 aud_free(), 24.4.14; aud_get_subj_info(), 24.4.24; aud_put_subj () 24.4.34;
1972 aud_read(), 24.4.36; aud_valid(), 24.4.40.

1973 24.4.24 Examine Audit Record Subject Data

1974 Function: aud_get_subj_info()

1975 24.4.24.1 Synopsis

1976 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

1977 iinntt aauudd__ggeett__ssuubbjj__iinnffoo ((aauudd__ssuubbjj__tt aud_subj_d,,
1978 iinntt item_id,,
1979 aauudd__iinnffoo__tt ∗∗aud_subj_info_p));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

138 24 Audit

1980 24.4.24.2 Description

1981 The aud_get_subj_info() function returns a data item from within a set of subject
1982 attributes in an audit record. For system-generated events recording use of an
1983 interface that changes subject attributes, the attributes reported are those at the
1984 start of the event. The set of attributes to be examined is identified by
1985 aud_subj_d which was obtained from a previous successful call to aud_get_subj()
1986 or aud_put_subj (). If aud_subj_info_p is not NULL, then upon successful execu-
1987 tion the aud_get_subj_info() function shall return via aud_subj_info_p an
1988 aud_info_t for the attribute identified by item_id. If aud_subj_info_p is NULL,
1989 then the value of the item_id argument is ignored, and the function just returns a
1990 value as described in the Returns section below.

1991 The value of item_id may specify a named item within the set of subject attri-
1992 butes, or may specify the ‘first’ item or the ‘next’ item. The minimum set of
1993 named items that shall be available from system-generated records is specified in
1994 the table below, together with values of item_id to access them:

1995 Table 24-12 − aud_subj_info_p Values

1996 Type Description item_id Notes1997 iii
1998 AUD_TYPE_PID The process ID AUD_PID
1999 AUD_TYPE_UID The effective user ID AUD_EUID
2000 AUD_TYPE_GID The effective group ID AUD_EGID
2001 AUD_TYPE_GID The supplementary group IDs AUD_SGIDS (1)
2002 AUD_TYPE_UID The real user ID AUD_RUID
2003 AUD_TYPE_GID The real group ID AUD_RGID
2004 AUD_TYPE_MAC The process MAC label AUD_MAC_LBL (2)
2005 AUD_TYPE_INF The process information label AUD_INF_LBL (3)
2006 AUD_TYPE_CAP The process capability state AUD_CAP (4)

2007 Notes on the table:

2008 (1) The number of supplementary groups can be calculated from the
2009 aud_info_length member of the aud_info_t.

2010 (2) If {_POSIX_MAC} was not defined at that time, the aud_get_subj_info() c
2011 function shall return an aud_info_t with a zero aud_info_length member.

2012 (3) If {_POSIX_INF} was not defined at that time, the aud_get_subj_info() c
2013 function shall return an aud_info_t with a zero aud_info_length member.

2014 (4) If {_POSIX_CAP} was not defined at that time, the aud_get_subj_info() c
2015 function shall return an aud_info_t with a zero aud_info_length member.

2016 If item_id is AUD_FIRST_ITEM, then this specifies the first of the items from the
2017 set of subject attributes. A call of aud_get_subj_info() with item_id set to
2018 AUD_NEXT_ITEM shall return the item that follows the previous one read; for
2019 system-generated records, the required items are returned in the order they are
2020 defined in the table above; implementations may report additional items after the
2021 required items. If AUD_NEXT_ITEM is used when there has not been a previous
2022 successful call of this function for this set of subject attributes, the effect is
2023 unspecified.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 139

2024 For system-generated records, the first three items are required; the MAC label,
2025 information label and capability state are required if the relevant POSIX options
2026 are in effect; the other specified items are optional. If an item is not available, the
2027 function aud_get_subj_info() shall return an aud_info_t with a zero
2028 aud_info_length member.

2029 Any existing descriptors shall not be affected by use of this function. Calls on the
2030 various aud_get_∗() functions can be interleaved without affecting each other.

2031 This function may cause memory to be allocated. The caller should free any
2032 releasable memory, when the record containing aud_subj_d is no longer required,
2033 by calling aud_free() with the aud_rec_t for the record (cast to a (char∗)) as an
2034 argument.

2035 24.4.24.3 Returns

2036 Upon successful completion, the aud_get_subj_info() function returns a non-
2037 negative value. This value indicates the number of items of subject attributes in
2038 the set.

2039 In the event of failure the aud_get_subj_info() function returns a value of −1, the
2040 caller shall not have to free any releasable memory, and errno is set to indicate
2041 the error. The aud_info_t referenced by aud_subj_info_p shall not be affected if
2042 the return value is -1.

2043 24.4.24.4 Errors

2044 If any of the following conditions occur, the aud_get_subj_info() function shall
2045 return −1 and set errno to the corresponding value:

2046 [EINVAL] Argument aud_subj_d is not a valid descriptor for a set of sub-
2047 ject attributes within an audit record.

2048 Argument item_id does not identify a valid item from the set of
2049 subject attributes.

2050 [ENOMEM] The function requires more memory than is allowed by the
2051 hardware or system-imposed memory management constraints. −

2052 24.4.24.5 Cross-References

2053 aud_free(), 24.4.14; aud_get_subj(), 24.4.23; aud_put_subj_info (), 24.4.35;
2054 aud_read(), 24.4.36; aud_valid(), 24.4.40.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

140 24 Audit

2055 24.4.25 Map Text to Audit ID

2056 Function: aud_id_from_text()

2057 24.4.25.1 Synopsis

2058 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2059 aauudd__iidd__tt aauudd__iidd__ffrroomm__tteexxtt ((ccoonnsstt cchhaarr ∗∗text_p));;

2060 24.4.25.2 Description

2061 The aud_id_from_text() function returns the audit ID identified by the string
2062 pointed to by text_p . The means by which this information is obtained is
2063 unspecified.

2064 24.4.25.3 Returns

2065 Upon successful completion, the aud_id_from_text() function returns the audit ID
2066 associated with text_p . On error, or if the requested entry is not found, a value of
2067 ((aud_id_t)−1) is returned and errno is set to indicate the error.

2068 24.4.25.4 Errors

2069 If any of the following conditions occur, the aud_id_from_text() function shall
2070 return a value of ((aud_id_t)−1) and set errno to the corresponding value:

2071 [EINVAL] The text_p argument does not identify a valid user. −

2072 24.4.25.5 Cross-References

2073 aud_get_hdr_info(), 24.4.19; aud_id_to_text(), 24.4.26; aud_put_hdr_info(),
2074 24.4.31.

2075 24.4.26 Map Audit ID to Text

2076 Function: aud_id_to_text()

2077 24.4.26.1 Synopsis

2078 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2079 cchhaarr ∗∗aauudd__iidd__ttoo__tteexxtt ((aauudd__iidd__tt audit_ID,, ssssiizzee__tt ∗∗len_p));;

2080 24.4.26.2 Description

2081 The aud_id_to_text() function transforms the audit_ID into a human-readable,
2082 null terminated character string. The means by which this information is
2083 obtained is unspecified. Upon successful completion, the function shall return the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 141

2084 address of the string, and set the location pointed to by len_p to the length of the
2085 string (not including the null terminator).

2086 This function may cause memory to be allocated. The caller should free any
2087 releasable memory when the text form of audit_ID is no longer required, by cal-
2088 ling aud_free() with the string address (cast to a (void∗)) as an argument.

2089 24.4.26.3 Returns

2090 Upon successful completion, the aud_id_to_text() function returns a pointer to a
2091 string identifying the user associated with audit_ID . On error, or if the requested
2092 entry is not found, the caller shall not have to free any releasable memory,
2093 (char∗)NULL is returned, the location pointed to by len_p is not changed, and
2094 errno is set to indicate the error.

2095 24.4.26.4 Errors

2096 If any of the following conditions occur, the aud_id_to_text() function shall return
2097 (char ∗)NULL and set errno to the corresponding value:

2098 [EINVAL] The audit_ID argument does not contain a valid audit identifier.

2099 [ENOMEM] The function requires more memory than is allowed by the
2100 hardware or system-imposed memory management constraints. −

2101 24.4.26.5 Cross-References

2102 aud_free(), 24.4.14; aud_get_hdr_info(), 24.4.19; aud_id_from_text(), 24.4.25;
2103 aud_put_hdr_info(), 24.4.31.

2104 24.4.27 Create a New Audit Record

2105 Function: aud_init_record()

2106 24.4.27.1 Synopsis

2107 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2108 aauudd__rreecc__tt aauudd__iinniitt__rreeccoorrdd ((vvooiidd));;

2109 24.4.27.2 Description

2110 The aud_init_record() function returns a pointer to an audit record that is other-
2111 wise not in use. The record shall contain no headers or sets of subject, event-
2112 specific, or object information.

2113 Upon successful execution of the aud_init_record() function, the pointer returned
2114 can be used in subsequent calls to the aud_put_∗() functions to add information to
2115 the record, and in other functions that manipulate audit records, and the record
2116 can be written to an audit log by a call of aud_write().

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

142 24 Audit

2117 Calls to aud_init_record() shall not affect the status of any existing records.

2118 This function may cause memory to be allocated. The caller should free any
2119 releasable memory, when the record is no longer required, by calling aud_free()
2120 with the (void∗)aud_rec_t as an argument.

2121 24.4.27.3 Returns

2122 Upon successful completion, the aud_init_record() function returns an aud_rec_t
2123 pointing to the new record. Otherwise, a value of (aud_rec_t)NULL shall be
2124 returned, the caller shall not have to free any releasable memory, and errno is set
2125 to indicate the error.

2126 24.4.27.4 Errors

2127 If any of the following conditions occur, the aud_init_record() function shall
2128 return (aud_rec_t)NULL and set errno to the corresponding value:

2129 [ENOMEM] The function requires more memory than is allowed by the
2130 hardware or system-imposed memory management constraints. −

2131 24.4.27.5 Cross-References

2132 aud_dup_record (), 24.4.11; aud_free(), 24.4.14; aud_put_event (), 24.4.28;
2133 aud_put_hdr (), 24.4.30; aud_put_obj (), 24.4.32; aud_put_subj (), 24.4.34;
2134 aud_write(), 24.4.41.

2135 24.4.28 Add Set of Event-specific Data to Audit Record

2136 Function: aud_put_event ()

2137 24.4.28.1 Synopsis

2138 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2139 iinntt aauudd__ppuutt__eevveenntt ((aauudd__rreecc__tt ar,,
2140 ccoonnsstt aauudd__eevviinnffoo__tt ∗∗next_p,,
2141 aauudd__eevviinnffoo__tt ∗∗new_p));;

2142 24.4.28.2 Description

2143 The aud_put_event () function creates a new set of event-specific data, containing
2144 no data items, in an audit record, and returns a descriptor to the set. The func-
2145 tion accepts an audit record pointer ar , and puts the new set of event-specific data
2146 logically before the existing set next_p in the record. If next_p is NULL, then the
2147 new set shall be logically the last in the record.

2148 Upon successful execution the aud_put_event () function shall return via new_p a
2149 descriptor for the new set of event-specific data. The descriptor returned by this
2150 call can then be used in subsequent calls to aud_put_event_info () to add data to

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 143

2151 this set of event-specific data in the audit record.

2152 Calls to aud_put_event () shall not affect the status of any existing descriptors for
2153 this or any other audit record. Calls on the various aud_put_∗() functions can be
2154 interleaved without affecting each other.

2155 This function may cause memory to be allocated. The caller should free any
2156 releasable memory, when the record is no longer required, by calling aud_free()
2157 with the (void∗)aud_rec_t as an argument.

2158 24.4.28.3 Returns

2159 Upon successful completion, the aud_put_event () function returns 0. Otherwise, a
2160 value of −1 shall be returned, the caller shall not have to free any releasable
2161 memory, and errno is set to indicate the error. The audit record referenced by ar
2162 shall not be affected if the return value is -1.

2163 24.4.28.4 Errors

2164 If any of the following conditions occur, the aud_put_event () function shall return
2165 -1 and set errno to the corresponding value:

2166 [EINVAL] Argument ar does not point to a valid audit record.

2167 Argument next_p is neither NULL nor does it indicate an exist-
2168 ing set of event-specific data in record ar.

2169 [ENOMEM] The function requires more memory than is allowed by the
2170 hardware or system-imposed memory management constraints. −

2171 24.4.28.5 Cross-References

2172 aud_free(), 24.4.14; aud_delete_event(), 24.4.3; aud_get_event(), 24.4.16;
2173 aud_init_record(), 24.4.27; aud_put_event_info (), 24.4.29; aud_valid(), 24.4.40;
2174 aud_write(), 24.4.41.

2175 24.4.29 Add Item to Set of Event-specific Data

2176 Function: aud_put_event_info ()

2177 24.4.29.1 Synopsis

2178 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2179 iinntt aauudd__ppuutt__eevveenntt__iinnffoo ((aauudd__eevviinnffoo__tt aud_event_d,,
2180 iinntt position,,
2181 iinntt item_id,,
2182 ccoonnsstt aauudd__iinnffoo__tt ∗∗aud_event_info_p));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

144 24 Audit

2183 24.4.29.2 Description

2184 The aud_put_event_info () function adds a data item to a set of event-specific data
2185 within an audit record. The function accepts a descriptor for a set of event-
2186 specific data aud_event_d in an audit record, and puts into the set of event-
2187 specific data the item with type, size and address defined in the structure refer-
2188 enced by aud_event_info_p . The item shall subsequently be identifiable by
2189 item_id in calls to functions as the record is manipulated, including after being
2190 written to and read back from an audit log; no item identifiable by item_id shall
2191 already exist in the set of event-specific information.

2192 The position argument shall specify either

2193 — the item_id of an item that already exists in the set of event-specific data;
2194 in this case the new data item shall be placed logically before the existing
2195 item

2196 — AUD_LAST_ITEM; in this case the new item shall be logically the last in
2197 the set.

2198 After the call of aud_put_event_info (), the caller can continue to manipulate the
2199 data item indicated by the aud_info_t, and the aud_info_t itself, and changes to
2200 them shall not affect the record unless they are used in a further call to
2201 aud_put_∗_info().

2202 Calls to aud_put_event_info () shall not affect the status of any other existing
2203 descriptors for this or any other audit record. Calls on the various
2204 aud_put_∗_info() functions can be interleaved without affecting each other.

2205 This function may cause memory to be allocated. The caller should free any
2206 releasable memory, when the record is no longer required, by calling aud_free()
2207 with the (void∗)aud_rec_t as an argument.

2208 24.4.29.3 Returns

2209 Upon successful completion, the aud_put_event_info () function returns 0. Other-
2210 wise, it returns a value of −1, the caller shall not have to free any releasable
2211 memory, and errno is set to indicate the error. The set of event-specific data refer-
2212 enced by aud_event_d shall not be affected if the return value is -1.

2213 24.4.29.4 Errors

2214 If any of the following conditions occur, the aud_put_event_info () function shall
2215 return -1 and set errno to the corresponding value:

2216 [EINVAL] Argument aud_event_d is not a valid descriptor for a set of
2217 event-specific data within an audit record.

2218 Argument position is not AUD_LAST_ITEM and does not iden-
2219 tify a valid item from the set of event-specific data.

2220 The value of the aud_info_type field of the structure referenced
2221 by aud_event_info_p is invalid.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 145

2222 An item with identifier item_id already exists in the set of
2223 event-specific data.

2224 The argument item_id is equal to AUD_FIRST_ITEM,
2225 AUD_NEXT_ITEM, or AUD_LAST_ITEM.

2226 [ENOMEM] The function requires more memory than is allowed by the
2227 hardware or system-imposed memory management constraints. −

2228 24.4.29.5 Cross-References

2229 aud_delete_event_info(), 24.4.4; aud_free(), 24.4.14; aud_get_event_info(), 24.4.17;
2230 aud_put_event (), 24.4.28; aud_valid(), 24.4.40; aud_write(), 24.4.41.

2231 24.4.30 Add Header to Audit Record

2232 Function: aud_put_hdr ()

2233 24.4.30.1 Synopsis

2234 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2235 iinntt aauudd__ppuutt__hhddrr ((aauudd__rreecc__tt ar,,
2236 ccoonnsstt aauudd__hhddrr__tt ∗∗next_p,,
2237 aauudd__hhddrr__tt ∗∗new_p));;

2238 24.4.30.2 Description

2239 The aud_put_hdr () function creates a new header, containing no data items, in an
2240 audit record, and returns a descriptor to the header. The function accepts an
2241 audit record pointer ar , and puts the new header logically before the existing
2242 header next_p in the record. If next_p is NULL, then the new header shall be logi-
2243 cally the last in the record.

2244 Upon successful execution the aud_put_hdr () function shall return via new_p a
2245 descriptor for the new header. The descriptor returned by this call can then be
2246 used in subsequent calls to aud_put_hdr_info() to add data to this header in the
2247 audit record.

2248 Calls to aud_put_hdr () shall not affect the status of any existing descriptors for
2249 this or any other audit record. Calls on the various aud_put_∗() functions can be
2250 interleaved without affecting each other.

2251 This function may cause memory to be allocated. The caller should free any
2252 releasable memory, when the record is no longer required, by calling aud_free()
2253 with the (void∗)aud_rec_t as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

146 24 Audit

2254 24.4.30.3 Returns

2255 Upon successful completion, the aud_put_hdr () function returns 0. Otherwise, a
2256 value of −1 shall be returned, the caller shall not have to free any releasable
2257 memory, and errno is set to indicate the error. The audit record referenced by ar
2258 shall not be affected if the return value is -1.

2259 24.4.30.4 Errors

2260 If any of the following conditions occur, the aud_put_hdr () function shall return -1
2261 and set errno to the corresponding value:

2262 [EINVAL] Argument ar does not point to a valid audit record.

2263 Argument next_p is neither NULL nor does it indicate an exist-
2264 ing header in record ar.

2265 [ENOMEM] The function requires more memory than is allowed by the
2266 hardware or system-imposed memory management constraints. −

2267 24.4.30.5 Cross-References

2268 aud_delete_hdr(), 24.4.5; aud_free(), 24.4.14; aud_get_hdr(), 24.4.18;
2269 aud_init_record(), 24.4.27; aud_put_hdr_info(), 24.4.31; aud_valid(), 24.4.40;
2270 aud_write(), 24.4.41.

2271 24.4.31 Add Item to Audit Record Header

2272 Function: aud_put_hdr_info()

2273 24.4.31.1 Synopsis

2274 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2275 iinntt aauudd__ppuutt__hhddrr__iinnffoo ((aauudd__hhddrr__tt aud_hdr_d,,
2276 iinntt position,,
2277 iinntt item_id,,
2278 ccoonnsstt aauudd__iinnffoo__tt ∗∗aud_hdr_info_p));;

2279 24.4.31.2 Description

2280 The aud_put_hdr_info() function adds a data item to a header within an audit
2281 record. The function accepts a descriptor for a header aud_hdr_d in an audit
2282 record, and puts into the header the item with type, size and address defined in
2283 the structure referenced by aud_hdr_info_p . The item shall subsequently be
2284 identifiable by item_id in calls to functions as the record is manipulated, including
2285 after being written to and read back from an audit log; no item identifiable by
2286 item_id shall already exist in the header.

2287 The position argument shall specify either

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 147

2288 — the item_id of an item that already exists in the header; in this case the
2289 new data item shall be placed logically before the existing item

2290 — AUD_LAST_ITEM; in this case the new item shall be logically the last in
2291 the header.

2292 After the call of aud_put_hdr_info(), the caller can continue to manipulate the
2293 data item indicated by the aud_info_t, and the aud_info_t, and changes to them
2294 shall not affect the record unless they are used in a further call to
2295 aud_put_∗_info().

2296 Calls to aud_put_hdr_info() shall not affect the status of any other existing
2297 descriptors for this or any other audit record. Calls on the various
2298 aud_put_∗_info() functions can be interleaved without affecting each other.

2299 This function may cause memory to be allocated. The caller should free any
2300 releasable memory, when the record is no longer required, by calling aud_free()
2301 with the (void∗)aud_rec_t as an argument.

2302 24.4.31.3 Returns

2303 Upon successful completion, the aud_put_hdr_info() function returns 0. Other-
2304 wise, it returns a value of −1, the caller shall not have to free any releasable
2305 memory, and errno is set to indicate the error. The header referenced by
2306 aud_hdr_d shall not be affected if the return value is -1.

2307 24.4.31.4 Errors

2308 If any of the following conditions occur, the aud_put_hdr_info() function shall
2309 return -1 and set errno to the corresponding value:

2310 [EINVAL] Argument aud_hdr_d is not a valid descriptor for a header
2311 within an audit record.

2312 Argument position is not AUD_LAST_ITEM and does not iden-
2313 tify a valid item from the header.

2314 The value of the aud_info_type field of the structure referenced
2315 by aud_hdr_info_p is invalid.

2316 An item with identifier item_id already exists in the header.

2317 The argument item_id is equal to AUD_FIRST_ITEM,
2318 AUD_NEXT_ITEM, or AUD_LAST_ITEM.

2319 [ENOMEM] The function requires more memory than is allowed by the
2320 hardware or system-imposed memory management constraints. −

2321 24.4.31.5 Cross-References

2322 aud_delete_hdr_info(), 24.4.6; aud_free(), 24.4.14; aud_get_hdr_info(), 24.4.20;
2323 aud_put_hdr (), 24.4.30; aud_valid(), 24.4.40; aud_write(), 24.4.41.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

148 24 Audit

2324 24.4.32 Add Set of Object Attributes to Audit Record

2325 Function: aud_put_obj ()

2326 24.4.32.1 Synopsis

2327 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2328 iinntt aauudd__ppuutt__oobbjj ((aauudd__rreecc__tt ar,,
2329 ccoonnsstt aauudd__oobbjj__tt ∗∗next_p,,
2330 aauudd__oobbjj__tt ∗∗new_p));;

2331 24.4.32.2 Description

2332 The aud_put_obj () function creates a new set of object attributes, containing no
2333 data items, in an audit record, and returns a descriptor to the set. The function
2334 accepts an audit record pointer ar , and puts the new set of object attributes logi-
2335 cally before the existing set next_p in the record. If next_p is NULL, then the new
2336 set shall be logically the last in the record.

2337 Upon successful execution the aud_put_obj () function shall return via new_p a
2338 descriptor for the new set of object attributes. The descriptor returned by this call
2339 can then be used in subsequent calls to aud_put_obj_info() to add data to this set
2340 of object attributes in the audit record.

2341 Calls to aud_put_obj () shall not affect the status of any existing descriptors for
2342 this or any other audit record. Calls on the various aud_put_∗() functions can be
2343 interleaved without affecting each other.

2344 This function may cause memory to be allocated. The caller should free any
2345 releasable memory, when the record is no longer required, by calling aud_free()
2346 with the (void∗)aud_rec_t as an argument.

2347 24.4.32.3 Returns

2348 Upon successful completion, the aud_put_obj () function returns 0. Otherwise, a
2349 value of −1 shall be returned, the caller shall not have to free any releasable
2350 memory, and errno is set to indicate the error. The audit record referenced by ar
2351 shall not be affected if the return value is -1.

2352 24.4.32.4 Errors

2353 If any of the following conditions occur, the aud_put_obj () function shall return -1
2354 and set errno to the corresponding value:

2355 [EINVAL] Argument ar does not point to a valid audit record.

2356 Argument next_p is neither NULL nor does it indicate an exist-
2357 ing set of object attributes in record ar.

2358 [ENOMEM] The function requires more memory than is allowed by the
2359 hardware or system-imposed memory management constraints. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 149

2360 24.4.32.5 Cross-References

2361 aud_delete_obj(), 24.4.8; aud_free(), 24.4.14; aud_get_obj(), 24.4.21;
2362 aud_init_record(), 24.4.27; aud_put_obj_info(), 24.4.33; aud_valid(), 24.4.40;
2363 aud_write(), 24.4.41.

2364 24.4.33 Add Item to Set of Object Attributes

2365 Function: aud_put_obj_info()

2366 24.4.33.1 Synopsis

2367 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2368 iinntt aauudd__ppuutt__oobbjj__iinnffoo ((aauudd__oobbjj__tt aud_obj_d,,
2369 iinntt position,,
2370 iinntt item_id,,
2371 ccoonnsstt aauudd__iinnffoo__tt ∗∗aud_obj_info_p));;

2372 24.4.33.2 Description

2373 The aud_put_obj_info() function adds a data item to a set of object attributes
2374 within an audit record. The function accepts a descriptor for a set of object attri-
2375 butes aud_obj_d in an audit record, and puts into the set of object attributes the
2376 item with type, size and address defined in the structure referenced by
2377 aud_obj_info_p . The item shall subsequently be identifiable by item_id in calls to
2378 functions as the record is manipulated, including after being written to and read
2379 back from an audit log; no item identifiable by item_id shall already exist in the
2380 set of object attributes.

2381 The position argument shall specify either

2382 — the item_id of an item that already exists in the set of object attributes; in
2383 this case the new data item shall be placed logically before the existing
2384 item

2385 — AUD_LAST_ITEM; in this case the new item shall be logically the last in
2386 the set.

2387 After the call of aud_put_obj_info(), the caller can continue to manipulate the
2388 data item indicated by the aud_info_t, and the aud_info_t, and changes to them
2389 shall not affect the record unless they are used in a further call to
2390 aud_put_∗_info().

2391 Calls to aud_put_obj_info() shall not affect the status of any other existing
2392 descriptors for this or any other audit record. Calls on the various
2393 aud_put_∗_info() functions can be interleaved without affecting each other.

2394 This function may cause memory to be allocated. The caller should free any
2395 releasable memory, when the record is no longer required, by calling aud_free()
2396 with the (void∗)aud_rec_t as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

150 24 Audit

2397 24.4.33.3 Returns

2398 Upon successful completion, the aud_put_obj_info() function returns 0. Other-
2399 wise, it returns a value of −1, the caller shall not have to free any releasable
2400 memory, and errno is set to indicate the error. The set of object attributes refer-
2401 enced by aud_obj_d shall not be affected if the return value is -1.

2402 24.4.33.4 Errors

2403 If any of the following conditions occur, the aud_put_obj_info() function shall
2404 return -1 and set errno to the corresponding value:

2405 [EINVAL] Argument aud_obj_d is not a valid descriptor for a set of object
2406 attributes within an audit record.

2407 Argument position is not AUD_LAST_ITEM and does not iden-
2408 tify a valid item from the set of object attributes.

2409 The value of the aud_info_type field of the structure referenced
2410 by aud_obj_info_p is invalid.

2411 An item with identifier item_id already exists in the set of object
2412 attributes.

2413 The argument item_id is equal to AUD_FIRST_ITEM,
2414 AUD_NEXT_ITEM, or AUD_LAST_ITEM.

2415 [ENOMEM] The function requires more memory than is allowed by the
2416 hardware or system-imposed memory management constraints. −

2417 24.4.33.5 Cross-References

2418 aud_delete_obj_info(), 24.4.8; aud_free(), 24.4.14; aud_get_obj_info(), 24.4.22;
2419 aud_put_obj (), 24.4.32; aud_valid(), 24.4.40; aud_write(), 24.4.41.

2420 24.4.34 Add Set of Subject Attributes to Audit Record

2421 Function: aud_put_subj ()

2422 24.4.34.1 Synopsis

2423 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2424 iinntt aauudd__ppuutt__ssuubbjj ((aauudd__rreecc__tt ar,,
2425 ccoonnsstt aauudd__ssuubbjj__tt ∗∗next_p,,
2426 aauudd__ssuubbjj__tt ∗∗new_p));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 151

2427 24.4.34.2 Description

2428 The aud_put_subj () function creates a new set of subject attributes, containing no
2429 data items, in an audit record, and returns a descriptor to the set. The function
2430 accepts an audit record pointer ar , and puts the new set of subject attributes logi-
2431 cally before the existing set next_p in the record. If next_p is NULL, then the new
2432 set shall be logically the last in the record.

2433 Upon successful execution the aud_put_subj () function shall return via new_p a
2434 descriptor for the new set of subject attributes. The descriptor returned by this
2435 call can then be used in subsequent calls to aud_put_subj_info () to add data to
2436 this set of subject attributes in the audit record.

2437 Calls to aud_put_subj () shall not affect the status of any existing descriptors for
2438 this or any other audit record. Calls on the various aud_put_∗() functions can be
2439 interleaved without affecting each other.

2440 This function may cause memory to be allocated. The caller should free any
2441 releasable memory, when the record is no longer required, by calling aud_free()
2442 with the (void∗)aud_rec_t as an argument.

2443 24.4.34.3 Returns

2444 Upon successful completion, the aud_put_subj () function returns 0. Otherwise, a
2445 value of −1 shall be returned, the caller shall not have to free any releasable
2446 memory, and errno is set to indicate the error. The audit record referenced by ar
2447 shall not be affected if the return value is -1.

2448 24.4.34.4 Errors

2449 If any of the following conditions occur, the aud_put_subj () function shall return
2450 -1 and set errno to the corresponding value:

2451 [EINVAL] Argument ar does not point to a valid audit record.

2452 Argument next_p is neither NULL nor does it indicate an exist-
2453 ing set of subject attributes in record ar.

2454 [ENOMEM] The function requires more memory than is allowed by the
2455 hardware or system-imposed memory management constraints. −

2456 24.4.34.5 Cross-References

2457 aud_delete_subj(), 24.4.9; aud_free(), 24.4.14; aud_get_subj(), 24.4.23;
2458 aud_init_record(), 24.4.27; aud_put_subj_info (), 24.4.35; aud_valid(), 24.4.40;
2459 aud_write(), 24.4.41.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

152 24 Audit

2460 24.4.35 Add Item to Set of Subject Attributes

2461 Function: aud_put_subj_info ()

2462 24.4.35.1 Synopsis

2463 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2464 iinntt aauudd__ppuutt__ssuubbjj__iinnffoo ((aauudd__ssuubbjj__tt aud_subj_d,,
2465 iinntt position,,
2466 iinntt item_id,,
2467 ccoonnsstt aauudd__iinnffoo__tt ∗∗aud_subj_info_p));;

2468 24.4.35.2 Description

2469 The aud_put_subj_info () function adds a data item to a set of subject attributes
2470 within an audit record. The function accepts a descriptor for a set of subject attri-
2471 butes aud_subj_d in an audit record, and puts into the set of subject attributes
2472 the item with type, size and address defined in the structure referenced by
2473 aud_subj_info_p . The item shall subsequently be identifiable by item_id in calls
2474 to functions as the record is manipulated, including after being written to and
2475 read back from an audit log; no item identifiable by item_id shall already exist in
2476 the set of subject attributes.

2477 The position argument shall specify either

2478 — the item_id of an item that already exists in the set of subject attributes; in
2479 this case the new data item shall be placed logically before the existing
2480 item

2481 — AUD_LAST_ITEM; in this case the new item shall be logically the last in
2482 the set.

2483 After the call of aud_put_subj_info (), the caller can continue to manipulate the
2484 data item indicated by the aud_info_t, and the aud_info_t, and changes to them
2485 shall not affect the record unless they are used in a further call to
2486 aud_put_∗_info().

2487 Calls to aud_put_subj_info () shall not affect the status of any other existing
2488 descriptors for this or any other audit record. Calls on the various
2489 aud_put_∗_info() functions can be interleaved without affecting each other.

2490 This function may cause memory to be allocated. The caller should free any
2491 releasable memory, when the record is no longer required, by calling aud_free()
2492 with the (void∗)aud_rec_t as an argument.

2493 24.4.35.3 Returns

2494 Upon successful completion, the aud_put_subj_info () function returns 0. Other-
2495 wise, it returns a value of −1, the caller shall not have to free any releasable
2496 memory, and errno is set to indicate the error. The set of subject attributes refer-
2497 enced by aud_subj_d shall not be affected if the return value is -1.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 153

2498 24.4.35.4 Errors

2499 If any of the following conditions occur, the aud_put_subj_info () function shall
2500 return -1 and set errno to the corresponding value:

2501 [EINVAL] Argument aud_subj_d is not a valid descriptor for a set of sub-
2502 ject attributes within an audit record.

2503 Argument position is not AUD_LAST_ITEM and does not iden-
2504 tify a valid item from the set of subject attributes.

2505 The value of the aud_info_type field of the structure referenced
2506 by aud_subj_info_p is invalid.

2507 An item with identifier item_id already exists in the set of sub-
2508 ject attributes.

2509 The argument item_id is equal to AUD_FIRST_ITEM,
2510 AUD_NEXT_ITEM, or AUD_LAST_ITEM.

2511 [ENOMEM] The function requires more memory than is allowed by the
2512 hardware or system-imposed memory management constraints. −

2513 24.4.35.5 Cross-References

2514 aud_delete_subj_info(), 24.4.10; aud_free(), 24.4.14; aud_get_subj_info(), 24.4.24;
2515 aud_put_subj (), 24.4.34; aud_valid(), 24.4.40; aud_write(), 24.4.41.

2516 24.4.36 Read an Audit Record

2517 Function: aud_read()

2518 24.4.36.1 Synopsis

2519 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2520 aauudd__rreecc__tt aauudd__rreeaadd ((iinntt filedes));;

2521 24.4.36.2 Description

2522 This function attempts to read an audit record from the current file offset of the
2523 file identified by filedes. If the function successfully reads an audit record, the file
2524 offset shall be incremented such that a further call of the function will operate on
2525 the next audit record in the log. If the file contains records that were written to
2526 the system audit log, it is left to the implementation to provide any sequencing
2527 information required to ensure that successive calls of aud_read() each obtain the
2528 ‘‘next’’ available record that was written to the log. If the file contains records
2529 that were written to a file, the ordering of the records depends on the position of
2530 the file offset at the time aud_write() was called. If no more records are in the
2531 file, a value of zero is returned. In other cases, if a call is unsuccessful, the effect
2532 of further calls is unspecified.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

154 24 Audit

2533 Upon successful completion, the function returns an audit record pointer,
2534 aud_rec_t , identifying the audit record. The format of the audit record is
2535 unspecified, but the aud_rec_t can be supplied as an input argument to functions
2536 such as the aud_get_∗() functions .

2537 Any existing audit record pointers that refer to records from the audit log shall
2538 continue to refer to those records.

2539 This function may cause memory to be allocated. The caller should free any
2540 releasable memory allocated by this function (and by other functions that are
2541 used to process the record), when the caller is finished with the record, by a call to
2542 aud_free() with the (void∗)aud_rec_t as an argument.

2543 If {_POSIX_INF} is defined, and {_POSIX_INF_PRESENT} is in effect for the file c
2544 designated by filedes, then the information label of the process shall automati-
2545 cally be set to an implementation-defined value which shall be the same as the
2546 value returned by inf_float(file information label, process information label).

2547 24.4.36.3 Returns

2548 Upon successful completion, the aud_read() function returns an aud_rec_t point-
2549 ing to the record. If there are no more records in the audit log, the caller shall not
2550 have to free any releasable memory, and the function returns a value of
2551 (aud_rec_t) 0. Otherwise, a value of (aud_rec_t) −1 is returned, the caller shall not
2552 have to free any releasable memory, and errno is set to indicate the error.

2553 24.4.36.4 Errors

2554 If any of the following conditions occur, the aud_read() function shall return a
2555 value of −1 and set errno to the corresponding value:

2556 [EAGAIN] The O_NONBLOCK flag is set for the file descriptor filedes and
2557 the process would be delayed in the read operation.

2558 [EBADF] The filedes argument is not a valid file descriptor open for read-
2559 ing.

2560 [EINTR] The operation was interrupted by a signal, and no data was
2561 transferred.

2562 [EINVAL] The value of the filedes argument does not identify an audit log
2563 positioned at a valid audit record.

2564 The header of the next record in the audit log identified by
2565 filedes indicates the record has an AUD_FORMAT or
2566 AUD_VERSION that is not supported by the implementation.

2567 [ENOMEM] The function requires more memory than is allowed by the
2568 hardware or system-imposed memory management constraints. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 155

2569 24.4.36.5 Cross-References

2570 aud_free(), 24.4.14; aud_get_event(), 24.4.16; aud_get_hdr(), 24.4.18;
2571 aud_get_obj(), 24.4.21; aud_get_subj(), 24.4.23; aud_rec_to_text(), 24.4.37.

2572 24.4.37 Convert an Audit Record to Text

2573 Function: aud_rec_to_text()

2574 24.4.37.1 Synopsis

2575 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2576 cchhaarr ∗∗aauudd__rreecc__ttoo__tteexxtt ((aauudd__rreecc__tt ar,, ssssiizzee__tt ∗∗len_p));;

2577 24.4.37.2 Description

2578 The aud_rec_to_text() function transforms the audit record identified by ar into a
2579 human-readable, null terminated character string. The function shall return the
2580 address of the string and, if len_p is not NULL, set the location pointed to by len_p
2581 to the length of the string (not including the null terminator).

2582 The text string produced by aud_rec_to_text() shall contain a text form of the vari-
2583 ous sections of the audit record; the record header(s) shall be given first, followed
2584 by any set(s) of subject attributes, followed by any set(s) of event specific informa-
2585 tion, followed by any set(s) of object attributes. Items within each section shall be
2586 given in the order they would be returned by the aud_get_∗() functions. Other
2587 than this, the form of the text string is unspecified by this standard.

2588 This function may cause memory to be allocated. The caller should free any
2589 releasable memory when the text form of the record is no longer required, by cal-
2590 ling aud_free() with the string address (cast to a (void∗)) as an argument.

2591 24.4.37.3 Returns

2592 Upon successful completion, the aud_rec_to_text() function returns a pointer to
2593 the text record. Otherwise, a value of NULL shall be returned, the caller shall not
2594 have to free any releasable memory, and errno shall be set to indicate the error.

2595 24.4.37.4 Errors

2596 If any of the following conditions occur, the aud_rec_to_text() function shall return
2597 a value of NULL and set errno to the corresponding value:

2598 [EINVAL] The value of the ar argument does not identify a valid audit
2599 record.

2600 [ENOMEM] The text to be returned requires more memory than is allowed
2601 by the hardware or system-imposed memory management con-
2602 straints. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

156 24 Audit

2603 24.4.37.5 Cross-References

2604 aud_free(), 24.4.14; aud_read(), 24.4.36; aud_valid(), 24.4.40.

2605 24.4.38 Get the Size of an Audit Record

2606 Function: aud_size()

2607 24.4.38.1 Synopsis

2608 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2609 ssssiizzee__tt aauudd__ssiizzee ((aauudd__rreecc__tt ar));;

2610 24.4.38.2 Description

2611 The aud_size() function returns the total length (in bytes) that the audit record
2612 identified by ar would use when converted by aud_copy_ext(). The audit record ar
2613 will have been obtained by a previous, successful call to the aud_read(),
2614 aud_init_record() or aud_dup_record () function. The aud_size() function is used
2615 to ascertain the buffer size required to copy an audit record (via aud_copy_ext())
2616 into user-allocated space.

2617 24.4.38.3 Returns

2618 Upon successful completion, the aud_size() function returns the length of the
2619 audit record.

2620 In the event of failure the aud_size() function returns a value of −1 and errno is
2621 set to indicate the error.

2622 24.4.38.4 Errors

2623 If any of the following conditions occur, the aud_size() function shall return −1
2624 and set errno to the corresponding value:

2625 [EINVAL] The value of the ar argument does not identify a valid audit
2626 record. −

2627 24.4.38.5 Cross-References

2628 aud_copy_ext(), 24.4.1; aud_dup_record (), 24.4.11; aud_init_record(), 24.4.27;
2629 aud_read(), 24.4.36; aud_valid(), 24.4.40.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 157

2630 24.4.39 Control the Generation of Audit Records

2631 Function: aud_switch()

2632 24.4.39.1 Synopsis

2633 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2634 aauudd__ssttaattee__tt aauudd__sswwiittcchh ((aauudd__ssttaattee__tt aud_state));;

2635 24.4.39.2 Description

2636 The aud_switch() function requests that recording of system-generated audit
2637 records for the current process be suspended (using AUD_STATE_OFF) or
2638 resumed (using AUD_STATE_ON), or enquires about the current state (using
2639 AUD_STATE_QUERY). A request to set the state is advisory and may be ignored
2640 either wholly or partially if the auditing policy of the system prohibits the suspen-
2641 sion of process auditing. A request to suspend auditing does not affect auditing
2642 performed by the aud_write() function.

2643 The current state of this switch is inherited by a child if the process calls the
2644 fork() function.

2645 Appropriate privilege is required to use this function. If {_POSIX_CAP} is defined, c
2646 then appropriate privilege is provided by the CAP_AUDIT_CONTROL capability.

2647 24.4.39.3 Returns

2648 Upon successful completion, the aud_switch() function returns the value of the
2649 audit state for the calling process at the start of the call. Otherwise, a value of
2650 ((aud_state_t)−1) is returned and no change shall be made to the calling process’s
2651 audit state.

2652 24.4.39.4 Errors

2653 If any of the following conditions occur, the aud_switch() function shall return a
2654 value of ((aud_state_t)−1) and set errno to the corresponding value:

2655 [EINVAL] The value of the aud_state argument is invalid. −

2656 [EPERM] The process does not have appropriate privileges to call this
2657 function.

2658 24.4.39.5 Cross-References

2659 aud_write(), 24.4.41.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

158 24 Audit

2660 24.4.40 Validate an Audit Record

2661 Function: aud_valid()

2662 24.4.40.1 Synopsis

2663 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2664 iinntt aauudd__vvaalliidd ((aauudd__rreecc__tt ar));;

2665 24.4.40.2 Description

2666 The aud_valid() function checks the audit record referred to by the argument ar
2667 for validity.

2668 The audit record ar shall have been created by a previous call to
2669 aud_init_record(), aud_copy_int() or aud_dup_record (), or shall have been read
2670 from an audit log by aud_read(). The record shall contain at least one header,
2671 and the first or only header shall contain at least the following items:

2672 g The event type for the event (identified by a item_id of
2673 AUD_EVENT_TYPE_ID). The corresponding aud_info_t shall have its
2674 aud_info_type member equal to AUD_TYPE_STRING or AUD_TYPE_INT.

2675 g The audit status for the event (identified by a item_id of
2676 AUD_STATUS_ID). The corresponding aud_info_t shall have its
2677 aud_info_type member equal to AUD_TYPE_AUD_STATUS.

2678 Calls to aud_valid() shall not affect the status of any existing descriptors for this
2679 or any other audit record.

2680 24.4.40.3 Returns

2681 Upon successful completion, the function shall return a value of zero. Otherwise,
2682 a value of −1 shall be returned and errno shall be set to indicate the error.

2683 24.4.40.4 Errors

2684 If any of the following conditions occur, the aud_valid() function shall return −1
2685 and set errno to the corresponding value:

2686 [EINVAL] Argument ar does not point to an aud_rec_t structure as recog-
2687 nized by the implementation.

2688 One or more of the required entries is not present. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 159

2689 24.4.41 Write an Audit Record

2690 Function: aud_write()

2691 24.4.41.1 Synopsis

2692 ##iinncclluuddee <<ssyyss//aauuddiitt..hh>>

2693 iinntt aauudd__wwrriittee ((iinntt filedes,, aauudd__rreecc__tt ar));;

2694 24.4.41.2 Description

2695 The aud_write() function writes an application-specific audit record to an audit
2696 log. Upon successful completion the audit record identified by aud_rec_t shall be
2697 written into the audit log file identified by filedes; if filedes is equal to
2698 AUD_SYSTEM_LOG then the record shall be written to the system audit log. If
2699 filedes is not equal to AUD_SYSTEM_LOG then the record shall be written at the
2700 position in the file defined for the POSIX write() interface.

2701 The record ar shall be a valid audit record, as defined by the aud_valid() function.
2702 The aud_write() call shall not alter the record ar; after the call of aud_write(), the
2703 caller can continue to manipulate the record, and changes to it shall not affect the
2704 record reportable from this call of aud_write().

2705 If the first or only header in the record does not contain an item with item_id set
2706 to AUD_TIME_ID, then the time reported by a later call on aud_get_hdr_info()
2707 for the AUD_TIME_ID field of this header shall be the time at which the
2708 aud_write() function was executed. If the header does not contain items with
2709 item_ids set to AUD_FORMAT_ID and AUD_VERSION_ID, then the values of
2710 these fields reported for this record shall be the same as those that would be
2711 reported for records generated by the system at the time the aud_write() function
2712 was called. If the header does not contain an item with item_id set to
2713 AUD_AUD_ID, then the audit ID reported by a later call on aud_get_hdr_info()
2714 for the AUD_AUD_ID field of this header shall be the audit ID of the user
2715 accountable for the current process.

2716 The application may include in the record one or more sets of subject attributes. If
2717 the application is auditing an action performed on behalf of a client process, the
2718 first set of subject attributes should describe the client, and the header should
2719 include the client’s audit ID in an item with item_id set to AUD_AUD_ID and
2720 aud_info_type field AUD_TYPE_AUD_ID. If the application is writing a record
2721 that was read from another log, the record will already contain one or more sets of
2722 subject attributes. If the record does not contain any sets of subject attributes,
2723 then later calls to aud_get_subj() and aud_get_subj_info() for this record shall
2724 report one set of subject attributes, containing details of the process that invoked
2725 aud_write().

2726 If the record has been constructed by the application, later reading of the record
2727 using aud_read(), aud_get_∗() and the aud_get_∗_info() functions shall report the
2728 items from the record ar in the logical order specified by the aud_put_∗() and
2729 aud_put_∗_info() calls used to construct the record. The content of the record,

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

160 24 Audit

2730 reported by calls to the aud_read(), aud_get_∗() and the aud_get_∗_info() func-
2731 tions, shall be the content at the time aud_write() was invoked.

2732 If {_POSIX_INF} is defined, and {_POSIX_INF_PRESENT} is in effect for the log c
2733 designated by filedes, then the information label of the log shall automatically be
2734 set to an implementation-defined value which should be the same as the value
2735 returned by inf_float(process information label, log information label).

2736 Appropriate privilege is required to use aud_write() to write to the system audit
2737 log. If {_POSIX_CAP} is defined then appropriate privilege is provided by the c
2738 CAP_AUDIT_WRITE capability.

2739 24.4.41.3 Returns

2740 Upon successful completion, the aud_write() function returns a value of 0 and the
2741 specified record is written to the specified audit log. Otherwise, a value of −1 is
2742 returned and errno is set to indicate the error, and the specified record is not writ-
2743 ten to the specified audit log.

2744 24.4.41.4 Errors

2745 If any of the following conditions occur, the aud_write() function shall return −1
2746 and set errno to the corresponding value:

2747 [EBADF] The value of the filedes argument is not a valid file descriptor
2748 open for writing and is not AUD_SYSTEM_LOG.

2749 [EINTR] The operation was interrupted by a signal, and no data was
2750 transferred.

2751 [EINVAL] The value of the ar argument does not identify a valid audit
2752 record.

2753 The audit record identified by ar does not contain the required
2754 header data. −

2755 [EPERM] The process does not have appropriate privilege to perform the
2756 requested operation.

2757 24.4.41.5 Cross-References

2758 aud_dup_record (), 24.4.11; aud_get_id(), 24.4.20; aud_init_record(), 24.4.27;
2759 aud_read(), 24.4.36; aud_switch(), 24.4.39; aud_valid(), 24.4.40.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

24.4 Functions 161

1 Section 25: Capabilities

2 25.1 General Overview

3 This section defines a set of portable interfaces that permit one or more capabili-
4 ties to be associated with a process or file, for the capabilities associated with a
5 process to be enabled or disabled, and for a set of these capabilities to be passed
6 on to the next program associated with a process. This specification also
7 identifies a minimum set of capabilities required for the support of portable
8 security-relevant programs, and specifies the circumstances in POSIX.1 under
9 which these capabilities shall be used. Support for the interfaces defined in this

10 section is optional, but shall be provided if the symbol {_POSIX_CAP} is defined. c

11 POSIX.1 specifies that certain actions require a process to possess appropriate c
12 privilege in order to complete those actions. This section specifies the names of c
13 the capabilities which constitute appropriate privilege to perform those actions on c
14 a system that supports the POSIX Capability Option. c

15 This section describes a set of interfaces by which capabilities may be associated
16 with a process and the method by which a process’s capabilities are derived. c
17 Specific capabilities of a process that exec’s a particular file may be revoked,
18 inherited from the previous process image, or granted to the process, depending
19 on the value(s) of the file capability state of the file and the process capability c
20 state of the previous process image.

21 The set of interfaces defined by this standard provide the means to support the
22 principle of least privilege. Note, however, it does not require that a conforming
23 implementation actually enforce a least privilege (least capability) security policy.
24 The capability related interfaces and semantics specified in this standard permit
25 individual capabilities to be defined down to a per-function level and permit them
26 to be granted or denied to the granularity of an individual process image. They
27 also permit a process image to control the effectiveness of the capabilities
28 assigned to it during its execution. These capabilities are necessary, but not
29 sufficient, for the implementation of a least privilege security policy. Implementa-−
30 tions may extend the capability interfaces such that use of and/or access to capa-
31 bilities by programs are further constrained.

32 This section also defines a minimal number of capabilities that shall be supported
33 by conforming implementations. Implementations may define additional capabili-
34 ties that affect the behavior of POSIX defined and/or other system functions.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.1 General Overview 163

35 25.1.1 Major Features

36 25.1.1.1 Task Bounding of Capability

37 Another major characteristic of the capability interfaces is that capabilities may
38 be bounded in the extent of code they are effective over. That is, they can be
39 enabled for only as long as they are actually needed to perform a task (or tasks),
40 and then disabled. The extent of code that could exercise a particular capability
41 can be bounded both at the program level and within a particular program.

42 At the program level, a process may be assigned or denied specific capabilities by
43 setting the capability flags and attributes associated with the program file. When
44 the file is executed, these flags and attributes are examined by exec(). The exec()
45 function then modifies the capability state of the process in a specific manner
46 according to those flags and attributes. In this way, a process may gain additional
47 capabilities by executing certain programs, or it may lose capabilities it currently
48 possesses.

49 Within itself, a process image may enable, disable, or permanently revoke its
50 capabilities. For example, a process modifies the effective flag of a given capability c
51 to either enable or disable that capability. This flag shall be set in order for the
52 capability to be available for use. A process image permanently, i.e., for the dura-
53 tion of that process image, revokes a given capability by resetting both the effec- c
54 tive and permitted flags for that capability. More information on these two flags c
55 is provided in section 25.1.1.4 below. c

56 25.1.1.2 Capability Inheritance

57 Following the exec() of a program, the capabilities that have their permitted flags c
58 set in the new process image depend on the capability states of both the previous
59 process image and the exec’d program file. Each capability marked as permitted c
60 may have been forced to be set by the program file or inherited from the previous
61 image (if the capability attributes of the program file allow the inheritance).

62 Inheritance permits a process image to request that all, some or none of its capa-
63 bilities be passed to the next process image, subject to restrictions set by the sys-
64 tem security policy. For example, a backup program may exec() the ppaaxx utility,
65 granting it the capabilities required to read all files in a file system (providing it
66 is allowed to inherit those capabilities). However, the same backup utility may
67 exec() other utilities to which it does not pass any capabilities.

68 25.1.1.3 Capability Flags

69 The capability flags defined by this standard are permitted, effective, and inherit- c
70 able. These flags apply to each capability separately, and together their values
71 determine a capability state. Capability states shall be assignable to at least two
72 entities: processes and files. Implementations may define additional flags for
73 capabilities and may provide for the assignment of capability states to additional
74 entities.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

164 25 Capabilities

75 25.1.1.4 Capability Flags and Processes

76 The capability state is the attribute of a process which contains the value of all of
77 the process’s capability flags. A conforming implementation shall support the c
78 assignment of a capability state to processes. When the process permitted flag forc
79 a capability is set, a process shall be able to set all its flags defined by this stan-
80 dard for that capability. A process shall be able to clear any flag for any of its
81 capabilities regardless of the state of the permitted flags. A process can exercise a c
82 particular capability only when that capability’s process effective flag is set. The c
83 process effective flag shall be the only flag considered by system functions when c
84 determining if the process possesses appropriate privilege. The process inherit- c
85 able flag is used by the exec() function when determining the capability flags of
86 the new process image. A capability may be passed from one process image to the
87 next through an exec() only if the inheritable flag of that capability is set. This c
88 inheritance may or may not actually occur, depending on the capability state of
89 the file as described in the next section. The new process image may also acquire
90 capabilities based upon the capability state of the file used to create the new pro-
91 cess image, as defined in section 3.1.2.2.

92 25.1.1.5 Capability Flags and Files

93 The capability state is the attribute of a file which contains the value of all of the
94 file’s capability flags. A conforming implementation shall support the assignment
95 of capability states to files. The purpose of assigning capability states to files is to
96 provide the exec() function with information regarding the capabilities that any
97 process image created with the program in the file is capable of dealing with and
98 have been granted by some authority to use.

99 If pathconf() indicates that {_POSIX_CAP_PRESENT} is not in effect for a file,
100 then the capability state of that file shall be implementation-defined. c

101 25.1.1.6 File System Support of Capability

102 The capability state of a process after an exec() of a file for which the value of the −
103 pathname variable {_POSIX_CAP_PRESENT} is zero shall be implementation- c
104 defined.

105 25.1.1.7 Application

106 The POSIX.1 functions listed in Table 25-1 are affected by the capability func-
107 tionality defined in this standard.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.1 General Overview 165

108 Table 25-1 − POSIX.1 Functions Covered by Capability Policies

109 Existing POSIX.1
110 Function Section111 iii

112 chmod 5.6.4
113 chown 5.6.5
114 creat 5.3.2
115 exec 3.1.2
116 fpathconf 5.7.1
117 fstat 5.6.2
118 kill 3.3.2
119 link 5.3.4
120 mkdir 5.4.1
121 mkfifo 5.4.2
122 open 5.3.1
123 pathconf 5.7.1
124 read 6.4.1
125 rename 5.5.3
126 rmdir 5.5.2
127 setgid 4.2.2
128 setuid 4.2.2
129 stat 5.6.2
130 unlink 5.5.1
131 utime 5.6.6
132 write 6.4.2

133 New POSIX.1e
134 Function Synopsis135 iii

136 acl_delete_def_fd Delete a Default ACL by File Descriptor
137 acl_delete_def_file Delete a Default ACL by Filename
138 acl_get_fd Get an ACL by File Descriptor
139 acl_get_file Get an ACL by Filename
140 acl_set_fd Set an ACL by File Descriptor
141 acl_set_file Set an ACL Filename
142 aud_switch Control the Generation of Audit Records
143 aud_write write an application-generated record to an audit log
144 inf_get_fd Get the Information Label of a File Identified by File Descriptor
145 inf_get_file Get the Information Label of a File Identified by File Pathname
146 inf_set_fd Set the Information Label of a File Identified by File Descriptor
147 inf_set_file Set the Information Label of a File Identified by File Pathname
148 inf_set_proc Set the Process Information Label
149 mac_get_fd Get the Label of a File Designated by File Descriptor
150 mac_get_file Get the Label of a File Designated by File Pathname
151 mac_set_fd Set the Label of a File Designated by File Descriptor
152 mac_set_file Set the Label of a File
153 mac_set_proc Set the Process Label
154 cap_get_fd Get the Capability State of an Open File
155 cap_get_file Read the Capability State of a File
156 cap_set_fd Set the Capability State of an Open File
157 cap_set_file Write the Capability State of a File

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

166 25 Capabilities

158 25.1.2 Capability Functions

159 Functional interfaces are defined to manipulate capability states, to assign them
160 to files and processes and to obtain them for files and processes. These functions
161 comprise a set of interfaces that permit portable programs to manipulate their
162 own capability state and a minimal set of interfaces to manipulate the capability
163 state of files.

164 Four groups of functions are defined to:

165 (1) manage the working storage area used by capability states

166 (2) manipulate the capability flags within a capability state c

167 (3) manipulate (read and write) a capability state on a file or process

168 (4) translate a capability state into different formats.

169 25.1.2.1 Capability Data Object Storage Management

170 The capabilities associated with a file or process are never edited directly.
171 Rather, a working storage area is allocated to contain a representation of the
172 capability state. Capabilities are edited and manipulated only within this working
173 storage area. Once the editing of the capability state is completed, the updated
174 capability state is used to replace the capability state associated with the file or
175 process.

176 Working storage is allocated as needed by the capability manipulation functions.
177 The cap_init() and cap_dup () functions also allow the application to allocate
178 working storage for the creation of a new capability state. The working storage
179 area may be released by the application once the capability state is no longer
180 needed by use of the cap_free() function.

181 cap_dup() Duplicates a capability state in a working storage area

182 cap_free() Releases working storage area previously allocated by capability
183 manipulation functions

184 cap_init() Allocates and initializes working storage area for a capability
185 state.

186 25.1.2.2 Capability Data Object Manipulation

187 These functions manipulate capability state only in working storage not associ-
188 ated with file or process.

189 cap_get_flag() Obtain the value of a specific flag for a specific capability.

190 cap_set_flag() Sets the value of a specific flag for a specific capability.

191 cap_clear() Initializes or resets a capability state such that all flags for
192 all capabilities are cleared.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.1 General Overview 167

193 25.1.2.3 Capability Manipulation on an Object

194 These functions read the capability state of a file or process into working storage
195 and write the capability state in working storage to a file or process.

196 cap_get_fd() Reads the capability state associated with a file descriptor
197 into working storage.

198 cap_get_file() Reads the capability state associated with a file into work-
199 ing storage.

200 cap_get_proc() Reads the capability state associated with the calling pro-
201 cess into working storage.

202 cap_set_fd() Writes the capability state in working storage to the object
203 associated with a file descriptor.

204 cap_set_file() Writes the capability state in working storage to a file.

205 cap_set_proc() Sets the process capability state of the calling process to a
206 capability state in working storage.

207 25.1.2.4 Capability State Format Translation

208 This standard defines three different representations for a capability state: −

209 external form The exportable, contiguous, persistent representation of a
210 capability state in user-managed space.

211 internal form The internal representation of a capability state in working
212 storage managed by the capability functions.

213 text form The structured text representation of a capability state.

214 These functions translate a capability state from one representation into another. +

215 cap_copy_ext() Translates an internal form of a capability state to the exter-
216 nal form of a capability state.

217 cap_copy_int() Translates the external form of a capability state to the inter-
218 nal form of a capability state.

219 cap_from_text() Translates a text form of a capability state to the internal
220 form of a capability state.

221 cap_size() Returns the size in bytes required to store the external form
222 of a capability state that is the result of an cap_copy_ext().

223 cap_to_text() Translates an internal form of a capability state to the text
224 form of a capability state.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

168 25 Capabilities

225 25.2 Header

226 Some of the data types used by the capability functions are not defined as part of
227 this standard, but shall be implementation-defined. These types shall be defined
228 in the header <<ssyyss//ccaappaabbiilliittyy..hh>>, which contains definitions for at least the
229 types shown in the following table.

230 Table 25-2 − Capability Data Types

231 Defined Type Description232 iii
233 Used to identify capability flags. This data type is exportable
234 data.
235 cap_flag_t

236 Used as a pointer to an opaque data object that is used as
237 capability state working storage. This data type is non-
238 exportable data.

239 cap_t

240 Used to specify the value of capability flags. This data type is
241 exportable data.
242 cap_flag_value_t

243 Used to identify capabilities. This data type is exportable
244 data.
245 cap_value_t

246 The symbolic constants specified in the remainder of this section shall be defined
247 in the header <<ssyyss//ccaappaabbiilliittyy..hh>>.

248 Table 25-3 contains cap_flag_t values for the cap_get_flag() and cap_set_flag()
249 functions.

250 Table 25-3 − cap_flag_t Values

251 Constant Description252 ii
253 Specifies the effective flag.254 CAP_EFFECTIVE
255 Specifies the inheritable flag.256 CAP_INHERITABLE
257 Specifies the permitted flag.258 CAP_PERMITTED

259 Table 25-4 contains cap_flag_value_t values for the cap_get_flag() and
260 cap_set_flag() functions.

261 Table 25-4 − cap_flag_value_t Values

262 Constant Description263 iii
264 The flag is cleared/disabled.265 CAP_CLEAR
266 The flag is set/enabled.267 CAP_SET

268 Table 25-5 through Table 25-8 contains cap_value_t values for cap_get_flag() and
269 cap_set_flag(). Note that the description of each capability specifies exactly what
270 restriction the capability is intended to affect. Possession of a capability that
271 overrides one restriction should not imply that any other restrictions are overrid-
272 den. For example, possession of the CAP_DAC_OVERRIDE capability should not
273 imply that a process can read files with MAC labels that dominate that of the pro-
274 cess, nor should it override any restrictions that the file owner ID match the user
275 ID of the process.

276 If the {_POSIX_CAP} system configuration option is defined, the implementation

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.2 Header 169

277 shall define at least the following set of cap_value_t values:

278 Table 25-5 − cap_value_t Values
279 Constant Description280 ii
281 In a system in which the
282 {_POSIX_CHOWN_RESTRICTED}
283 option is defined, this capabil-
284 ity shall override the restric-
285 tion that a process cannot
286 change the user ID of a file it
287 owns and the restriction that
288 the group ID supplied to the
289 chown() function shall be
290 equal to either the group ID
291 or one of the supplementary
292 group IDs of the calling pro-
293 cess.

294 CAP_CHOWN

295 This capability shall override
296 file mode execute access res-
297 trictions when accessing an
298 object, and, if the
299 {_POSIX_ACL} option is
300 defined, this capability shall
301 override the ACL execute
302 access restrictions when
303 accessing an object.

304 CAP_DAC_EXECUTE

305 This capability shall override
306 file mode write access restric-
307 tions when accessing an
308 object, and, if the
309 {_POSIX_ACL} option is
310 defined, this capability shall
311 override the ACL write access
312 restrictions when accessing
313 an object.

314 CAP_DAC_WRITE

315 This capability shall override
316 file mode read and search
317 access restrictions when
318 accessing an object, and, if the
319 {_POSIX_ACL} option is
320 defined, this capability shall
321 override the ACL read and
322 search access restrictions
323 when accessing an object.

324 CAP_DAC_READ_SEARCH

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

170 25 Capabilities

325

326 This capability overrides the
327 requirement that the user ID
328 associated with a process be
329 equal to the file owner ID,
330 except in the cases where the
331 CAP_FSETID capability is
332 applicable. In general, this
333 capability, when effective, will
334 permit a process to perform
335 all the functions that any file
336 owner would have for their
337 files.

338 CAP_FOWNER

339 This capability shall override
340 the following restrictions:
341 that the effective user ID of
342 the calling process shall
343 match the file owner when
344 setting the set-user-ID
345 (S_ISUID) and set-group-ID
346 (S_ISGID) bits on that file;
347 that the effective group ID or
348 one of the supplementary
349 group IDs of the calling pro-
350 cess shall match the group ID
351 of the file when setting the
352 set-group-ID bit of that file;
353 and that the set-user-ID and
354 set-group-ID bits of the file
355 mode shall be cleared upon
356 successful return from
357 chown().

358 CAP_FSETID

359 This capability shall override
360 the restriction that the real or
361 effective user ID of a process
362 sending a signal must match
363 the real or effective user ID of
364 the receiving process.

365 CAP_KILL

366 This capability overrides the
367 restriction that a process can-
368 not create or delete a hard
369 link to a directory.

370 CAP_LINK_DIR

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.2 Header 171

371

372 This capability shall override
373 the restriction that a process
374 cannot set the file capability
375 state of a file.

376 CAP_SETFCAP

377 This capability shall override
378 the restriction in the setgid()
379 function that a process cannot
380 change its real group ID or
381 change its effective group ID
382 to a value other than its real
383 group ID. If
384 {_POSIX_SAVED_IDS} is
385 defined, then this capability
386 also overrides any restrictions
387 on setting the saved set-
388 group-ID to a value other
389 than the current real or saved
390 set-group ID.

391 CAP_SETGID

392 This capability shall override
393 the restriction in the setuid()
394 function that a process cannot
395 change its real user ID or
396 change its effective user ID to
397 a value other than the
398 current real user ID. If
399 {_POSIX_SAVED_IDS} is
400 defined, then this capability
401 also overrides any restrictions
402 on setting the saved set-user-
403 ID.

404 CAP_SETUID

405 If the {_POSIX_MAC} system configuration option is defined, the implementation −
406 shall define at least the following set of cap_value_t values:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

172 25 Capabilities

407 Table 25-6 − cap_value_t Values for Mandatory Access Controls
408 Constant Description409 iii
410 This capability shall override
411 the restriction that no process
412 may downgrade the MAC
413 label of a file.

414 CAP_MAC_DOWNGRADE

415 This capability shall override
416 mandatory read access res-
417 trictions when accessing
418 objects.

419 CAP_MAC_READ

420 This capability shall override
421 the restriction that a process
422 may not modify its own MAC
423 label.

424 CAP_MAC_RELABEL_SUBJ

425 This capability shall override
426 the restriction that no process
427 may upgrade the MAC label
428 of a file.

429 CAP_MAC_UPGRADE

430 This capability shall override
431 mandatory write access res-
432 trictions when accessing
433 objects.

434 CAP_MAC_WRITE

435 If the {_POSIX_INF} system configuration option is defined, the implementation
436 shall define at least the following set of cap_value_t values:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.2 Header 173

437 Table 25-7 − cap_value_t Values for Information Labels
438 Constant Description439 ii
440 This capability shall override
441 the requirement that an
442 object’s information label
443 shall automatically float when
444 a write operation is per-
445 formed by a process.

446 CAP_INF_NOFLOAT_OBJ

447 This capability shall override
448 the requirement that a pro-
449 cess’ information label shall
450 automatically float when a
451 read or execute operation is
452 performed on an object.

453 CAP_INF_NOFLOAT_SUBJ

454 This capability shall override
455 the restriction against chang-
456 ing the information label of
457 an object.

458 CAP_INF_RELABEL_OBJ

459 This capability shall override
460 the restriction that a process
461 may not modify its own infor-
462 mation label in violation of
463 the information labeling pol-
464 icy.

465 CAP_INF_RELABEL_SUBJ

466 If the {_POSIX_AUD} system configuration option is defined, the implementation
467 shall define at least the following set of cap_value_t values:

468 Table 25-8 − cap_value_t Values for Audit
469 Constant Description470 iii
471 This capability shall override
472 the restriction that a process
473 cannot modify audit control
474 parameters.

475 CAP_AUDIT_CONTROL

476 This capability shall override
477 the restriction that a process
478 cannot write data into the
479 system audit trail.

480 CAP_AUDIT_WRITE

481 The symbolic constants defined in this section shall be implementation-defined
482 unique values.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

174 25 Capabilities

483 25.3 Text Form Representation

484 The text form of a capability state shall consist of one or more ccllaauusseess con-
485 tained within a single, NULL-terminated character string. CCllaauusseess are
486 separated by whitespace characters. Each valid clause identifies a capability or a
487 set of capabilities, an op (operation), and one or more flags that the operation
488 applies to:

489 clause [SEP clause]...

490 where clause has the following format:

491 [caplist] actionlist

492 and SEP is ‘‘:’’ or any whitespace character. c

493 caplist has the following format:

494 capability_name[,capability_name]... .

495 actionlist has the following format:

496 op [flags] [op [flags]]...

497 op is one of ‘‘==’’, ‘‘−−’’, or ‘‘++’’.

498 flags is a token consisting of one or more alphabetic characters.

499 The string shall be interpreted in order, e.g., the op specified in a later clause -
500 shall supplant or modify op that apply to the same capabilities in an earlier -
501 clause.

502 The capability_name symbols shall specify which capability or capabilities the
503 clause is to operate on. The symbols to be used are those defined in the
504 ccaappaabbiilliittyy..hh header file for each capability, e.g., ‘‘CAP_FOWNER’’,
505 ‘‘CAP_SETUID’’, etc. More than one capability_name may be specified in a
506 ccllaauussee by separating them with a comma. A capability_name consisting of the
507 string ‘‘aallll’’ shall be equivalent to a list containing every capability defined by
508 the implementation. Capability_names are case insensitive on input, and the
509 case used for output shall be implementation defined.

510 The flags symbols ee, ii and pp shall represent the effective, inheritable and per-
511 mitted capability flags, respectively. All lowercase characters for use as flags
512 symbols are reserved for use by future versions of this standard. Implementations
513 may define uppercase characters for flags to represent implementation-defined
514 flags.

515 If multiple actionlists are grouped with a single caplist in the grammar, each
516 actionlist shall be applied in the order specified with that caplist. The op symbols
517 shall represent the operation performed, as follows:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.3 Text Form Representation 175

518 ++ If flags is not specified and caplist contains one or more capability
519 names, the ++ operation shall not change the capability state; else,

520 if caplist is not specified, this shall be considered an error; otherwise

521 if caplist is specified as ‘‘aallll’’, the capability flags represented by flags
522 for all capabilities defined for the target by the implementation shall be
523 set; otherwise,

524 the flags specified in flags for all the capabilities specified in caplist
525 shall be set.

526 −− If flags is not specified and caplist contains one or more capability
527 names, the −− operation shall not change the target capability state;
528 else,

529 if caplist is not specified or is specified as ‘‘aallll’’, the capability flags
530 represented by flags for all capabilities defined by the implementation
531 shall be cleared; otherwise,

532 the capability flags specified in flags for all the capabilities specified in
533 caplist shall be cleared.

534 == Clear all the capability flags for the capabilities specified in caplist, or,
535 if no caplist is specified, clear all capability flags for all capabilities
536 defined by the implementation, then:

537 if flags is not specified, the == operation shall make no further
538 modification to the target capability state; else,

539 if caplist is not specified or is specified as ‘‘aallll’’, the capability flags
540 represented by flags shall be set for all capabilities defined for the tar-
541 get by the implementation; otherwise,

542 the capability flags represented by flags shall be set for all the capabili-
543 ties specified in caplist in the target capability state.

544 25.3.1 Grammar

545 The grammar and lexical conventions in this subclause describe the syntax for the
546 textual representation of capability state. The general conventions for this style of
547 grammar are described in POSIX.2, "Grammar Conventions", 2.1.2. A valid capa-
548 bility state can be represented as the nonterminal symbol capability state in the
549 grammar. The formal syntax description in this grammar shall take precedence
550 over the textual descriptions in this clause.

551 The lexical processing shall be based on single characters except for capability
552 name recognition. Implementations need not allow whitespace characters within
553 the single argument being processed.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

176 25 Capabilities

554 %%ssttaarrtt capability_state
555 %%%%
556 capability_state :: clause
557 || capability_state clause
558 ;;

559 clause :: actionlist
560 || caplist actionlist
561 ;;

562 caplist :: capability_name
563 || caplist ’’,,’’ capability_name
564 ;;

565 actionlist :: action
566 || actionlist action
567 ;;

568 action :: op
569 || op flaglist
570 ;;

571 op :: ‘‘‘‘++’’’’
572 || ‘‘‘‘−−’’’’
573 || ‘‘‘‘==’’’’
574 ;;

575 flaglist :: flag
576 || flaglist flag
577 ;;

578 flag :: ‘‘‘‘ee’’’’
579 || ‘‘‘‘ii’’’’
580 || ‘‘‘‘pp’’’’
581 ;;

582 25.4 Functions

583 The functions in this section comprise the set of services that permit a process
584 image to acquire, manipulate, and pass capabilities on to new process images they
585 create. Support for the capability facility functions identified in this section is
586 optional. If the symbol {_POSIX_CAP} is defined, the implementation supports
587 the capability option and all of the capability functions shall be implemented as c
588 described in this section. If {_POSIX_CAP} is not defined, the result of calling any c
589 of these functions is unspecified.

590 The error [ENOTSUP] shall be returned in those cases where the system supports
591 the capability facility but the particular capability operation cannot be applied
592 because of restrictions imposed by the implementation. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 177

593 25.4.1 Initialize a Capability State in Working Storage

594 Function: cap_clear()

595 25.4.1.1 Synopsis

596 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

597 iinntt ccaapp__cclleeaarr ((ccaapp__tt cap_p));;

598 25.4.1.2 Description

599 The function cap_clear() shall initialize the capability state in working storage
600 identified by cap_p so that all capability flags for all capabilities defined in the
601 implementation shall be cleared.

602 25.4.1.3 Returns

603 Upon successful completion, the function shall return a value of zero. Otherwise,
604 a value of −1 shall be returned and errno shall be set to indicate the error.

605 25.4.1.4 Errors

606 If any of the following conditions occur, the cap_clear() function shall return −1
607 and set errno to the corresponding value:

608 [EINVAL] The value of the cap_p argument does not refer to a capabil-
609 ity state in working storage. −

610 25.4.1.5 Cross-References

611 cap_init(), 25.4.11; cap_set_flag(), 25.4.14. c

612 25.4.2 Copy a Capability State From System to User Space

613 Function: cap_copy_ext()

614 25.4.2.1 Synopsis

615 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

616 ssssiizzee__tt ccaapp__ccooppyy__eexxtt ((vvooiidd ∗∗ext_p,, ccaapp__tt cap_p,, ssssiizzee__tt size)) c c

617 25.4.2.2 Description

618 The cap_copy_ext() function shall copy a capability state in working storage,
619 identified by cap_p, from system managed space to user-managed space (pointed
620 to by ext_p) and returns the length of the resulting data record. The size parame-
621 ter represents the maximum size, in bytes, of the resulting data record. The

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

178 25 Capabilities

622 cap_copy_ext() function will do any conversions necessary to convert the capabil-
623 ity state from the unspecified internal format to an exportable, contiguous, per- c
624 sistent data record. It is the responsibility of the user to allocate a buffer large
625 enough to hold the copied data. The buffer length required to hold the copied
626 data may be obtained by a call to the cap_size() function.

627 25.4.2.3 Returns

628 Upon successful completion, the function shall return the number of bytes placed
629 in the user managed space pointed to by ext_p. Otherwise, a value of (ssize_t)−1 c
630 shall be returned and errno shall be set to indicate the error.

631 25.4.2.4 Errors

632 If any of the following conditions occur, the cap_copy_ext() function shall return c
633 (ssize_t)−1 and set errno to the corresponding value:

634 [EINVAL] The value of the cap_p argument does not refer to a capability state
635 in working storage or the value of the size argument is zero or nega- −
636 tive.

637 [ERANGE] The size parameter is greater than zero, but smaller than the
638 length of the contiguous, persistent form of the capability state. −

639 25.4.2.5 Cross-References

640 cap_copy_int() 25.4.3. c

641 25.4.3 Copy a Capability State From User to System Space

642 Function: cap_copy_int()

643 25.4.3.1 Synopsis

644 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

645 ccaapp__tt ccaapp__ccooppyy__iinntt ((ccoonnsstt vvooiidd ∗∗ext_p)) c c

646 25.4.3.2 Description

647 The cap_copy_int() function shall copy a capability state from a capability data
648 record in user-managed space to a new capability state in working storage, allo-
649 cating any memory necessary, and returning a pointer to the newly created capa-
650 bility state. The function shall initialize the capability state and then copy the
651 capability state from the record pointed to by ext_p into the capability state, con-
652 verting, if necessary, the data from a contiguous, persistent format to an c
653 unspecified internal format. Once copied into internal format, the object can be
654 manipulated by the capability state manipulation functions.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 179

655 Note that the record pointed to by ext_p must have been obtained from a previous,
656 successful call to cap_copy_ext() for this function to work successfully.

657 This function may cause memory to be allocated. The caller should free any
658 releasable memory, when the capability state in working storage is no longer
659 required, by calling cap_free() with the cap_t as an argument.

660 25.4.3.3 Returns

661 Upon successful completion, the cap_copy_int() function returns a pointer to the
662 newly created capability state in working storage. Otherwise, a value of c
663 (cap_t)NULL shall be returned and errno shall be set to indicate the error.

664 25.4.3.4 Errors

665 If any of the following conditions occur, the cap_copy_int() function shall return c
666 (cap_t)NULL and set errno to the corresponding value:

667 [EINVAL] The value of the ext_p argument does not refer to a capability
668 data record as defined in section 25.3.

669 [ENOMEM] The capability state to be returned requires more memory than
670 is allowed by the hardware or system-imposed memory manage-
671 ment constraints. −

672 25.4.3.5 Cross-References

673 cap_copy_ext(), 25.4.2; cap_free(), 25.4.5; cap_init(), 25.4.11. c

674 25.4.4 Duplicate a Capability State in Working Storage

675 Function: cap_dup ()

676 25.4.4.1 Synopsis

677 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

678 ccaapp__tt ccaapp__dduupp ((ccaapp__tt cap_p));;

679 25.4.4.2 Description

680 The cap_dup () function returns a duplicate capability state in working storage
681 given the source object cap_p, allocating any memory necessary, and returning a
682 pointer to the newly created capability state. Once duplicated, no operations on
683 either capability state shall affect the other in any way.

684 This function may cause memory to be allocated. The caller should free any
685 releasable memory, when the capability state in working storage is no longer
686 required, by calling cap_free() with the cap_t as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

180 25 Capabilities

687 25.4.4.3 Returns

688 Upon successful completion, the cap_dup () function returns a pointer to the newly
689 created capability state in working storage. Otherwise, a value of (cap_t)NULL c
690 shall be returned and errno shall be set to indicate the error.

691 25.4.4.4 Errors

692 If any of the following conditions occur, the cap_dup () function shall return c
693 (cap_t)NULL and set errno to the corresponding value:

694 [EINVAL] The value of the cap_p argument does not refer to a capabil-
695 ity state in working storage. −

696 [ENOMEM] The capability state to be returned requires more memory
697 than is allowed by the hardware or system-imposed memory
698 management constraints. −

699 25.4.4.5 Cross-References

700 cap_free(), 25.4.5. c

701 25.4.5 Release Memory Allocated to a Capability State in Working
702 Storage

703 Function: cap_free()

704 25.4.5.1 Synopsis

705 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

706 iinntt ccaapp__ffrreeee ((vvooiidd ∗∗obj_d));; c c

707 25.4.5.2 Description

708 The function cap_free() shall free any releasable memory currently allocated to
709 the capability state in working storage identified by obj_d. The obj_d argument %
710 may identify either a cap_t entity, or a char ∗ entity allocated by the cap_to_text()
711 function.

712 25.4.5.3 Returns

713 Upon successful completion, the function shall return a value of zero. Otherwise,
714 a value of −1 shall be returned and errno shall be set to indicate the error.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 181

715 25.4.5.4 Errors

716 If any of the following conditions occur, the cap_free() function shall return −1 and
717 set errno to the corresponding value:

718 [EINVAL] The value of the obj_d argument does not refer to memory
719 recognized as releasable by the implementation. −

720 25.4.5.5 References

721 cap_copy_int(), 25.4.3; cap_dup (), 25.4.4; cap_from_text(), 25.4.6; cap_get_fd(), %
722 25.4.7; cap_get_file(), 25.4.8; cap_get_proc(), 25.4.10; cap_init(), 25.4.11; %
723 cap_to_text(), 25.4.17. c

724 25.4.6 Convert Text to a Capability State in Working Storage

725 Function: cap_from_text()

726 25.4.6.1 Synopsis

727 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

728 ccaapp__tt ccaapp__ffrroomm__tteexxtt ((ccoonnsstt cchhaarr ∗∗buf_p));; c c

729 25.4.6.2 Description

730 This function shall allocate and initialize a capability state in working storage. It
731 shall then set the contents of this newly-created capability state to the state
732 represented by the human−readable, null terminated character string pointed to
733 by buf_p. It shall then return a pointer to the newly created capability state.

734 This function may cause memory to be allocated. The caller should free any
735 releasable memory, when the capability state in working storage is no longer
736 required, by calling cap_free() with the cap_t as an argument.

737 The function shall recognize and correctly parse any string that meets the
738 specification in 25.3. The function shall return an error if the implementation can c
739 not parse the contents of the string pointed to by buf_p or does not recognize any
740 capability_name or flag character as valid. The function shall also return an error
741 if any flag is both set and cleared within a single clause.

742 25.4.6.3 Returns

743 Upon successful completion, a non-NULL value is returned. Otherwise, a value ofc
744 (cap_t)NULL shall be returned and errno shall be set to indicate the error.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

182 25 Capabilities

745 25.4.6.4 Errors

746 If any of the following conditions occur, the cap_from_text() function shall return c
747 (cap_t)NULL and set errno to the corresponding value:

748 [EINVAL] The buf_p argument does not refer to a character string as
749 defined in section 25.3, the string pointed to by buf_p is not
750 parseable by the function, the text string contains a
751 capability_name or a flag character that the implementation
752 does not recognize as valid.

753 [ENOMEM] The capability state to be returned requires more memory
754 than is allowed by the hardware or system-imposed memory
755 management constraints. −

756 25.4.6.5 Cross-References

757 cap_to_text(), 25.4.17; cap_free(), 25.4.5; cap_init(), 25.4.11; cap_set_flag(), c
758 25.4.14.

759 25.4.7 Get the Capability State of an Open File

760 Function: cap_get_fd()

761 25.4.7.1 Synopsis

762 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

763 ccaapp__tt ccaapp__ggeett__ffdd ((iinntt fd));; c c

764 25.4.7.2 Description

765 The function cap_get_fd() shall allocate a capability state in working storage and
766 set it to represent the capability state of the file open on the descriptor fd, then
767 return a pointer to the newly created capability state.

768 A process can get the capability state of any regular file for which the process has c
769 a valid file descriptor. If the file open on the descriptor fd is not a regular file, c
770 then cap_get_fd() shall return an error. If {_POSIX_CAP_PRESENT} is not in c
771 effect for the file, then the results of cap_get_fd() shall be implementation-defined. c

772 If {_POSIX_MAC} is defined, the process must also have mandatory access control
773 read access to the file. −

774 This function may cause memory to be allocated. The caller should free any
775 releasable memory, when the capability state in working storage is no longer
776 required, by calling cap_free() with the cap_t as an argument.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 183

777 25.4.7.3 Returns

778 Upon successful completion, this function returns a non-NULL value. Otherwise,
779 a value of (cap_t)NULL shall be returned and errno shall be set to indicate the c
780 error.

781 25.4.7.4 Errors

782 If any of the following conditions occur, the cap_get_fd() function shall return c
783 (cap_t)NULL and set errno to the corresponding value:

784 [EACCES] If the {_POSIX_MAC} system configuration option is
785 enabled, MAC read access to the file is denied.

786 [EBADF] The fd argument is not a valid open file descriptor. +

787 [EINVAL] The file open on fd is not a regular file.

788 [ENOMEM] The capability state to be returned requires more memory
789 than is allowed by the hardware or system-imposed memory
790 management constraints. −

791 25.4.7.5 Cross-References

792 cap_init(), 25.4.11; cap_free(), 25.4.5; cap_get_file(), 25.4.8; cap_set_fd(), 25.4.12. c

793 25.4.8 Get the Capability State of a File

794 Function: cap_get_file()

795 25.4.8.1 Synopsis

796 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

797 ccaapp__tt ccaapp__ggeett__ffiillee ((ccoonnsstt cchhaarr ∗∗path_p));; c c

798 25.4.8.2 Description

799 The function cap_get_file() shall allocate a capability state in working storage and
800 set it to be equal to the capability state of the pathname pointed to by path_p, c
801 then return a pointer for the newly created capability state in working storage.

802 A process can get the capability state of any regular file for which the process has +
803 search access to the path specified. If the file pointed to by path_p is not a regular+
804 file, then cap_get_file() shall return an error. If {_POSIX_CAP_PRESENT} is not +
805 in effect for the file, then the results of cap_get_file() shall be implementation- +
806 defined. +

807 If {_POSIX_MAC} is defined, the process must also have MAC read access to the
808 file. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

184 25 Capabilities

809 This function may cause memory to be allocated. The caller should free any
810 releasable memory, when the capability state in working storage is no longer
811 required, by calling cap_free() with the cap_t as an argument.

812 25.4.8.3 Returns

813 Upon successful completion, this function returns a non-NULL value. Otherwise,
814 a value of (cap_t)NULL shall be returned and errno shall be set to indicate the c
815 error.

816 25.4.8.4 Errors

817 If any of the following conditions occur, the cap_get_file() function shall return c
818 (cap_t)NULL and set errno to the corresponding value:

819 [EACCES] Search permission is denied for a component of the path
820 prefix, or, if {_POSIX_MAC} is defined, MAC read access to
821 the file path_p is denied. c

822 [EINVAL] The file pointed to by path_p is not a regular file.

823 [ENAMETOOLONG] The length of the path_p argument exceeds c
824 {PATH_MAX}, or a pathname component is longer than
825 {NAME_MAX} while {POSIX_NO_TRUNC} is in effect.

826 [ENOENT] The named file does not exist or the path_p argument points c
827 to an empty string.

828 [ENOMEM] The capability state to be returned requires more memory
829 than is allowed by the hardware or system-imposed memory
830 management constraints. −

831 [ENOTDIR] A component of the path prefix is not a directory.

832 25.4.8.5 Cross-References

833 cap_free(), 25.4.5; cap_init(), 25.4.11; cap_set_file(), 25.4.13; cap_get_fd(), 25.4.7. c

834 25.4.9 Get the Value of a Capability Flag

835 Function: cap_get_flag()

836 25.4.9.1 Synopsis

837 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

838 iinntt ccaapp__ggeett__ffllaagg ((ccaapp__tt cap_p,,
839 ccaapp__vvaalluuee__tt cap,,
840 ccaapp__ffllaagg__tt flag,,
841 ccaapp__ffllaagg__vvaalluuee__tt ∗∗value_p));; c c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 185

842 25.4.9.2 Description

843 The function cap_get_flag() shall obtain the current value of the capability flag
844 flag of the capability cap from the capability state in working storage identified by
845 cap_p and place it into the location pointed to by value_p.

846 25.4.9.3 Returns

847 Upon successful completion, the function shall return a value of zero. Otherwise,
848 a value of −1 shall be returned and errno shall be set to indicate the error.

849 25.4.9.4 Errors

850 If any of the following conditions occur, the cap_get_flag() function shall return −1
851 and set errno to the corresponding value:

852 [EINVAL] At least one of the values of the cap_p, cap, flag and value_p
853 arguments does not refer to the corresponding entity. −

854 25.4.9.5 Cross-References

855 cap_set_flag(), 25.4.14. c

856 25.4.10 Obtain the Current Process Capability State

857 Function: cap_get_proc()

858 25.4.10.1 Synopsis

859 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

860 ccaapp__tt ccaapp__ggeett__pprroocc ((vvooiidd));; c c

861 25.4.10.2 Description

862 The function cap_get_proc() shall allocate a capability state in working storage,
863 set its state to that of the calling process, and return a pointer to the newly
864 created capability state.

865 This function may cause memory to be allocated. The caller should free any
866 releasable memory, when the capability state in working storage is no longer
867 required, by calling cap_free() with the cap_t as an argument.

868 25.4.10.3 Returns

869 Upon successful completion, this function shall return a cap_t value. Otherwise,
870 a value of (cap_t)NULL shall be returned and errno shall be set to indicate the c
871 error.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

186 25 Capabilities

872 25.4.10.4 Errors

873 If any of the following conditions occur, the cap_get_proc() function shall return c
874 (cap_t)NULL and set errno to the corresponding value:

875 [ENOMEM] The capability state to be returned requires more memory
876 than is allowed by the hardware or system-imposed memory
877 management constraints. −

878 25.4.10.5 Cross-References

879 cap_free(), 25.4.5; cap_init(), 25.4.11; cap_get_flag(), 25.4.9; cap_set_proc(), c
880 25.4.15.

881 25.4.11 Allocate and Initialize a Capability State in Working Storage

882 Function: cap_init()

883 25.4.11.1 Synopsis

884 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

885 ccaapp__tt ccaapp__iinniitt ((vvooiidd));; c c

886 25.4.11.2 Description

887 The function cap_init() shall create a capability state in working storage and
888 return a pointer to the capability state. The initial value of all flags for all capa-
889 bilities defined by the implementation shall be cleared.

890 This function may cause memory to be allocated. The caller should free any
891 releasable memory, when the capability state in working storage is no longer
892 required, by calling cap_free() with the cap_t as an argument.

893 25.4.11.3 Returns

894 Upon successful completion, this function returns a non-NULL cap_t value. Oth-
895 erwise, a value of (cap_t)NULL shall be returned and errno shall be set to indicate c
896 the error.

897 25.4.11.4 Errors

898 If any of the following conditions occur, the cap_init() function shall return c
899 (cap_t)NULL and set errno to the corresponding value:

900 [ENOMEM] The capability state to be returned requires more memory
901 than is allowed by the hardware or system-imposed memory
902 management constraints. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 187

903 25.4.11.5 Cross-References

904 cap_free(), 25.4.5. c

905 25.4.12 Set the Capability State of an Open File

906 Function: cap_set_fd()

907 25.4.12.1 Synopsis

908 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

909 iinntt ccaapp__sseett__ffdd ((iinntt fd,, ccaapp__tt cap_p));; c c

910 25.4.12.2 Description

911 The function cap_set_fd() shall set the values for all capability flags for all capa-
912 bilities defined in the implementation for the file opened on descriptor fd with the
913 capability state identified by cap_p. The new capability state of the file identified
914 by fd shall be completely determined by the contents of cap_p. +

915 For this function to succeed, the process calling it must have the CAP_SETFCAP
916 capability enabled and either the effective user ID of the process must match the
917 file owner or the calling process must have the effective CAP_FOWNER capability
918 flag set. In addition, if {_POSIX_MAC} is defined, then the process must have
919 MAC write access to the file. Implementations may place additional restrictions
920 on setting the capability state of a file. c

921 If the file open on the descriptor fd is not a regular file, then cap_set_fd() shall c
922 return an error.

923 25.4.12.3 Returns

924 Upon successful completion, the function shall return a value of zero. Otherwise,
925 a value of −1 shall be returned and errno shall be set to indicate the error. The
926 capability state of the file shall not be affected if the return value is −1.

927 25.4.12.4 Errors

928 If any of the following conditions occur, the cap_set_fd() function shall return −1
929 and set errno to the corresponding value:

930 [EACCES] The requested access to the file specified is denied,
931 or the {_POSIX_MAC} system configuration option is
932 enabled and MAC write access to the file opened on descrip-
933 tor fd is denied.

934 [EBADF] The fd argument is not a valid open file descriptor.

935 [EINVAL] The value of the cap_p argument does not refer to a capabil-
936 ity state in working storage. +

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

188 25 Capabilities

937 The file open on fd is not a regular file.

938 [EPERM] The process does not have appropriate privilege or does not
939 meet other restrictions imposed by the implementation to
940 perform the operation.

941 [EROFS] This function requires modification of a file resident on a file
942 system which is currently read-only.

943 25.4.12.5 Cross-References

944 cap_get_fd(), 25.4.7; cap_set_file(), 25.4.13. c

945 25.4.13 Set the Capability State of a File

946 Function: cap_set_file()

947 25.4.13.1 Synopsis

948 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

949 iinntt ccaapp__sseett__ffiillee ((ccoonnsstt cchhaarr ∗∗path_p,, ccaapp__tt cap_p));; c c

950 25.4.13.2 Description

951 The function cap_set_file() shall set the values for all capability flags for all capa-
952 bilities defined in the implementation for the pathname pointed to by path_p with c
953 the capability state identified by cap_p. The new capability state of the file c
954 identified by path_p shall be completely determined by the contents of cap_p. c

955 For this function to succeed, the process must have the CAP_SETFCAP capability
956 enabled and either the effective user ID of the process must match the file owner
957 or the calling process must have the effective flag of the CAP_FOWNER capability
958 set. In addition, if {_POSIX_MAC} is defined, then the process must have MAC
959 write access to the file. Implementations may place additional restrictions on set-
960 ting the capability state of a file.

961 If the file pointed to by path_p is not a regular file, then cap_set_file() shall return
962 an error. The effects of writing capability state to any file type other than a regu-
963 lar file are undefined. −

964 25.4.13.3 Returns

965 Upon successful completion, the function shall return a value of zero. Otherwise,
966 a value of −1 shall be returned and errno shall be set to indicate the error. The
967 capability state of the file shall not be affected if the return value is −1.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 189

968 25.4.13.4 Errors

969 If any of the following conditions occur, the cap_set_file() function shall return −1
970 and set errno to the corresponding value:

971 [EACCES] Search/read permission is denied for a component of the
972 path prefix, or the {_POSIX_MAC} system configuration −
973 option is enabled and MAC write access to the file referred
974 to by path_p is denied. c

975 [EINVAL] The value of the cap_p argument does not refer to a capabil- c
976 ity state in working storage or the capability state specified
977 is not permitted for a file on the implementation. +

978 The file pointed to by path_p is not a regular file.

979 [ENAMETOOLONG] The length of the path_p argument exceeds c
980 {PATH_MAX}, or a pathname component is longer than
981 {NAME_MAX} while {POSIX_NO_TRUNC} is in effect.

982 [ENOENT] The named file/directory does not exist or the path_p argu- c
983 ment points to an empty string. −

984 [ENOTDIR] A component of the path prefix is not a directory.

985 [EPERM] The process does not have appropriate privilege or does not
986 meet other restrictions imposed by the implementation to
987 perform the operation.

988 [EROFS] This function requires modification of a file resident on a file
989 system which is currently read-only.

990 25.4.13.5 Cross-References

991 cap_get_file(), 25.4.8; cap_set_fd(), 25.4.12. c

992 25.4.14 Set the Value of a Capability Flag

993 Function: cap_set_flag()

994 25.4.14.1 Synopsis

995 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

996 iinntt ccaapp__sseett__ffllaagg ((ccaapp__tt cap_p,,
997 ccaapp__ffllaagg__tt flag,,
998 iinntt ncap,,
999 ccaapp__vvaalluuee__tt caps[],,
1000 ccaapp__ffllaagg__vvaalluuee__tt value));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

190 25 Capabilities

1001 25.4.14.2 Description

1002 This function shall set the flag flag of each capability in the array caps in the
1003 capability state in working storage identified by cap_p to value. The argument
1004 ncap is used to specify the number of capabilities in the array caps. Implementa-
1005 tions may place restrictions on the setting of the flags in a capability state.

1006 25.4.14.3 Returns

1007 Upon successful completion, the function shall return a value of zero. Otherwise,
1008 a value of −1 shall be returned and errno shall be set to indicate the error. The
1009 capability state identified by cap_p shall not be affected if the return value is −1.

1010 25.4.14.4 Errors

1011 If any of the following conditions occur, the cap_set_flag() function shall return −1
1012 and set errno to the corresponding value:

1013 [EINVAL] At least one of the values of cap_p, ncap, flag and value, or
1014 at least one of the first ncap elements in caps, does not refer
1015 to the corresponding entity. −

1016 The resulting capability state identified by cap_p violates %
1017 one or more implementation restrictions. −

1018 25.4.14.5 Cross-References

1019 cap_get_flag(), 25.4.16.

1020 25.4.15 Set the Process Capability State

1021 Function: cap_set_proc()

1022 25.4.15.1 Synopsis

1023 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

1024 iinntt ccaapp__sseett__pprroocc ((ccaapp__tt cap_p));;

1025 25.4.15.2 Description

1026 The function cap_set_proc() shall set the values for all capability flags for all capa-
1027 bilities defined in the implementation with the capability state identified by
1028 cap_p. The new capability state of the process shall be completely determined by
1029 the contents of cap_p upon successful return from this function. If any flag in
1030 cap_p is set for any capability not currently permitted for the calling process, the
1031 function shall fail, and the capability state of the process shall remain unchanged.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 191

1032 25.4.15.3 Returns

1033 Upon successful completion, the function shall return a value of zero. Otherwise,
1034 a value of −1 shall be returned and errno shall be set to indicate the error. Neither
1035 the state represented in the object identified by cap_p nor the capability state of
1036 the calling process shall be affected if the return value is −1.

1037 25.4.15.4 Errors

1038 If any of the following conditions occur, cap_set_proc() shall return −1 and set
1039 errno to the corresponding value:

1040 [EINVAL] The value of the cap_p argument does not refer to a capabil-
1041 ity state in working storage. −

1042 [EPERM] The caller attempted to set a capability flag of a capability
1043 that was not permitted to the invoking process.

1044 [ENOMEM] The function requires more memory than is allowed by the
1045 hardware or system-imposed memory management con-
1046 straints.

1047 25.4.15.5 Cross-References

1048 cap_get_proc(), 25.4.10. c

1049 25.4.16 Get the Size of a Capability Data Record

1050 Function: cap_size()

1051 25.4.16.1 Synopsis

1052 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

1053 ssssiizzee__tt ccaapp__ssiizzee ((ccaapp__tt cap_p))

1054 25.4.16.2 Description

1055 The cap_size() function returns the total length (in bytes) that the capability state
1056 in working storage identified by cap_p would require when converted by
1057 cap_copy_ext(). This function is used primarily to determine the amount of buffer
1058 space that must be provided to the cap_copy_ext() function in order to hold the
1059 capability data record created from cap_p .

1060 25.4.16.3 Returns

1061 Upon successful completion, the cap_size() function returns the length required to
1062 hold a capability data record. Otherwise, a value of (ssize_t)−1 shall be returned c
1063 and errno shall be set to indicate the error.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

192 25 Capabilities

1064 25.4.16.4 Errors

1065 If any of the following conditions occur, cap_size() shall return −1 and set errno to
1066 one of the following values:

1067 [EINVAL] The value of the cap_p argument does not refer to a capabil-
1068 ity state in working storage. −

1069 25.4.16.5 Cross-References

1070 cap_copy_ext(), 25.4.2. c

1071 25.4.17 Convert a Capability State in Working Storage to Text

1072 Function: cap_to_text()

1073 25.4.17.1 Synopsis

1074 ##iinncclluuddee <<ssyyss//ccaappaabbiilliittyy..hh>>

1075 cchhaarr ∗∗ccaapp__ttoo__tteexxtt ((ccaapp__tt cap_p,, ssiizzee__tt ∗∗len_p));; c c

1076 25.4.17.2 Description

1077 This function shall convert the capability state in working storage identified by
1078 cap_p into a null terminated human-readable string. This function allocates any
1079 memory necessary to contain the string, and returns a pointer to the string. If the
1080 pointer len_p is not (size_t)NULL, the function shall also return the full length of c
1081 the string (not including the null terminator) in the location pointed to by len_p.
1082 The capability state in working storage identified by cap_p shall be completely
1083 represented in the returned character string.

1084 The format of the string pointed to by the returned pointer shall comply with the c
1085 specification in 25.3.

1086 This function may cause memory to be allocated. The caller should free any
1087 releasable memory, when the capability state in working storage is no longer
1088 required, by calling cap_free() with the cap_t as an argument.

1089 25.4.17.3 Returns

1090 Upon successful completion, a non-NULL value is returned. Otherwise, a value ofc
1091 (char ∗)NULL shall be returned and errno shall be set to indicate the error.

1092 25.4.17.4 Errors

1093 If any of the following conditions occur, cap_to_text() shall return (char ∗)NULL c
1094 and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

25.4 Functions 193

1095 [EINVAL] Either the cap_p argument does not refer to a capability
1096 state in working storage or the len_p argument is invalid, or−
1097 both.

1098 [ENOMEM] The string to be returned requires more memory than is
1099 allowed by the hardware or system-imposed memory
1100 management constraints. −

1101 25.4.17.5 Cross-References

1102 cap_free(), 25.4.5; cap_get_flag(), 25.4.16; cap_from_text(), 25.4.6. c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

194 25 Capabilities

1 Section 26: Mandatory Access Control

2 26.1 General Overview

3 This section describes the Mandatory Access Control Option. The section defines
4 and discusses MAC concepts, outlines the MAC policy adopted in this standard
5 and the impact of MAC on existing POSIX.1 functions. Support for the interfaces
6 defined in this section is optional but shall be provided if the symbol
7 {_POSIX_MAC} is defined.

8 26.1.1 MAC Concepts

9 MAC Labels

10 MAC labels form the basis for mandatory access control decisions. In order to
11 promote flexibility in which conforming implementations may define a MAC pol-
12 icy, specific components of MAC labels and their textual representations are
13 implementation-defined.

14 Label Relationships

15 Two relationships are defined between MAC labels: equivalence , and dominance .
16 The details of dominance are left to the definition of the conforming implementa-
17 tion, however the dominance relation shall constitute a partial order on MAC
18 labels. Equivalence is defined relative to dominance . If two MAC labels are
19 equivalent, then each dominates the other.

20 MAC Objects

21 MAC objects are the interface-visible data containers, i.e., entities that receive or
22 contain data, to which MAC is applied. In POSIX.1, these include the following:

23 Files

24 This includes regular files, directories, FIFO-special files, and (unnamed)
25 pipes.

26 Processes

27 In cases where a process is the target of some request by another process,
28 that target process shall be considered an object.

29 MAC Subjects

30 A subject is an active entity that can cause information to flow between controlled
31 objects. Since processes are the only such interface-visible element of POSIX.1

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.1 General Overview 195

32 they are the only subjects treated in this document.

33 26.1.2 MAC Policy

34 The MAC policy presented below is logically structured into the following named
35 policies:

36 P: The fundamental statement of mandatory access control policy

37 FP.∗: The refinements of P that apply to file objects (FP.1, FP.2, etc.)

38 PP.∗: The refinements of P that apply to process objects

39 The following labeling requirement shall be imposed:

40 Each subject and each object shall have a MAC label associated with it at all
41 times.

42 A physically unique MAC label is not required to be associated with each subject
43 and object. The requirement is only that a MAC label shall always be associated
44 with each subject and object. For example, all files in a file system could share a
45 single MAC label.

46 Policies for initial assignment and constraints on the changing of MAC labels are
47 given in the refining policies below.

48 The fundamental MAC restriction P is simply stated:

49 P: Subjects cannot cause information labeled at some MAC label L1 to
50 become accessible to subjects at L2 unless L2 dominates L1.

51 This covers all data entities visible at the POSIX.1e interface, and includes res-
52 trictions on re-labeling data, i.e., changing the label of an object, as well as move-
53 ment of that data between objects. P covers all forms of data transmission visible
54 through the POSIX interface.

55 There are several important exceptions or limitations to the application of P and
56 its refinements to POSIX.1 functions:

57 Covert Channel Exceptions

58 Policy statement P strictly requires that there be no covert channels. Con-
59 sistent with this policy statement the new POSIX.1e functions and the
60 changes to existing POSIX.1 functions have been specified such that covert
61 channels are not inherent in their definition. This standard does not require
62 conforming implementations to be free of covert channels.

63 Processes Possessing Appropriate Privileges

64 Implicit in the statement of P is the assumption that none of the policies need
65 necessarily apply to processes possessing appropriate privilege unless expli-
66 citly stated. If {_POSIX_CAP} is defined, the list of capabilities that satisfy
67 the appropriate privilege requirements are defined in this standard in section
68 25.2.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

196 26 Mandatory Access Control

69 Devices

70 The MAC policy on devices may have additional restrictions or refinements
71 not addressed here. The MAC policy on devices is unspecified.

72 Additional Implementation Restrictions

73 It is understood that a conforming implementation may enforce additional
74 security restrictions consistent with these policies.

75 26.1.2.1 FP: File Function Policies

76 Mandatory access control for files results from the application of basic policies
77 (FP.∗) to a simple assumption of the file data object. The straightforward appli-
78 cation of these rules to the object model determines the specific MAC restrictions
79 for a large number of file-related interfaces. The object that encompasses a
80 POSIX.1 file shall be defined to consist of a data portion and an attribute portion.
81 For the purposes of mandatory access control, the following assumption is made:

82 Both the data and attribute portion of a file are considered a single MAC-
83 labeled data container. Note that the MAC label shall be considered to be in
84 the attribute portion.

85 Note that, within this standard, and as a basis for defining interface behavior,
86 link names are considered as the contents of directories, and are not a property of
87 the file that they indicate. They are protected by and considered labeled at the
88 MAC label of their containing directory.

89 The following policy rules apply:

90 FP.1: The MAC label of a file shall be dominated by the MAC label of a sub-
91 ject for the subject to read the data or attributes of a file.

92 FP.2: The MAC label of a file shall dominate the MAC label of a subject for
93 the subject to write the data or attributes of a file.

94 The general POSIX.1e mandatory access control policy shall be that
95 subjects may write objects if the MAC label of the subject is dominated
96 by the object’s MAC label. In accordance with the policy in 2.3.2 that
97 further restrictions may be placed on a policy, an implementation could
98 choose to be more restrictive by allowing a subject to write to a file only
99 when the MAC labels are equivalent.

100 FP.3: If reading from a FIFO-special file changes either the attributes or the
101 data of the FIFO object, both FP.1 and FP.2 shall be satisfied.

102 FP.4: A newly created object shall be assigned a MAC label which dominates
103 the MAC label of the creating subject.

104 The general POSIX.1e mandatory access control policy shall be that
105 newly created objects shall be assigned a MAC label which dominates

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.1 General Overview 197

106 the MAC label of the creating subject. Although this policy statement
107 allows creation of upgraded objects, this standard only provides inter-
108 faces which will create objects with equivalent MAC labels to the MAC
109 label of the creating subject.

110 The MAC label of a file object cannot be modified in violation of P, e.g., processes
111 which do not possess appropriate privilege cannot downgrade the label of a file
112 object.

113 (Unnamed) pipes are considered objects, although they are not addressable by
114 pathname.

115 26.1.2.1.1 Summary of POSIX.1 System Interface Impact

116 This policy shall be applied to the POSIX.1 functions listed in Table 26-1.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

198 26 Mandatory Access Control

117 Table 26-1 − POSIX.1 Functions Covered by MAC File Policies
118 Existing POSIX.1
119 Function Section120 ii
121 access 5.6.3
122 chdir 5.2.1
123 chmod 5.6.4
124 chown 5.6.5
125 creat 5.3.2
126 execl 3.1.2
127 execv 3.1.2
128 execle 3.1.2
129 execve 3.1.2
130 execlp 3.1.2
131 execvp 3.1.2
132 fcntl 6.5.2
133 getcwd 5.2.2
134 link 5.3.4
135 mkdir 5.4.1
136 mkfifo 5.4.2
137 open 5.3.1
138 opendir 5.1.2
139 pipe 6.1.1
140 rename 5.5.3
141 rmdir 5.5.2
142 stat 5.6.2
143 unlink 5.5.1
144 utime 5.6.6

145 New POSIX.1e
146 Function Synopsis147 ii

148 Delete a Default ACL of a File149 acl_delete_def_file
150 Get an ACL of an Open File151 acl_get_fd
152 Get an ACL of a File153 acl_get_file
154 Set an ACL of an Open File155 acl_set_fd
156 Set an ACL of a File157 acl_set_file
158 Get the Information Label of an Open File159 inf_get_fd
160 Get the Information Label of a File161 inf_get_file
162 Set the Information Label of an Open File163 inf_set_fd
164 Set the Information Label of a File165 inf_set_file
166 Get the MAC Label of an Open File167 mac_get_fd
168 Get the MAC Label of a File169 mac_get_file
170 Set the MAC Label of an Open File171 mac_set_fd
172 Set the MAC Label of a File +173 mac_set_file
174 Get the Capability State of an Open File175 cap_get_fd
176 Get the Capability State of a File177 cap_get_file
178 Set the Capability State of an Open File179 cap_set_fd
180 Set the Capability State of a File181 cap_set_file

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.1 General Overview 199

182 26.1.2.2 PP: Process Function Policies

183 Mandatory access control for processes stems from the application of the basic
184 MAC restriction to the affected POSIX.1 functions. When treated as an object,
185 the process shall consist of its internal data (including the environment data), its
186 executable image, and its status information.

187 The following policy rules apply:

188 PP.1: No process at MAC label L1 may write to a process at label L2 unless L2

189 dominates L1.

190 PP.2: A newly created process shall be assigned a MAC label which dominates
191 the MAC label of the creating process.

192 The general POSIX.1 mandatory access control policy shall be that newly
193 created processes shall be assigned a MAC label which dominates the
194 MAC label of the creating process. Although this policy statement allows
195 creation of upgraded processes, this standard only provides interfaces
196 which create processes with equivalent MAC labels as the creating pro-
197 cess.

198 The MAC label of a process cannot be altered in violation of P, e.g., a process
199 which do not possess appropriate privilege cannot downgrade its own MAC label.

200 26.1.2.2.1 POSIX.1 Functions Covered by MAC Process Policies

201 This policy shall be applied to the POSIX.1 functions listed in Table 26-2.

202 Table 26-2 − POSIX.1 Functions Covered by MAC Process Policies
203 Existing POSIX.1
204 Function Section205 iii
206 fork 3.1.1
207 kill 3.3.2

208 New POSIX.1e
209 Function Synopsis210 iii
211 Set the Process Label212 mac_set_proc

213 26.2 Header

214 Some of the data types used by the MAC label functions are not defined as part of
215 this standard, but shall be implementation-defined. If {_POSIX_MAC} is defined,
216 these types shall be defined in the header <<ssyyss//mmaacc..hh>>, which contains
217 definitions for at least the following type: mac_t.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

200 26 Mandatory Access Control

218 26.2.1 mac_t

219 This type defines a pointer to an "exportable" object capable of holding a MAC
220 label. The object is opaque, persistent, and self-contained. It shall be possible to
221 create an independent copy of the entire MAC label in a user-defined location
222 using normal byte-copy of mac_size() bytes starting at the location pointed to by
223 the mac_t. It shall be possible to byte-copy the copy back into system-managed
224 space, and recommence processing of it there, even if the copy has been stored in
225 a file or elsewhere, or moved to a different process. The internal structure of the
226 MAC label is otherwise unspecified.

227 26.3 Functions

228 The functions in this section comprise the set of services that permit processes to
229 retrieve, compare, set, and convert MAC labels. Support for the functions and
230 policy described in this section is optional. If the symbol {_POSIX_MAC} is c
231 defined, the implementation supports the Mandatory Access Control (MAC) labels c
232 option and all of the MAC functions shall be implemented as described in this sec-c
233 tion. If {_POSIX_MAC} is not defined, the result of calling any of these functions c
234 is unspecified.

235 The error [ENOTSUP] shall be returned in those cases where the system supports
236 MAC labeling but the particular MAC label operation cannot be applied because
237 of restrictions imposed by the implementation. −

238 26.3.1 Test MAC Labels for Dominance

239 Function: mac_dominate()

240 26.3.1.1 Synopsis

241 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

242 iinntt mmaacc__ddoommiinnaattee ((mmaacc__tt labela,, mmaacc__tt labelb));;

243 26.3.1.2 Description

244 The function mac_dominate() determines whether labela dominates labelb. The
245 precise method for determining domination is implementation-defined.

246 This function is provided to allow conforming applications to test for dominance
247 since a comparison of the labels themselves may yield an indeterminate result.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.3 Functions 201

248 26.3.1.3 Returns

249 If an error occurs, the mac_dominate() function shall return a value of −1 and
250 errno shall be set to indicate the error. Otherwise, a value of 1 shall be returned
251 if label labela dominates labelb, and a value of 0 shall be returned if labela does
252 not dominate labelb.

253 26.3.1.4 Errors

254 If any of the following conditions occur, the mac_dominate() function shall return
255 −1 and set errno to the corresponding value:

256 [EINVAL] At least one of the labels is not a valid MAC label as defined by −
257 mac_valid(). −

258 26.3.1.5 Cross-References

259 mac_equal(), 26.3.2; mac_valid(), 26.3.15. c

260 26.3.2 Test MAC Labels for Equivalence

261 Function: mac_equal()

262 26.3.2.1 Synopsis

263 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

264 iinntt mmaacc__eeqquuaall ((mmaacc__tt labela,, mmaacc__tt labelb));;

265 26.3.2.2 Description

266 The function mac_equal() determines whether labela is equivalent to labelb. The
267 precise method for determining equivalence is implementation-defined.

268 This function is provided to allow conforming applications to test for equivalence
269 since a comparison of the labels themselves may yield an indeterminate result.

270 26.3.2.3 Returns

271 If an error occurs, a value of −1 shall be returned and errno shall be set to indicate
272 the error. Otherwise, the mac_equal() function returns 1 if labela is equivalent toc
273 labelb, and a value of 0 shall be returned if labela is not equivalent to labelb. c

274 26.3.2.4 Errors

275 If any of the following conditions occur, the mac_equal() function shall return −1
276 and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

202 26 Mandatory Access Control

277 [EINVAL] At least one of the labels is not a valid MAC label as defined by −
278 mac_valid(). −

279 26.3.2.5 Cross-References

280 mac_dominate(), 26.3.1; mac_valid(), 26.3.15. c

281 26.3.3 Free MAC Label Storage Space

282 Function: mac_free()

283 26.3.3.1 Synopsis

284 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

285 iinntt mmaacc__ffrreeee ((vvooiidd ∗buf_p));;

286 26.3.3.2 Description

287 The function mac_free() shall free any releasable memory currently allocated to
288 the buffer identified by buf_p . The buf_p argument may be either a (void∗)mac_t, c
289 or a (void∗)char∗ allocated by the mac_to_text() function. c

290 26.3.3.3 Returns

291 Upon successful completion, the function mac_free() returns a value of 0. Other- c
292 wise, a value of −1 is returned and errno is set to indicate the error.

293 26.3.3.4 Errors

294 This standard does not specify any error conditions that are required to be c
295 detected for the mac_free() function. Some errors may be detected under condi- c
296 tions that are unspecified by this part of the standard.

297 26.3.3.5 Cross-References

298 mac_from_text(), 26.3.4; mac_get_fd(), 26.3.5; mac_get_file(), 26.3.6; c
299 mac_get_proc(), 26.3.7; mac_glb(), 26.3.8; mac_lub(), 26.3.9. c

300 26.3.4 Convert Text MAC Label to Internal Representation

301 Function: mac_from_text()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.3 Functions 203

302 26.3.4.1 Synopsis

303 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

304 mmaacc__tt mmaacc__ffrroomm__tteexxtt ((ccoonnsstt cchhaarr ∗∗text_p));;

305 26.3.4.2 Description

306 The function mac_from_text() converts the text representation of a MAC label
307 text_p into its internal representation.

308 This function may cause memory to be allocated. The caller should free any
309 releasable memory, when the MAC label is no longer required, by calling
310 mac_free() with the mac_t as an argument. In event an error occurs, no memory
311 shall be allocated and NULL shall be returned.

312 26.3.4.3 Returns

313 Upon successful completion, the function mac_from_text() shall return a pointer c
314 to the MAC label. Otherwise, no space shall be allocated, a (mac_t) NULL pointerc
315 shall be returned, and errno shall be set to indicate the error.

316 26.3.4.4 Errors

317 If any of the following conditions occur, the mac_from_text() function shall return
318 a NULL pointer and set errno to the corresponding value:

319 [EINVAL] The string text_p is not a valid textual representation of a MAC
320 label as defined by mac_valid(). −

321 [ENOMEM] The MAC label requires more memory than is allowed by the
322 hardware or system-imposed memory management constraints. −

323 26.3.4.5 Cross-References

324 mac_free(), 26.3.3; mac_valid(), 26.3.15. c

325 26.3.5 Get the Label of a File Designated by a File Descriptor

326 Function: mac_get_fd()

327 26.3.5.1 Synopsis

328 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

329 mmaacc__tt mmaacc__ggeett__ffdd ((iinntt fildes))

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

204 26 Mandatory Access Control

330 26.3.5.2 Description

331 The mac_get_fd() function returns the MAC label associated with an open file.
332 The function accepts a valid file descriptor to the file, allocates memory in which
333 to store the MAC label to be returned and copies the file MAC label into the allo-
334 cated memory.

335 A process can get the MAC label for any file for which the process has a valid file
336 descriptor and MAC read access.

337 This function may cause memory to be allocated. The caller should free any
338 releasable memory, when the MAC label is no longer required, by calling
339 mac_free() with the mac_t as an argument. In event an error occurs, no memory
340 shall be allocated and NULL shall be returned.

341 26.3.5.3 Returns

342 Upon successful completion, the function shall return a pointer to the MAC label. c
343 Otherwise, no space shall be allocated, a (mac_t)NULL pointer shall be returned c
344 and errno shall be set to indicate the error.

345 26.3.5.4 Errors

346 If any of the following conditions occur, the mac_get_fd() function shall return a c
347 (mac_t)NULL and set errno to the corresponding value:

348 [EACCES] MAC read access is denied to the file referred to by fildes.

349 [EBADF] The fildes argument is not a valid file descriptor.

350 [ENOMEM] The MAC label requires more memory than is allowed by the
351 hardware or system-imposed memory management constraints. −

352 26.3.5.5 Cross-References

353 mac_free(), 26.3.3; mac_get_file(), 26.3.6; mac_set_fd(), 26.3.10; mac_set_file(), c
354 26.3.11.

355 26.3.6 Get the Label of a File Designated by a Pathname

356 Function: mac_get_file()

357 26.3.6.1 Synopsis

358 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

359 mmaacc__tt mmaacc__ggeett__ffiillee ((ccoonnsstt cchhaarr ∗path_p));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.3 Functions 205

360 26.3.6.2 Description

361 The mac_get_file() function returns the MAC label associated with the pathname
362 pointed to by path_p. The function allocates memory in which to store the MAC
363 label to be returned and copies the file MAC label into the allocated memory.

364 A process can get the MAC label for any file for which the process has search
365 access to the path specified and MAC read access to the file.

366 This function may cause memory to be allocated. The caller should free any
367 releasable memory, when the MAC label is no longer required, by calling
368 mac_free() with the mac_t as an argument. In event an error occurs, no memory
369 shall be allocated and NULL shall be returned.

370 26.3.6.3 Returns

371 Upon successful completion, the function shall return a pointer to the MAC label. c
372 Otherwise, no space shall be allocated, a (mac_t)NULL pointer shall be returned c
373 and errno shall be set to indicate the error.

374 26.3.6.4 Errors

375 If any of the following conditions occur, the mac_get_file() function shall return a c
376 (mac_t)NULL and set errno to the corresponding value:

377 [EACCES] Search permission is denied for a component of the path prefix
378 or MAC read access to the file is denied.

379 [ENAMETOOLONG]
380 The length of the path_p argument exceeds {PATH_MAX} or a
381 pathname component is longer than {NAME_MAX} while
382 {POSIX_NO_TRUNC} is in effect.

383 [ENOENT] The named file/directory does not exist, or the path_p argument
384 points to an empty string.

385 [ENOMEM] The MAC label requires more memory than is allowed by the
386 hardware or system-imposed memory management constraints. −

387 [ENOTDIR] A component of the path prefix is not a directory.

388 26.3.6.5 Cross-References

389 mac_free(), 26.3.3; mac_get_fd(), 26.3.5; mac_set_fd(), 26.3.10; mac_set_file(), c
390 26.3.11.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

206 26 Mandatory Access Control

391 26.3.7 Get the Process Label

392 Function: mac_get_proc()

393 26.3.7.1 Synopsis

394 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

395 mmaacc__tt mmaacc__ggeett__pprroocc ((vvooiidd));; c c

396 26.3.7.2 Description

397 The mac_get_proc() function returns the MAC label associated with the request-
398 ing process. The function allocates memory in which to store the MAC label to be
399 returned and copies the process MAC label into the allocated memory.

400 Any process may so query its MAC label.

401 This function may cause memory to be allocated. The caller should free any
402 releasable memory, when the MAC label is no longer required, by calling
403 mac_free() with the mac_t as an argument. In event an error occurs, no memory
404 shall be allocated and NULL shall be returned.

405 26.3.7.3 Returns

406 Upon successful completion, mac_get_proc() returns a pointer to the MAC label of+
407 the process. Otherwise, no space shall be allocated, a (mac_t)NULL pointer shall c
408 be returned and errno shall be set to indicate the error.

409 26.3.7.4 Errors

410 If any of the following conditions occur, the mac_get_proc() function shall return a c
411 (mac_t)NULL and set errno to the corresponding value:

412 [ENOMEM] The MAC label requires more memory than is allowed by the
413 hardware or system-imposed memory management constraints. −

414 26.3.7.5 Cross-References

415 mac_free(), 26.3.3; mac_set_proc(), 26.3.12. c

416 26.3.8 Compute the Greatest Lower Bound

417 Function: mac_glb()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.3 Functions 207

418 26.3.8.1 Synopsis

419 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

420 mmaacc__tt mmaacc__ggllbb ((mmaacc__tt labela,, mmaacc__tt labelb));;

421 26.3.8.2 Description

422 The function mac_glb() returns a pointer to the (valid) MAC label, if it exists, that+
423 is dominated by both the MAC label labela and the MAC label labelb and dom-
424 inates all other valid MAC labels that are dominated by both the MAC label
425 labela and the MAC label labelb.

426 This function may cause memory to be allocated. The caller should free any
427 releasable memory, when the MAC label is no longer required, by calling
428 mac_free() with the mac_t as an argument. In event an error occurs, no memory
429 shall be allocated and NULL shall be returned.

430 26.3.8.3 Returns

431 Upon successful completion, this returns a pointer to the allocated bounding MACc
432 label. Otherwise, no space shall be allocated, a (mac_t)NULL pointer shall be c
433 returned, and errno shall be set to indicate the error.

434 26.3.8.4 Errors

435 If any of the following conditions occur, the mac_glb() function shall return a c
436 (mac_t)NULL and set errno to the corresponding value:

437 [EINVAL] At least one of the input labels is not a valid MAC label as −
438 defined by mac_valid().

439 [ENOENT] The bounding MAC label does not exist or is not valid. −

440 [ENOMEM] The MAC label requires more memory than is allowed by the
441 hardware or system-imposed memory management constraints. −

442 26.3.8.5 Cross-References

443 mac_free(), 26.3.3; mac_lub(), 26.3.9; mac_valid(), 26.3.15. c

444 26.3.9 Compute the Least Upper Bound

445 Function: mac_lub()

446 26.3.9.1 Synopsis

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

208 26 Mandatory Access Control

447 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

448 mmaacc__tt mmaacc__lluubb ((mmaacc__tt labela,, mmaacc__tt labelb));;

449 26.3.9.2 Description

450 The function mac_lub() returns a pointer to the (valid) MAC label (if it exists) c
451 that dominates both the MAC label labela and the MAC label labelb and is dom-
452 inated by all other valid MAC labels that dominate both the MAC label labela and
453 the MAC label labelb.

454 This function may cause memory to be allocated. The caller should free any
455 releasable memory, when the MAC label is no longer required, by calling
456 mac_free() with the mac_t as an argument. In event an error occurs, no memory
457 shall be allocated and NULL shall be returned.

458 26.3.9.3 Returns

459 Upon successful completion, this function shall return a pointer to the bounding c
460 MAC label. Otherwise, a (mac_t)NULL pointer shall be returned and errno shall c
461 be set to indicate the error.

462 26.3.9.4 Errors

463 If any of the following conditions occur, the mac_lub() function shall return a c
464 (mac_t)NULL and set errno to the corresponding value:

465 [EINVAL] At least one of the input labels is not a valid MAC label as −
466 defined by mac_valid().

467 [ENOENT] The bounding MAC label does not exist or is not valid. −

468 [ENOMEM] The MAC label requires more memory than is allowed by the
469 hardware or system-imposed memory management constraints. −

470 26.3.9.5 Cross-References

471 mac_free(), 26.3.3; mac_glb(), 26.3.8; mac_valid(), 26.3.15. c

472 26.3.10 Set the Label of a File Identified by File Descriptor

473 Function: mac_set_fd()

474 26.3.10.1 Synopsis

475 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

476 iinntt mmaacc__sseett__ffdd ((iinntt fildes, mmaacc__tt label));;

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.3 Functions 209

477 26.3.10.2 Description

478 This function sets the MAC label of a file to label. The function requires that
479 fildes be a valid file descriptor to indicate the file.

480 A process can set the MAC label for a file only if the process has a valid file
481 descriptor for the file and has MAC write access to the file. Additionally, only
482 processes with an effective user ID equal to the owner of the file or with appropri-
483 ate privileges may change the label of the file. If {_POSIX_CAP} is defined, then c
484 appropriate privilege shall include CAP_FOWNER.

485 The mac_set_fd() function shall fail if the new MAC label is not equivalent to the c
486 file’s previous label and the process does not possess appropriate privilege. If
487 {_POSIX_CAP} is defined, and the new MAC label dominates, but is not c
488 equivalent to the file’s previous MAC label, then appropriate privilege shall
489 include CAP_MAC_UPGRADE. If {_POSIX_CAP} is defined, and the new MAC c
490 label does not dominate the file’s previous MAC label then appropriate privilege
491 shall include CAP_MAC_DOWNGRADE.

492 It is implementation-defined whether an implementation will return [EBUSY] or
493 will perform revocation of access if other processes have current access to the file
494 at the time of MAC label modification.

495 26.3.10.3 Returns

496 Upon successful completion, the function shall return a value of 0. Otherwise, a
497 value of −1 shall be returned and errno shall be set to indicate the error.

498 26.3.10.4 Errors

499 If any of the following conditions occur, the mac_set_fd() function shall return −1
500 and set errno to the corresponding value:

501 [EACCES] MAC write access is denied to the file specified.

502 [EBADF] The fildes argument is not a valid file descriptor.

503 [EBUSY] The file named by the fildes argument is currently in a state in
504 which the implementation does not allow the label to be
505 changed.

506 [EINVAL] The MAC label label is not a valid MAC label as defined by −
507 mac_valid(). −

508 [ENOTSUP] {_POSIX_MAC} is defined, but this function is not supported on c
509 the file referred to by fildes, i.e., {_POSIX_MAC_PRESENT} is
510 not in effect for the file referred to by fildes.

511 [EPERM] An attempt was made to change the MAC label of a file and the
512 process does not possess appropriate privilege.

513 [EROFS] This function requires modification of a file system which is
514 currently read-only.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

210 26 Mandatory Access Control

515 26.3.10.5 Cross-References

516 mac_get_fd(), 26.3.5; mac_set_file(), 26.3.11; mac_valid(), 26.3.15. c

517 26.3.11 Set the Label of a File Designated by Pathname

518 Function: mac_set_file()

519 26.3.11.1 Synopsis

520 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

521 iinntt mmaacc__sseett__ffiillee ((ccoonnsstt cchhaarr ∗path_p, mmaacc__tt label));;

522 26.3.11.2 Description

523 This function sets the MAC label of the pathname pointed to by path_p to label.

524 A process can set the MAC label for a file only if the process has search access to
525 the path and has MAC write access to the file. Additionally, only processes with
526 an effective user ID equal to the owner of the file or with appropriate privileges
527 may change the label of the file. If {_POSIX_CAP} is defined, then appropriate c
528 privilege shall include CAP_FOWNER.

529 The mac_set_file() function shall fail if the new MAC label is not equivalent to the c
530 file’s previous MAC label and the process does not possess appropriate privilege.
531 If {_POSIX_CAP} is defined, and the new MAC label dominates, but is not c
532 equivalent to the file’s previous MAC label, then appropriate privilege shall
533 include CAP_MAC_UPGRADE. If {_POSIX_CAP} is defined, and the new MAC c
534 label does not dominate the file’s previous MAC label then appropriate privilege
535 shall include CAP_MAC_DOWNGRADE.

536 It is implementation-defined whether an implementation will return [EBUSY] or
537 will perform revocation of access if other processes have current access to the file
538 at the time of MAC label modification.

539 26.3.11.3 Returns

540 Upon successful completion, the function shall return a value of 0. Otherwise, a
541 value of −1 shall be returned and errno shall be set to indicate the error.

542 26.3.11.4 Errors

543 If any of the following conditions occur, the mac_set_file() function shall return −1
544 and set errno to the corresponding value:

545 [EACCES] Search permission is denied for a component of the path prefix
546 or MAC write access to the target file is denied.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.3 Functions 211

547 [EBUSY] The file or directory indicated by path_p is currently in a state in
548 which the implementation does not allow the label to be
549 changed.

550 [EINVAL] The MAC label label is not a valid MAC label as defined by −
551 mac_valid().

552 [ENAMETOOLONG]
553 The length of the path_p argument exceeds {PATH_MAX}, or a
554 pathname component is longer than {NAME_MAX} while
555 {POSIX_NO_TRUNC} is in effect.

556 [ENOENT] The named file/directory does not exist, or the path_p argument
557 points to an empty string. −

558 [ENOTDIR] A component of the path prefix is not a directory.

559 [ENOTSUP] {_POSIX_MAC} is defined, but this function is not supported on c
560 the file specified, i.e., {_POSIX_MAC_PRESENT} is not in effect
561 for the file specified.

562 [EPERM] An attempt was made to change the MAC label of a file and the
563 process does not possess appropriate privilege.

564 [EROFS] This function requires modification of a file system which is
565 currently read-only.

566 26.3.11.5 Cross-References

567 mac_get_file(), 26.3.6; mac_set_fd(), 26.3.10; mac_valid(), 26.3.15. c

568 26.3.12 Set the Process Label

569 Function: mac_set_proc()

570 26.3.12.1 Synopsis

571 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

572 iinntt mmaacc__sseett__pprroocc ((mmaacc__tt label));;

573 26.3.12.2 Description

574 The mac_set_proc() function is used to set (write) the MAC label of the requesting
575 process. The new label is specified by label. A process may only alter its MAC
576 label if it possesses appropriate privilege. If {_POSIX_CAP} is defined, then c
577 appropriate privilege shall include CAP_MAC_RELABEL_SUBJ.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

212 26 Mandatory Access Control

578 26.3.12.3 Returns

579 Upon successful completion, mac_set_proc() shall return a value of 0. Otherwise,
580 a value of −1 shall be returned and errno shall be set to indicate the error.

581 26.3.12.4 Errors

582 If any of the following conditions occur, the mac_set_proc() function shall return
583 −1 and set errno to the corresponding value:

584 [EINVAL] The MAC label label is not a valid MAC label as defined by −
585 mac_valid().

586 [EPERM] The process does not have appropriate privilege to perform the
587 operation requested.

588 26.3.12.5 Cross-References

589 mac_valid(), 26.3.15. c

590 26.3.13 Get the Size of a MAC Label

591 Function: mac_size()

592 26.3.13.1 Synopsis

593 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

594 ssssiizzee__tt mmaacc__ssiizzee ((mmaacc__tt label));; c c

595 26.3.13.2 Description

596 The mac_size() function returns the size in bytes of the MAC label specified by
597 label if the label is valid. Note: this is the size of the internal MAC label, not the
598 size of the text representation as produced by the mac_to_text() function.

599 26.3.13.3 Returns

600 Upon successful completion, this function shall return the size of the MAC label.
601 Otherwise, a value of −1 shall be returned and errno

602 26.3.13.4 Errors

603 If any of the following conditions occur, the mac_size() function shall return −1
604 and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.3 Functions 213

605 [EINVAL] The MAC label label is invalid as defined by mac_valid(). −

606 26.3.13.5 Cross-References

607 mac_valid(), 26.3.15. c

608 26.3.14 Convert Internal MAC Label to Textual Representation

609 Function: mac_to_text()

610 26.3.14.1 Synopsis

611 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

612 cchhaarr ∗∗mmaacc__ttoo__tteexxtt ((mmaacc__tt label,, ssiizzee__tt ∗∗len_p));; c c

613 26.3.14.2 Description

614 The function mac_to_text() converts the internal representation of the MAC label
615 pointed to by label into a human-readable, NULL terminated, character string.
616 The output of mac_to_text() shall be suitable for re-input as the text_p parameter
617 to mac_from_text() in 26.3.4, or as the label operand to the sseettffmmaacc utility as c
618 defined in section 11 of POSIX.2c on the same system or other systems with ident-
619 ical MAC label definitions. The function returns a pointer to the text representa- c
620 tion of the MAC label. If the pointer len_p is not NULL, the function shall return
621 the length of the string (not including the NULL terminator) in the location
622 pointed to by len_p.

623 This function may cause memory to be allocated. The caller should free any
624 releasable memory, when the text label is no longer required, by calling
625 mac_free() with the string address as an argument. In event an error occurs, no
626 memory shall be allocated and NULL shall be returned.

627 26.3.14.3 Returns

628 Upon successful completion, the function mac_to_text() returns a pointer to the c
629 text representation of the MAC label, and if the pointer len_p is not NULL,
630 returns the length of the string (not including the NULL terminator) in the loca-
631 tion pointer to by len_p. Otherwise, no memory shall be allocated, the memory
632 referred to by len_p shall be unchanged, a (char ∗) NULL pointer shall be c
633 returned and errno shall be set to indicate the error.

634 26.3.14.4 Errors

635 If any of the following conditions occur, the mac_to_text() function shall return a
636 NULL pointer and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

214 26 Mandatory Access Control

637 [EINVAL] The MAC label label is not a valid MAC label as defined by −
638 mac_valid().

639 [ENOMEM] The text to be returned requires more memory than is allowed
640 by the hardware or system-imposed memory management con-
641 straints. −

642 26.3.14.5 Cross-References

643 mac_from_text(), 26.3.4; mac_valid(), 26.3.15; sseettffmmaacc, POSIX.2c - 11.3. c

644 26.3.15 Label Validity

645 Function: mac_valid()

646 26.3.15.1 Synopsis

647 ##iinncclluuddee <<ssyyss//mmaacc..hh>>

648 iinntt mmaacc__vvaalliidd ((mmaacc__tt label));;

649 26.3.15.2 Description

650 The mac_valid() function determines if label is a valid MAC label. The meaning −
651 of validity is implementation-defined. −

652 26.3.15.3 Returns

653 Upon successful completion, the function shall return 1 if label is valid, and 0 if it−
654 is invalid. Otherwise a value of −1 shall be returned and errno is set to indicate
655 the error.

656 26.3.15.4 Errors

657 This standard does not specify any error conditions that are required to be c
658 detected for the mac_valid() function. Some errors may be detected under condi- c
659 tions that are unspecified by this part of the standard.

660 26.3.15.5 Cross-References

661 None.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

26.3 Functions 215

1 Section 27: Information Labeling

2 27.1 General Overview

3 This section describes the Information Label Option. The section defines and
4 discusses the information label concepts, outlines the information label policy
5 adopted in this standard, and outlines the impact of information labels on exist-
6 ing POSIX.1 functions. Support for the interfaces defined in this section is
7 optional but shall be provided if the symbol {POSIX_INF} is defined.

8 27.1.1 Information Label Concepts

9 Information Labels

10 The Information Label is the item visible at the POSIX.1 interface that is used for
11 associating labeling information with data. This labeling information is not
12 related to Mandatory Access Control, nor does the information labeling policies in
13 any way override the MAC or DAC options, if they are in effect.

14 In order to promote the flexibility with which conforming implementations may
15 define an information labeling policy, specific components of information labels
16 and their textual representation are not defined by this standard.

17 Information Label Relationships

18 Two relationships are defined between information labels: equivalence and domi-
19 nance. A conforming implementation must provide the interfaces for determining
20 whether two information labels have these relationships. Note that it would be
21 acceptable for a conforming implementation to implement information labels in
22 such a manner that no information label is equivalent to, nor dominates, any
23 information label other than itself. Thus, while interfaces for determining domi-
24 nance and equivalence must be provided, the detailed definitions of these rela-
25 tionships are left undefined.

26 Information Label Floating

27 The inf_float() operation is used in the statement of the information label policy.
28 The operation inf_float(inf_p1, inf_p2) returns an information label whose value is
29 dependent on the values of inf_p1 and inf_p2 and the implementation-defined
30 floating policy. The precise definition of inf_float() is left to the conforming imple-
31 mentation, however, its intended use is described in 27.1.2. (As a result of this
32 permitted flexibility, a conforming implementation could, for example, choose to
33 always return just inf_p2.)

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.1 General Overview 217

34 Information Label Subjects

35 In the broad sense, a subject is an active entity that can cause information of any
36 kind to flow between controlled objects. Since processes are the only such
37 interface-visible element in this standard, they are the only subjects treated in
38 the information label section.

39 Information Label Objects

40 Objects are passive entities that contain or receive data. Access to objects poten-
41 tially implies access to the data they contain. However, objects not only contain
42 data, but also possess attributes. The data portion of an object is that portion
43 that contains the bytes intended to be stored by the object (e.g., the bytes written
44 to a regular file comprise that file’s data portion). The attribute portion of an
45 object is that portion that contains descriptive, or control, information pertaining
46 to the object (e.g., a regular file’s access and modification times, permission bits,
47 length, and so forth). The granting of access to an object’s data and to that object’s
48 attributes may be based upon different criteria. Information labeling, as
49 described in greater detail below, relies on this distinction.

50 The objects to which information labeling applies include the data portion of the
51 following objects: regular files, FIFO-special files, and (unnamed) pipes. Note
52 that conforming implementations may choose to apply the information labeling
53 policy more broadly by including, for example, object attributes.

54 27.1.2 Information Label Policy

55 The information label policy presented below is logically structured into the fol-
56 lowing named policies:

57 I: The fundamental statement of information labeling

58 FI.∗: The refinements of I that apply to file objects (FI.1, FI.2, etc.)

59 PI.∗: The refinements of I that apply to process objects

60 The following information labeling requirement is imposed:

61 Each subject and each object that contains data, as opposed to attri-
62 butes (e.g., mandatory access control label and access time), shall have
63 as an additional attribute an information label at all times.

64 Policies for initial assignment and constraints on the changing of information
65 labels are given in the refining policies below.

66 The fundamental information label policy I is:

67 I: When subjects cause data (as opposed to attributes) to flow from a
68 source with information label inf_p1 to a destination with informa-
69 tion label inf_p2, the destination’s information label shall be
70 automatically set to the value returned by inf_float (inf_p1, inf_p2).

71 There are several important exceptions or limitations to the application of I and
72 its refinements to POSIX.1 functions:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

218 27 Information Labeling

73 Processes Possessing Appropriate Privilege

74 Implicit in the statement of I is the assumption that none of the policies
75 need necessarily apply to processes possessing appropriate privilege
76 unless explicitly stated. If {POSIX_CAP} is defined, the list of capabili-
77 ties that satisfy the appropriate privilege requirements are defined by
78 this standard in section 25.2. Note that conforming implementations
79 can further restrict the policies that can be bypassed using capabilities.
80 For example, if {POSIX_CAP} is defined, the effect of the
81 CAP_INF_RELABEL_OBJ capability may be limited to a range of infor-
82 mation labels, where such a range is implementation defined.

83 Additional Implementation-Defined Floating

84 It is understood that a conforming implementation may cause the float-
85 ing described above through the automatic application of the inf_float()
86 operation to occur at other times in addition to those covered by the gen-
87 eral policy. Additionally it may cause other changes (including ‘‘down-
88 ward’’ adjustments) of information labels under implementation-defined
89 circumstances.

90 27.1.2.1 FI: File Function Policies

91 Information labeling for files results from the application of basic policies (FI.∗) to
92 the file data object. The straightforward application of these rules to the object
93 model determines the specific information label restrictions for a large number of
94 file-related interfaces.

95 The object that encompasses a POSIX.1 file is defined to consist of a data portion,
96 and an attribute portion that contains the POSIX-defined attributes including the
97 information label. For the purposes of information labeling, the information label
98 of a file applies only to the data portion of the file.

99 The following policy rules apply:

100 FI.1: When an process with information label inf_p1 writes data to a file with
101 information label inf_p2, the information label of the file shall automati-
102 cally be set to the value returned by inf_float(inf_p1, inf_p2).

103 FI.2: The information label of a newly created file object shall automatically be
104 set to a value that dominates the value returned by inf_default().

105 A conforming implementation may modify these policy rules for certain objects.
106 For example, some objects may be designated ‘‘non-floating.’’ The information
107 label of these objects will not change on process writes. Other objects may support
108 additional or finer-grained labeling which will modify the application of FI.1 (as
109 well as PI.1 below.) Precisely which objects are subject to modified rules is
110 implementation-defined.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.1 General Overview 219

111 27.1.2.1.1 POSIX.1 Functions Covered by IL File Policies

112 This policy is applied to the following POSIX.1 functions:

113 Table 27-1 − POSIX.1 Functions Covered by Information Label File Policies

114 Existing POSIX.1
115 Function Section116 iii

117 creat 5.3.2
118 mkfifo 5.4.2
119 open 5.3.1
120 pipe 6.1.1
121 write 6.4.2

122 New POSIX.1e
123 Function Synopsis124 iii

125 aud_write Write an Audit Record
126 inf_get_fd Get the Information Label of a File Identified by File Descriptor
127 inf_get_file Get the Information Label of a File Identified by Pathname
128 inf_set_fd Set the Information Label of a File Identified by File Descriptor
129 inf_set_file Set the Information Label of a File Identified by Pathname

130 27.1.2.2 PI: Process Function Policies

131 Information labeling for processes stems from the application of the basic infor-
132 mation label policy to the few affected POSIX.1 functions.

133 When treated as an object, the process shall consist of its internal data (including
134 the environment data), its executable image, and its status information.

135 The following policy rules apply:

136 PI.1: When a process with information label inf_p1 reads data from a file with
137 information label inf_p2, the information label of the process shall be
138 automatically set to the value returned by inf_float(inf_p2, inf_p1).

139 PI.2: When a process with information label inf_p1 executes a file with infor-
140 mation label inf_p2, the information label of the process shall be
141 automatically set to the value returned by inf_float(inf_p2, inf_p1).

142 PI.3: A newly created process shall be assigned the information label of the
143 creating subject (process).

144 As mentioned previously, a conforming implementation may modify these rules
145 for certain objects. For example, some objects may support additional or finer-
146 grained labeling which will modify the application of PI.1. Precisely which
147 objects are subject to modified rules is implementation defined.

148 27.1.2.2.1 POSIX.1 Functions Covered by IL Process Policies

149 This policy is applied to the following POSIX.1 functions:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

220 27 Information Labeling

150 Table 27-2 − POSIX.1 Functions Covered by Information Label Process Policies

151 Existing POSIX.1
152 Function Section153 iii

154 execl 3.1.2
155 execv 3.1.2
156 execle 3.1.2
157 execve 3.1.2
158 execlp 3.1.2
159 execvp 3.1.2
160 fork 3.1.1
161 read 6.4.1

162 New POSIX.1e
163 Function Synopsis164 iii

165 aud_read Read an Audit Record
166 inf_get_proc Get the Process Information Label
167 inf_set_proc Set the Process Information Label

168 27.2 Header

169 Some of the data types used by the information label functions are not defined as
170 part of this standard, but shall be implementation-defined. If {POSIX_INF} is
171 defined, these types shall be defined in the header <<ssyyss//iinnff..hh>>, which contains
172 definitions for at least the following type.

173 27.2.1 inf_t

174 This type defines a pointer to an ‘‘exportable’’ object containing an information
175 label. The object is opaque, persistent, and self-contained. Thus, the object can be
176 copied by duplicating the bytes without knowledge of any underlying structure.

177 27.3 Functions

178 The functions in this section comprise the set of services that permit a process to
179 get, set, and manipulate information labels. Support for the information label
180 facility functions described in this section is optional. If the symbol
181 {_POSIX_INF} is defined, the implementation supports the information label c
182 option and all of the information label functions shall be implemented as
183 described in this section. If {_POSIX_INF} is not defined, the result of calling any c
184 of these functions is unspecified.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.3 Functions 221

185 The error [ENOTSUP] shall be returned in those cases where the system supports
186 the information label facility but the particular information label operation can-
187 not be applied because of restrictions imposed by the implementation. −

188 27.3.1 Initial Information Label

189 Function: inf_default()

190 27.3.1.1 Synopsis

191 ##iinncclluuddee <<ssyyss//iinnff..hh>>

192 iinnff__tt iinnff__ddeeffaauulltt ((vvooiidd)) c c

193 27.3.1.2 Description

194 The inf_default() function returns a pointer to an information label with an initial+
195 information label value that a conforming application may associate with newly-
196 created or fully truncated objects.

197 The system may allocate space for the information label to be returned. The
198 caller should free any releasable memory when the new label is no longer
199 required by calling inf_free() with the inf_t as an argument. In the event an errorc
200 occurs, no memory shall be allocated and (inf_t)NULL shall be returned. c

201 The precise method by which this label is determined is implementation-defined
202 and therefore may vary arbitrarily (e.g., based on process ID). As a result, the ini-
203 tial information label may not be the same on all newly created objects. However,
204 this label is guaranteed to be a valid label which, if applied to a newly-created
205 object, will be consistent with the implementation’s information label policy.

206 27.3.1.3 Returns

207 The function inf_default() returns a pointer to the initial information label unless c
208 one of the errors below occurs, in which case no space is allocated, a value of c
209 (inf_t)NULL is returned, and errno is set to indicate the error.

210 27.3.1.4 Errors

211 If any of the following conditions occur, the inf_default() function shall return a
212 value of (inf_t)NULL and set errno to the corresponding value: c

213 [ENOMEM] The label to be returned required more memory than was
214 allowed by the hardware or by system-imposed memory manage-
215 ment constraints. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

222 27 Information Labeling

216 27.3.1.5 Cross-References

217 inf_free(), 27.3.5; inf_set_fd(), 27.3.10; inf_set_file(), 27.3.11.

218 27.3.2 Test Information Labels For Dominance

219 Function: inf_dominate()

220 27.3.2.1 Synopsis

221 ##iinncclluuddee <<ssyyss//iinnff..hh>>

222 iinntt iinnff__ddoommiinnaattee ((iinnff__tt labela,, iinnff__tt labelb));; c c

223 27.3.2.2 Description

224 The inf_dominate() function determines whether labela dominates labelb. The
225 precise method for determining dominance is implementation-defined. Domi-
226 nance includes equivalence. Hence, if one label is equivalent to another, then c
227 each shall dominate the other. Note that it is possible for neither of two labels to
228 dominate the other. −

229 27.3.2.3 Returns

230 The function inf_dominate() returns 1 if labela dominates labelb. A value of 0 is
231 returned if labela does not dominate labelb. Otherwise, a result of −1 is returned,
232 and errno is set to indicate the error.

233 27.3.2.4 Errors

234 If any of the following conditions occur, the inf_dominate() function shall return
235 −1 and set errno to the corresponding value:

236 [EINVAL] One or both of the labels is not a valid information label as
237 defined by inf_valid(). −

238 27.3.2.5 Cross-References

239 inf_equal(), 27.3.3; inf_valid(), 27.3.15.

240 27.3.3 Test Information Labels For Equivalence

241 Function: inf_equal()

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.3 Functions 223

242 27.3.3.1 Synopsis

243 ##iinncclluuddee <<ssyyss//iinnff..hh>>

244 iinntt iinnff__eeqquuaall ((iinnff__tt labela,, iinnff__tt labelb));; c c

245 27.3.3.2 Description

246 The inf_equal() function determines whether labela is equivalent to labelb. The
247 precise method for determining equivalence is implementation-defined.

248 This function is provided to allow conforming applications to test for equivalence
249 since a comparison of the labels themselves may yield an indeterminate result. c

250 27.3.3.3 Returns

251 The function inf_equal() returns 1 if labela is equivalent to labelb. A value of 0 is
252 returned if labela not equivalent to labelb. Otherwise, a value of −1 is returned, c
253 and errno is set to indicate the error.

254 27.3.3.4 Errors

255 If any of the following conditions occur, the inf_equal() function shall return −1
256 and set errno to the corresponding value:

257 [EINVAL] One or both of the labels is not a valid information label as
258 defined by inf_valid(). −

259 27.3.3.5 Cross-References

260 inf_dominate(), 27.3.2; inf_valid(), 27.3.15.

261 27.3.4 Floating Information Labels

262 Function: inf_float()

263 27.3.4.1 Synopsis

264 ##iinncclluuddee <<ssyyss//iinnff..hh>>

265 iinnff__tt iinnff__ffllooaatt ((iinnff__tt labela,, iinnff__tt labelb));; c c

266 27.3.4.2 Description

267 The inf_float() function returns a pointer to an information label that represents a+
268 combination of labela and labelb in a manner dependent on the implementation-
269 defined floating policy.

270 The system may allocate space for the information label to be returned. The
271 caller should free any releasable memory when the new label is no longer
272 required by calling inf_free() with the returned inf_t as an argument. In the +

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

224 27 Information Labeling

273 event an error occurs, no memory shall be allocated and (inf_t)NULL shall be c
274 returned.

275 Note, that the notion of floating presupposes the introduction of data with one
276 label into a separately labeled subject or object. The labela argument represents
277 the information label of the data being introduced, the argument labelb
278 represents the subject’s or object’s current information label.

279 27.3.4.3 Returns

280 Upon successful completion, this function returns a pointer to the new informa- −
281 tion label. Otherwise, no space is allocated, a value of (inf_t)NULL is returned, c
282 and errno is set to indicate the error.

283 27.3.4.4 Errors

284 If any of the following conditions occur, the inf_float() function shall return a
285 value of (inf_t)NULL and set errno to the corresponding value: c

286 [EINVAL] One or both of the labels is not a valid information label as
287 defined by inv_valid()

288 [ENOMEM] The label to be returned required more memory than was
289 allowed by the hardware or by system-imposed memory manage-
290 ment constraints. −

291 27.3.4.5 Cross-References

292 inf_free(), 27.3.5; inf_valid(), 27.3.15.

293 27.3.5 Free Allocated Information Label Memory

294 Function: inf_free()

295 27.3.5.1 Synopsis

296 ##iinncclluuddee <<ssyyss//iinnff..hh>>

297 iinntt iinnff__ffrreeee ((vvooiidd ∗∗buf_p));; c c

298 27.3.5.2 Description

299 The inf_free() function frees any releasable memory currently allocated to the
300 buffer identified by buf_p. The buf_p argument may be either a (void∗)inf_t, or a c
301 (void∗)char∗ allocated by the inf_to_text() function.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.3 Functions 225

302 27.3.5.3 Returns

303 Upon successful completion, the function inf_free() returns a value of 0. Other- c
304 wise, a value of −1 is returned and errno is set to indicate the error.

305 27.3.5.4 Errors

306 This standard does not specify any error conditions that are required to be c
307 detected for the inf_free() function. Some errors may be detected under conditions c
308 that are unspecified by this part of the standard.

309 27.3.5.5 Cross-References

310 inf_default(), 27.3.1; inf_float(), 27.3.4; inf_get_fd(), 27.3.7; inf_get_file(), 27.3.8;
311 inf_get_proc(), 27.3.9; inf_from_text(), 27.3.6; inf_to_text(), 27.3.14.

312 27.3.6 Convert Text Label to Internal Representation

313 Function: inf_from_text()

314 27.3.6.1 Synopsis

315 ##iinncclluuddee <<ssyyss//iinnff..hh>>

316 iinnff__tt iinnff__ffrroomm__tteexxtt ((ccoonnsstt cchhaarr ∗∗text_p));; c c

317 27.3.6.2 Description

318 The inf_from_text() function converts the text representation of an information
319 label, text_p into its internal representation, and returns a pointer to a copy of the
320 internal representation.

321 The system may allocate space for the information label to be returned. The
322 caller should free any releasable memory when the new label is no longer
323 required by calling inf_free() with the inf_t as an argument. In the event an errorc
324 occurs, no memory shall be allocated and (inf_t)NULL shall be returned. c

325 27.3.6.3 Returns

326 Upon successful completion, this function returns a pointer to the information −
327 label. Otherwise, no space is allocated, a value of (inf_t)NULL is returned, and c
328 errno is set to indicate the error.

329 27.3.6.4 Errors

330 If any of the following conditions occur, the inf_from_text() function shall return a
331 value of (inf_t)NULL and set errno to the corresponding value: c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

226 27 Information Labeling

332 [EINVAL] text_p is not a valid textual representation of an information
333 label as defined by inf_valid().

334 [ENOMEM] The label to be returned required more memory than was
335 allowed by the hardware or by system-imposed memory manage-
336 ment constraints. −

337 27.3.6.5 Cross-References

338 inf_free(), 27.3.5; inf_to_text(), 27.3.14; inf_valid(), 27.3.15.

339 27.3.7 Get the Information Label of a File Identified by File Descriptor

340 Function: inf_get_fd()

341 27.3.7.1 Synopsis

342 ##iinncclluuddee <<ssyyss//iinnff..hh>>

343 iinnff__tt iinnff__ggeett__ffdd ((iinntt fildes));; c c

344 27.3.7.2 Description

345 The inf_get_fd() function returns the information label associated with a file. The
346 function accepts a valid file descriptor and returns a pointer to the information
347 label of the file referenced by the descriptor.

348 The system may allocate space for the information label to be returned. The
349 caller should free any releasable memory when the new label is no longer
350 required by calling inf_free() with the inf_t as an argument. In the event an errorc
351 occurs, no memory shall be allocated and (inf_t)NULL shall be returned. c

352 A process can get the information label of any file for which the process has a
353 valid file descriptor. If {_POSIX_MAC} is defined, the process must also have c
354 MAC read access to the file.

355 27.3.7.3 Returns

356 Upon successful completion, this function returns the information label. Other- c
357 wise, no space is allocated, a value of (inf_t)NULL is returned, and errno is set to c
358 indicate the error.

359 27.3.7.4 Errors

360 If any of the following conditions occur, the inf_get_fd() function shall return a
361 value of (inf_t)NULL and set errno to the corresponding value: c

362 [EACCES] The required access to the file referred to by fildes was denied.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.3 Functions 227

363 [EBADF] The fildes argument is not a valid file descriptor.

364 [ENOMEM] The label to be returned required more memory than was
365 allowed by the hardware or by system-imposed memory manage-
366 ment constraints. −

367 27.3.7.5 Cross-References

368 inf_free(), 27.3.5; inf_get_file(), 27.3.8; inf_set_fd(), 27.3.10.

369 27.3.8 Get the Information Label of a File Identified by Pathname

370 Function: inf_get_file()

371 27.3.8.1 Synopsis

372 ##iinncclluuddee <<ssyyss//iinnff..hh>>

373 iinnff__tt iinnff__ggeett__ffiillee ((ccoonnsstt cchhaarr ∗∗path_p));; c c

374 27.3.8.2 Description

375 The inf_get_file() function returns the information label associated with a file.
376 The function accepts a pathname to indicate the file. The function returns a
377 pointer to the information label of the pathname pointed to by path_p .

378 The system may allocate space for the information label to be returned. The
379 caller should free any releasable memory when the new label is no longer
380 required by calling inf_free() with the inf_t as an argument. In the event an errorc
381 occurs, no memory shall be allocated and (inf_t)NULL shall be returned. c

382 A process can get the information label of any file for which the process has
383 search access to the path specified. If {_POSIX_MAC} is defined, the process must c
384 also have MAC read access to the file.

385 27.3.8.3 Returns

386 Upon successful completion, this function returns the information label. Other- c
387 wise, no space is allocated, a value of (inf_t)NULL is returned, and errno is set to c
388 indicate the error.

389 27.3.8.4 Errors

390 If any of the following conditions occur, the inf_get_file() function shall return a
391 value of (inf_t)NULL and set errno to the corresponding value: c

392 [EACCES] Search permission is denied for a component of the path prefix
393 or the required access to path_p is denied.

394 [ENAMETOOLONG]
395 The length of the pathname exceeds {PATH_MAX}, or a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

228 27 Information Labeling

396 pathname component is longer than {NAME_MAX} while
397 {POSIX_NO_TRUNC} is in effect.

398 [ENOENT] The named file does not exist or the path_p argument points to
399 an empty string.

400 [ENOMEM] The label to be returned required more memory than was
401 allowed by the hardware or by system-imposed memory manage-
402 ment constraints. −

403 [ENOTDIR] A component of the path prefix is not a directory.

404 27.3.8.5 Cross-References

405 inf_free(), 27.3.5; inf_get_fd(), 27.3.7; inf_set_file(), 27.3.11.

406 27.3.9 Get the Process Information Label

407 Function: inf_get_proc()

408 27.3.9.1 Synopsis

409 ##iinncclluuddee <<ssyyss//iinnff..hh>>

410 iinnff__tt iinnff__ggeett__pprroocc ((vvooiidd));; c c

411 27.3.9.2 Description

412 The inf_get_proc() function returns a pointer to the information label associated
413 with the requesting process.

414 The system may allocate space for the information label to be returned. The
415 caller should free any releasable memory when the new label is no longer
416 required by calling inf_free() with the inf_t as an argument. In the event an errorc
417 occurs, no memory shall be allocated and (inf_t)NULL shall be returned. c

418 27.3.9.3 Returns

419 Upon successful completion, this function returns the information label. Other- c
420 wise, no space is allocated, a value of (inf_t)NULL is returned, and errno is set to c
421 indicate the error.

422 27.3.9.4 Errors

423 If any of the following conditions occur, the inf_get_proc() function shall return a
424 value of (inf_t)NULL and set errno to the corresponding value: c

425 [ENOMEM] The label to be returned required more memory than was
426 allowed by the hardware or by system-imposed memory manage-
427 ment constraints. −

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.3 Functions 229

428 27.3.9.5 Cross-References

429 inf_free(), 27.3.5; inf_set_proc(), 27.3.12.

430 27.3.10 Set the Information Label of a File Identified by File Descriptor

431 Function: inf_set_fd()

432 27.3.10.1 Synopsis

433 ##iinncclluuddee <<ssyyss//iinnff..hh>>

434 iinntt iinnff__sseett__ffdd ((iinntt fildes,, iinnff__tt label));; c c

435 27.3.10.2 Description

436 The inf_set_fd() function sets (writes) the information label of a file. The new
437 information label is label. The function accepts a valid file descriptor to indicate
438 the file.

439 A process can set the information label for a file using this function only if the
440 process has a valid file descriptor for the file. If {_POSIX_MAC} is defined, the c
441 process must have mandatory write access to the file. Use of this function may
442 also require appropriate privilege. If {_POSIX_CAP} is defined, and the effective c
443 user ID of the process is not equal to the file owner, appropriate privilege includes
444 the CAP_FOWNER capability. In addition, if label is not equivalent to the infor-
445 mation label associated with the file referred to by fildes, appropriate privilege
446 includes the CAP_INF_RELABEL_OBJ capability.

447 27.3.10.3 Returns

448 Upon successful completion, this function returns a value of 0. Otherwise, a value
449 of −1 is returned and errno is set to indicate the error.

450 27.3.10.4 Errors

451 If any of the following conditions occur, the inf_set_fd() function shall return −1
452 and set errno to the corresponding value:

453 [EACCES] The required access to the file referred to by fildes is denied.

454 [EBADF] The fildes argument is not a valid file descriptor.

455 [EINVAL] The label in label is not a valid information label as defined by
456 inf_valid(). −

457 [ENOTSUP] pathconf() indicates that {_POSIX_INF_PRESENT} is not in
458 effect for the file referenced.

459 [EPERM] The process does not have appropriate privilege to perform this

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

230 27 Information Labeling

460 operation.

461 [EROFS] This function requires modification of a file system which is
462 currently read-only.

463 27.3.10.5 Cross-References

464 inf_get_fd(), 27.3.7; inf_set_file(), 27.3.11; inf_valid(), 27.3.15.

465 27.3.11 Set the Information Label of a File Identified by Pathname

466 Function: inf_set_file()

467 27.3.11.1 Synopsis

468 ##iinncclluuddee <<ssyyss//iinnff..hh>>

469 iinntt iinnff__sseett__ffiillee ((ccoonnsstt cchhaarr ∗∗path_p,, iinnff__tt label));; c c

470 27.3.11.2 Description

471 The inf_set_file() function sets (writes) the information label of a file. The new
472 information label is label. The function accepts a pathname to indicate the file.

473 A process can set the information label for a file only if the process has search
474 access to the path specified. If {_POSIX_MAC} is defined, the process must have c
475 mandatory write access to the file. Use of this function may also require appropri-
476 ate privilege. If {_POSIX_CAP} is defined, and the effective user ID of the process c
477 is not equal to the file owner, then appropriate privilege includes the
478 CAP_FOWNER capability. In addition, if label is not equivalent to the informa-
479 tion label associated with the file referred to by path_p, appropriate privilege
480 includes the CAP_INF_RELABEL_OBJ capability.

481 27.3.11.3 Returns

482 Upon successful completion, this function returns a value of 0. Otherwise, a value
483 of −1 is returned and errno is set to indicate the error.

484 27.3.11.4 Errors

485 If any of the following conditions occur, the inf_set_file() function shall return −1
486 and set errno to the corresponding value:

487 [EACCES] Search permission is denied for a component of the path prefix
488 or the required access to path_p is denied.

489 [EINVAL] The label in label is not a valid information label as defined by
490 inf_valid().

491 [ENAMETOOLONG]
492 The length of the pathname exceeded {PATH_MAX}, or a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.3 Functions 231

493 pathname component is longer than {NAME_MAX} while
494 {POSIX_NO_TRUNC} is in effect.

495 [ENOENT] The named file does not exist or the path_p argument points to
496 an empty string. −

497 [ENOTDIR] A component of the path prefix is not a directory.

498 [ENOTSUP] pathconf() indicates that {_POSIX_INF_PRESENT} is not in
499 effect for path_p.

500 [EPERM] The process does not have appropriate privilege to perform this
501 operation.

502 [EROFS] This function requires modification of a file system which is
503 currently read only.

504 27.3.11.5 Cross-References

505 inf_get_file(), 27.3.8; inf_set_fd(), 27.3.10; inf_valid(), 27.3.15.

506 27.3.12 Set the Process Information Label

507 Function: inf_set_proc()

508 27.3.12.1 Synopsis

509 ##iinncclluuddee <<ssyyss//iinnff..hh>>

510 iinntt iinnff__sseett__pprroocc ((iinnff__tt label));; c c

511 27.3.12.2 Description

512 The inf_set_proc() function sets (writes) the information label of the requesting
513 process. The new information label is label. If label is not equivalent to the infor-
514 mation label associated with the process, then appropriate privilege is required
515 for this operation. If {_POSIX_CAP} is defined, appropriate privilege includes the c
516 CAP_INF_RELABEL_SUBJ capability.

517 27.3.12.3 Returns

518 Upon successful completion, inf_set_proc() returns a value of 0. Otherwise, a
519 value of −1 is returned and errno is set to indicate the error.

520 27.3.12.4 Errors

521 If any of the following conditions occur, the inf_set_proc() function shall return −1
522 and set errno to the corresponding value:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

232 27 Information Labeling

523 [EINVAL] The label in label is not a valid information label as defined by
524 inf_valid(). −

525 [EPERM] The process does not have appropriate privilege to perform this
526 operation.

527 27.3.12.5 Cross-References

528 inf_get_proc(), 27.3.9; inf_valid(), 27.3.15.

529 27.3.13 Get the Size of an Information Label

530 Function: inf_size()

531 27.3.13.1 Synopsis

532 ##iinncclluuddee <<ssyyss//iinnff..hh>>

533 ssssiizzee__tt iinnff__ssiizzee ((iinnff__tt label));; c c

534 27.3.13.2 Description

535 The inf_size() function returns the size in bytes of the internal representation of
536 the information label in label, if it is valid.

537 27.3.13.3 Returns

538 Upon successful completion, the function returns the size of the information label.
539 Otherwise, a value of −1 is returned and errno is set to indicate the error.

540 27.3.13.4 Errors

541 If any of the following conditions occur, the inf_size() function shall return −1 and
542 set errno to the corresponding value:

543 [EINVAL] The label argument is not a valid information label as defined by
544 inf_valid(). −

545 27.3.13.5 Cross-References

546 inf_free(), 27.3.5; inf_valid(), 27.3.15.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.3 Functions 233

547 27.3.14 Convert Internal Label Representation to Text

548 Function: inf_to_text()

549 27.3.14.1 Synopsis

550 ##iinncclluuddee <<ssyyss//iinnff..hh>>

551 cchhaarr ∗∗iinnff__ttoo__tteexxtt ((iinnff__tt label,, ssiizzee__tt ∗len_p));; c c

552 27.3.14.2 Description

553 The inf_to_text() function converts the information label contained in label into a
554 human readable, NULL-terminated, character string which shall be suitable for
555 the text_p parameter to inf_from_text() in section 27.3.9 and for re-input as the
556 inflabel operand to the sseettffiinnff utility as defined in section 12 of POSIX.2c. This function −
557 returns a pointer to the string. If the pointer len_p is not NULL, the function shall also return
558 the length of the string (not including the NULL terminator) in the location pointed to by
559 len_p. The information label in label shall be completely represented in the returned charac-
560 ter string.

561 The system may allocate space for the string to be returned. The caller should free any releas-
562 able memory when the string is no longer required by calling inf_free() with the char ∗ as an c
563 argument. In the event an error occurs, no memory shall be allocated and (inf_t)NULL shall c
564 be returned.

565 27.3.14.3 Returns

566 Upon successful completion, inf_to_text() returns a pointer to the text representa- −
567 tion. Otherwise, in all cases, the memory referred to by len_p shall remain
568 unchanged, a value of (char ∗)NULL is returned, and errno is set to indicate the c
569 error.

570 27.3.14.4 Errors

571 If any of the following conditions occur, the inf_to_text() function shall return a
572 value of (char ∗)NULL and set errno to the corresponding value: c

573 [EINVAL] The label in label is not a valid information label as defined by
574 inf_valid().

575 [ENOMEM] The text to be returned required more memory than was allowed
576 by the hardware or by system-imposed memory management
577 constraints. −

578 27.3.14.5 Cross-References

579 inf_free(), 27.3.5; inf_from_text(), 27.3.6; inf_valid(), 27.3.15; sseettffiinnff, 12.3.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

234 27 Information Labeling

580 27.3.15 Information Label Validity

581 Function: inf_valid()

582 27.3.15.1 Synopsis

583 ##iinncclluuddee <<ssyyss//iinnff..hh>>

584 iinntt iinnff__vvaalliidd ((iinnff__tt label));; c c

585 27.3.15.2 Description

586 The inf_valid() function determines whether the label in label is a valid informa-
587 tion label. The precise meaning of validity is implementation-defined. Examples
588 of some reasons why a label may be considered invalid include: the label is mal-
589 formed, the label contains components that are not currently defined on the sys-
590 tem, or the label is simply forbidden to be dealt with by the system.

591 27.3.15.3 Returns

592 Upon successful completion, the function returns 1 if label is valid, and 0 if it is
593 invalid. Otherwise, a value of −1 is returned and errno is set to indicate the error.

594 27.3.15.4 Errors

595 This standard does not specify any error conditions that are required to be c
596 detected for the inf_valid() function. Some errors may be detected under condi- c
597 tions that are unspecified by this part of the standard.

598 27.3.15.5 Cross-References

599 None.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

27.3 Functions 235

Annex B
1 (informative)

2 Revisions to Rationale and Notes

3 B.1 Revisions to Scope and Normative References

4 ⇒ B.1.1 Scope This rationale is to be revised and integrated appropriately into
5 the scope rationale when POSIX.1e is approved:

6 The goal of this standard is to specify an interface to protection, audit, and
7 control functions for a POSIX.1 system in order to promote application porta-
8 bility. Implementation of any or all of these interfaces does not ensure the
9 security of the conforming system or of conforming applications. In particular,

10 there is no assurance that a vendor will implement the interfaces in a secure
11 fashion or that the implementation of the interfaces will not cause additional
12 security flaws. Even if such assurances were required or provided, there are
13 many more aspects of a ‘‘secure system’’ than the interfaces defined in this
14 standard.

15 This interface is extendible to allow for innovations that provide greater (or
16 different) security functions in various markets. It is expected that conforming
17 implementations may augment the mechanisms defined in this standard and
18 may also provide security functions in areas not included in this standard.

19 It was not a goal of this document to address assurance requirements which
20 constrain the implementation and not the interface. POSIX.1 standards define
21 operating system interfaces only and attempt to allow for the greatest possible
22 latitude in implementation so as to promote greater acceptance of the stan-
23 dards.

24 The United States Department of Defense Trusted Computer System Evalua-
25 tion Criteria (TCSEC) document was a main source of requirements for this
26 standard. The TCSEC is a comprehensive set of guidelines which has received
27 extensive review. The TCSEC requirements are themselves general, and have
28 been used to guide the development of a variety of computer systems, ranging
29 from general purpose time-sharing systems to specialized networking com-
30 ponents. The TCSEC has received broad distribution and acceptance and has
31 been the basis for much of the work which followed it. Functions are drawn
32 from all TCSEC classes where it is agreed that inclusion of the function in the
33 standard will enhance application portability.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.1 Revisions to Scope and Normative References 237

34 Even though the TCSEC was a source of requirements for the interfaces
35 defined in this standard, this standard is not to be construed as defining a set
36 of interfaces intended to satisfy the requirements of any particular level.

37 ⇒ B.1.3.6 Supported Security Mechanisms (POSIX.1: line 474) Add the fol-
38 lowing new section:

39 B.1.3.6 Supported Security Mechanisms

40 The security mechanisms supported by this standard were chosen for their gen-
41 erality. The specific interfaces defined were selected because they were perceived
42 to be generally useful to applications (trusted and untrusted). Two mechanisms,
43 access control lists and privilege, are defined specifically to address areas in the
44 POSIX.1 standard that were deferred to this standard.

45 ⇒ B.1.3.7 Unsupported Security Mechanisms Add the following new sections
46 B.1.3.7 - B.1.3.7.11:

47 B.1.3.7 Unsupported Security Mechanisms

48 The purpose of this standard is to provide for application portability between con-
49 forming systems. As a result, this standard does not address several functional
50 security-related issues. Specifically, the POSIX.1e standard does not address:

51 (1) Identification and Authentication

52 (2) Networking Services and Protocols

53 (3) Administrative Services and Management of Security Information

54 (4) Covert Channels −

55 (5) Assurance Issues

56 (6) Evaluation Ratings Based on Current Trust Criteria

57 (7) The General Terminal Interface as described in the POSIX.1 standard

58 The rationale for excluding these and other potentially relevant topics is provided
59 below.

60 B.1.3.7.1 Identification and Authentication

61 I&A mechanisms are being deferred to a future version of this standard. It was
62 felt that the I&A mechanism should take into consideration third-party authenti-
63 cation schemes. It was also felt that deferring this area to a future standard
64 would allow existing practice to become more stabilized prior to standardization.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

238 B Revisions to Rationale and Notes

65 B.1.3.7.2 Networking Services

66 Networking services are being deferred to a future version of this standard. This
67 was done to allow the various POSIX Distributed Services working groups to
68 further progress their work prior to standardization. It was also felt that defer-
69 ring this area to a future standard would allow existing practice to become more
70 stabilized prior to standardization.

71 B.1.3.7.3 Administrative Services and Management of Security Informa-
72 tion

73 Administrative services and the management of security information are being
74 deferred to a future version of this standard. This was done to allow the POSIX
75 System Administration working group to further progress their work prior to −
76 standardization. System administration will ultimately be standardized through
77 a document that is distinct from the POSIX.1 or POSIX.2 standards. The current
78 POSIX.1e work is limited to modifications to the POSIX.1 and POSIX.2 stan-
79 dards. −

80 B.1.3.7.4 Covert Channels

81 Covert channel analysis is undertaken from the perspective of the interface, and
82 not the underlying implementation. This means that covert channels associated
83 with resource exhaustion, e.g., process IDs, i-nodes, and file descriptors, are not
84 considered. Covert channels visible at the interface are treated. These include the
85 use of exclusive locks and the updating of file access times.

86 B.1.3.7.5 Assurance Issues

87 Assurance issues that do not require function or utility interfaces are not expli-
88 citly treated as part of the standard. But assurance requirements that constrain
89 the system interfaces are implicitly part of the standard. The principal issues
90 here are:

91 B.1.3.7.5.1 Modularity, Security Kernels, Software Engineering

92 These are mostly kernel internals design and implementation issues, which are
93 beyond the scope of POSIX standards.

94 B.1.3.7.5.2 Minimality

95 The TCB minimality assurance requirement is not addressed by this standard.
96 This is an implementation question only.

97 The minimality requirement, introduced at the B3 level of the TCSEC, does not
98 constrain the definition of any POSIX.1e interface, because minimality pertains
99 only to the definition of the partition between the trusted code of the system,i.e.,

100 the TCB, and the untrusted code of the system. This standard does not specify
101 that the interfaces it defines must be TCB interfaces.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.1 Revisions to Scope and Normative References 239

102 B.1.3.7.5.3 System Integrity

103 System Integrity interfaces are being deferred to a future version of this standard.
104 It was felt that deferring this area to a future standard would allow existing
105 practice to become more stabilized prior to standardization.

106 B.1.3.7.5.4 Formal Security Policy Model

107 No security policy models are defined as part of this standard because the stan-
108 dard is not intended to define a complete system. In some areas the implementa-
109 tion may want to extend the standard, and in other areas the implementation will
110 have to extend the standard. Given this incompleteness, a model would be
111 difficult (and perhaps impossible) to define. Also, a full, formal model would con-
112 strain implementations beyond the point necessary for application portability.

113 B.1.3.7.5.5 Separation of Administrative Roles

114 Without a complete definition of administrative function, this is clearly beyond
115 the scope of this standard. Also, this is an area where implementations may wish
116 to target particular and isolated installations. −

117 B.1.3.7.5.6 Resource Controls

118 Resource controls (quotas) are used to support a system availability policy. They
119 are not included in this standard because of a lack of existing practice in UNIX
120 systems and, more importantly, the resources controlled tend to reflect implemen-
121 tation limits (static tables, ...) rather than physical ones.

122 B.1.3.7.5.7 Trusted Path

123 A Trusted Path mechanism is not defined because the notion of terminal defined
124 in POSIX.1 is limited to dumb ttys, and is incomplete as well. Existing practice is
125 lacking here as well. The standardization of the key sequence used for invoking
126 the trusted path is possible, but it would also be necessary to define the behavior
127 of the system upon trusted path invocation. It was felt that this would be impossi-
128 ble without a well-defined Trusted Path.

129 B.1.3.7.5.8 Protected Subsystems

130 The UNIX-protected subsystem mechanism (programs with the set-user-ID or
131 set-group-ID mode bits set) is subject to abuse by knowledgeable users and
132 misuse by naive users. Its shortcomings are not addressed due to some notable c
133 disagreements concerning the desirability of the mechanism. It also doesn’t add
134 much to portability.

135 B.1.3.7.6 Evaluation Ratings Based on Current Trust Criteria

136 Evaluations of products under current trust criteria involve analysis of all aspects
137 of the product, especially of implementation details. This standard only deals
138 with interfaces. Therefore, it is inherently incomplete and unsuited for evalua-
139 tion under these criteria. In addition, a conforming system could implement the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

240 B Revisions to Rationale and Notes

140 functionality under the interfaces in an insecure manner. Therefore, conformance
141 to this standard does not guarantee that a system should be trusted. c

142 B.1.3.7.7 General Terminal Interface

143 This standard does not extend General Terminal Interfaces described in sections
144 7.1 and 7.2. This section explains some of the problems with the GTI from a secu-
145 rity perspective.

146 The existing interfaces do not require that the file descriptor used for changing
147 terminal attributes be opened for writing. Given the MAC policy of read-down, a
148 process could open a terminal which it dominates, and by manipulating terminal
149 attributes perform data downgrade. This violates the basic MAC policies.
150 Requiring that the device is opened for write (or that the process have MAC write
151 access) solves this problem.

152 Manipulation of device attributes can interfere with invocation of trusted path.
153 For example, a process could change the baud rate of its controlling terminal.
154 The trusted path would be unable to determine if the baud rate was changed at
155 the user’s request, i.e., because the baud rate was adjusted on the physical termi-
156 nal, or by a malicious or malfunctioning application. Thus, the user might be
157 unable to communicate via the trusted path. Changing the baud rate should be
158 restricted using privilege or trusted path.

159 Applications may cause output to be suspended (using the tcflow() function with
160 the action set to TCOOFF). If the trusted path is invoked in such a case, the
161 standard would need to define what happens, i.e., the trusted path can re-enable
162 output, but the status of queued output would need to be determined. An
163 appropriate solution to this problem is not clear.

164 While these problems generally involve trusted path (which is not a part of the
165 standard), it is important not to enact a standard which would preclude building
166 a system that includes a trusted path mechanism.

167 ⇒ B.1.3.8 Portable Trusted Applications Add the following new sections
168 B.1.3.8:

169 B.1.3.8 Portable Trusted Applications

170 Portable trusted applications are those applications that are: portable because the c
171 system call interface they use is that defined by POSIX.1e; and trusted, because
172 they perform some security-related functionality and/or need some privilege from
173 the system in order to function correctly, and which therefore must be trusted to
174 perform the security-related functionality correctly and/or to not abuse the
175 privilege granted to the application.

176 Such portable trusted applications may rely on the TCB of the host system to per-
177 form certain security-critical functions that are necessary to ensure the correct c
178 and secure operation of the portable trusted application. For example: a portable

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.1 Revisions to Scope and Normative References 241

179 trusted application may need to protect some persistent data from tampering by
180 unauthorized processes, and may therefore use DAC features to control access to
181 the persistent data as stored in a file.

182 If the secure operation of the portable trusted application depends on the correct
183 operation of such POSIX.1e functions, then those POSIX.1e functions must be
184 implemented by the TCB of the host system on which the application is running;
185 otherwise, the portable trusted application would be relying on untrusted code to
186 perform functionality upon which the security of the portable trusted application
187 depends.

188 Furthermore, the secure state of the entire system may be at stake if the portable
189 trusted application runs with system privileges, because the portable trusted
190 application may operate incorrectly and abuse its privilege as a result of malfunc-
191 tion of untrusted code performing functionality which is security-related as used
192 by the portable trusted application. However, the interfaces defined in this stan- c
193 dard are not required to be TCB interfaces.

194 As a result, a portable trusted application may be portable to various POSIX.1e- c
195 conformant systems, but only some of those conformant systems may actually
196 implement as TCB interfaces those POSIX.1e interface functions upon which
197 depends the secure operation of the portable trusted application. Therefore, port-
198 able trusted applications under some circumstances may not be trust-worthy even
199 when run on conformant systems. Proper use of portable trusted applications
200 depends on the specification of the system interfaces which are security-critical to
201 the portable trusted application, and the determination of whether all those inter-
202 faces are implemented by the TCB of a system which can run the portable trusted
203 application.

204 B.2 Revisions to Definitions and General Requirements

205 ⇒ B.2.2.2 General Terms Insert the following after line 986:

206 user: the term user is used in this document to denote a person who interacts
207 with a computer system. It is not meant to include programs that ‘‘look like’’
208 users.

209 ⇒ B.2.10 Security Interface (POSIX.1: line 1741) Add the following sections
210 B.2.10 and B.2.10.1:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

242 B Revisions to Rationale and Notes

211 B.2.10 Security Interface

212 B.2.10.1 Opaque Data Objects

213 Each functional area (MAC, ACL, IL, capabilities, and audit) defines one or more
214 opaque data objects. Certain restrictions are applied to some of those opaque data
215 objects, namely persistence and self-containment. This section describes the
216 rationale for these requirements and their implications.

217 Opaque data objects by definition can contain any type of data, in any form, so
218 long as the functions which manipulate those objects understand that form. For
219 example, Access Control Lists are frequently implemented as linked lists. How-
220 ever, some applications need to pass opaque objects to other processes (e.g., by
221 writing them in FIFOs), or to store them in files. For example, a trusted database
222 system might store a MAC label for each record in the database. Truly opaque
223 data cannot be stored, because an application does not know how much to store,
224 and there is no guarantee that the data will be meaningful when retrieved from
225 the database.

226 In each section, an interface is provided to free memory associated with data −
227 structures. (Thus, for example, there are mac_free(), inf_free(), etc., routines).
228 The description of these routines state that they free any "releasable" memory.
229 Once these routines have been called, the data structure freed can no longer be
230 used by applications: in general, these routines will deallocate all memory associ-
231 ated with the data structure. That is, the ∗_free() routines generally work analo-
232 gously to the malloc() and free() routines of standard C. However, no require- −
233 ment imposed by this standard that requires all allocated memory to be freed.
234 Conforming implementations, then, can use their own memory management
235 schemes. Nevertheless, portable applications must assume that the memory
236 freed has been completely deallocated and that any pointers to the freed data
237 structure are no longer valid.

238 B.3 Revisions to Process Primitives

239 ⇒ B.3.1.2 Process Creation (POSIX.1: 1770) Rationale for changes to this sec-
240 tion in POSIX.1 is provided below:

241 When a new process is created via a fork() call, the new process is an exact
242 copy of its parent, including the current MAC label, information label, etc.
243 Because this standard does not define the contents of many data structures, it
244 is important to note that both the parent and child may continue using data
245 structures independently.

246 For example, consider an implementation where a MAC label structure (that is
247 an object referenced by mac_t) is simply a number. That number could be an
248 index into a kernel table. Functions which use the MAC label could make ker-
249 nel calls, and all manipulation of the MAC label would take place in the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.3 Revisions to Process Primitives 243

250 kernel. When the fork() function is executed, the system must duplicate the
251 kernel table so both the parent and child processes are able to modify the MAC
252 label without interfering with each other.

253 ⇒ B.3.1.2 Execute a File (POSIX.1: line 1821) Rationale for changes to this
254 section in POSIX.1 is provided below:

255 At first glance it might appear that a child’s information label should be set
256 either to the information label of the file being executed, or to the lowest label
257 in the system. However, the process performing the exec∗() operation can pass
258 information to the new process image by way of file descriptors and environ-
259 ment variables. Hence, the old process information label should be incor-
260 porated in the new process information label. Note that the standard recom-
261 mends an information label, but does not require it; other information label
262 policies are possible and allowed by this standard. Additionally, the standard
263 does not require use of the inf_float() function to calculate the new information
264 label; this is a suggestion of one way to perform the calculation.

265 ⇒ B.3.3.2 Send a Signal to a Process (POSIX.1: line 2428) Rationale for
266 changes to this section in POSIX.1 is provided below:

267 Using a signal between two processes is effectively sending data. While the
268 amount of data (the signal number) is small, this standard is careful to avoid
269 requiring information flow which contradicts the MAC security policy. Hence,
270 the four cases described in the standard:

271 MAC label of sender equivalent to MAC label of receiver: no MAC restric-
272 tions

273 MAC label of sender dominates MAC label of receiver (i.e., write-down):
274 appropriate privilege is required, and if {_POSIX_CAP} is defined,
275 appropriate privilege includes the capability CAP_MAC_WRITE.

276 MAC label of receiver dominates MAC label of sender (i.e., write-up):
277 appropriate privilege may or may not be required. A write-up is not
278 an inherent violation of the security policy, except that the sender is
279 able to determine the existence of a higher level process. Systems
280 which address covert channels may wish to close this channel by
281 requiring appropriate privilege. If {_POSIX_CAP} is defined,
282 appropriate privilege includes the capability CAP_MAC_READ
283 (because the existence of the higher level process is read).

284 MAC label of sender and receiver are incomparable: in this case, appropri-
285 ate privilege is certainly required at least as strong as the case where
286 the label of the sender dominates that of the receiver. If
287 {_POSIX_CAP} is defined, appropriate privilege includes the capabil-
288 ity CAP_MAC_WRITE. In addition, implementations may require
289 appropriate privilege to perform the read-up, viewing the operation as

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

244 B Revisions to Rationale and Notes

290 a write-down followed by a read-up. In this case, if {_POSIX_CAP} is
291 defined, appropriate privilege includes the capability
292 CAP_MAC_READ. However, the additional capability is not defined
293 by the standard, since implementations are free to add additional res-
294 trictions as desired.

295 The kill() function allows notification of a process group. The error code is
296 defined in POSIX.1 as success if any signal was sent, and a failure only if no
297 processes could be signaled. This standard extends that notion: if a process
298 group contains processes with different MAC labels, then a signal is success-
299 fully sent to the process group if even a single process in the group can be sig-
300 naled. This is consistent with the notion in IEEE Std 1003.1-1990 where a sig-
301 nal could be successful even if processes in the process group have different
302 user IDs, and hence only some of them can be signaled.

303 If not even one process can be signaled, then there are two possible errors
304 returned: [EPERM] and [ESRCH]. [EPERM] is used when the sending process
305 dominates at least one of the potential receiving processes, but did not have
306 the required appropriate privilege to send the signal. In this case, the sending
307 process could determine the existence of the potential receiver, so no informa-
308 tion channel exists by returning [EPERM]. By contrast, [ESRCH] is returned
309 to indicate that either the process group did not exist, or none of the processes
310 in the process group were visible to the sending process.

311 While this standard imposes no information label requirements on signals,
312 implementations may consider the signal as having an information label, and
313 hence float the information label of the receiving process to include the infor-
314 mation label of the sending process.

315 This standard does not extend the notion of access control based on user IDs to
316 include the notion of an access control list on a process.

317 Another architecture not discussed by this standard is to allow overrides of the
318 signaling policy based on the privileges of the receiver. In such an architec-
319 ture, a daemon process could be set up to accept signals from any process,
320 regardless of the MAC label of the sender. However, the POSIX.1 standard
321 does not recognize this notion for user ID based privileges, so this standard
322 does not extend it for MAC.

323 ⇒ B.4 Revisions to Process Environment (POSIX.1: line 2645) Rationale for
324 changes to this section in POSIX.1 is provided below:

325 As previously described, each of the options described in this standard may be
326 selected independently. The sysconf() variables listed in this section are to
327 allow programs to determine at runtime whether the option is available.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.3 Revisions to Process Primitives 245

328 ⇒ B.5 Files and Directories (POSIX.1: line 2896) Rationale for changes to
329 this section in POSIX.1 is provided below:

330 The extensions specified in this standard for file access avoid changing the
331 interfaces specified in POSIX.1 any more than necessary. Specifically, no
332 changes are made to parameter types, and where data structures are involved,
333 no changes are made to add or remove elements from the structure. In some
334 cases the data returned by the interface may be changed. This is most notice-
335 able when examining the file permission bits of a file which has an access con-
336 trol list.

337 ⇒ B.5.3.1 Open a File (POSIX.1: line 3077) Rationale for changes to this sec-
338 tion in POSIX.1 is provided below:

339 While it might appear that a newly created file would always have the infor-
340 mation label inf_default() this is not true. For example, implementations
341 might set the information label of a new file to the information label of the con-
342 taining directory or the information label of the creating process.

343 When opening a FIFO, the MAC restriction should be that process and FIFO
344 MAC labels should be equivalent to avoid massive covert channels associated
345 with MAC inequalities. Since the MAC policy defined by this standard allows
346 MAC write-up, it is possible to be POSIX compliant and still include this
347 covert channel. However, since the normal MAC policy is write-equals, this is
348 not a major concern.

349 ⇒ B.5.6.2 Get File Status (POSIX.1: line 3208) Rationale for changes to this
350 section in POSIX.1 is provided below:

351 The stat() call in POSIX.1 provides the caller with all file attributes. This
352 standard does not extend stat() to return the extended attributes such as MAC
353 label or access control list. There were several reasons:

354 This standard had as a goal to leave the syntax of existing interfaces
355 unchanged.

356 The data structures defined in this standard are potentially variable
357 length, unlike in POSIX.1 where they are all fixed length. Thus, the
358 stat structure would have to be adapted to handle pointers to the vari-
359 able length items. This would make the interface more complicated.

360 Each portion of this standard is independent, so not all data types are
361 necessarily defined. Thus, the stat structure would have to be set up
362 differently depending which options are provided.

363 Existing programs designed to use a version of stat() as defined in POSIX.1
364 might get back additional information. If the program had not been
365 recompiled to allow for a larger structure, this might overwrite other
366 data, and cause the program to fail.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

246 B Revisions to Rationale and Notes

367 Thus, the standard leaves stat() unchanged, and adds new functions for get-
368 ting the individual extended file attributes.

369 Note that if {_POSIX_ACL} is defined and {_POSIX_ACL_EXTENDED} is in
370 effect for the pathname, the semantics of stat() and fstat() are changed.
371 Specifically, stat() and fstat() no longer return all the discretionary access
372 information, so applications that depend on it doing so (e.g., when copying dis-
373 cretionary file attributes to another file) may have to be changed.

374 ⇒ B.5.6.3 File Access (POSIX.1: line 3216) Rationale for changes to this sec-
375 tion in POSIX.1 is provided below:

376 POSIX.1 does not list the specific permissions required for each function (e.g.,
377 open(), mkdir(). Rather, it relies on the descriptions of pathname resolution
378 and file access in POSIX.1, 2.3, together with additional information (e.g.,
379 error codes) in the individual function descriptions. For example, the descrip-
380 tion of open() does not specify that the caller must have search access to each
381 pathname component, and must also have write access to the directory if a
382 new file is being created. The pathname resolution portion is implicit from
383 POSIX.1, 2.3, and write access to the parent directory is provided by the
384 description of the EACCES error number.

385 In a similar fashion, this standard does not describe the MAC requirements for
386 file access, instead referring to POSIX.1, 2.3. Additional information is pro-
387 vided where appropriate, such as linking files (which requires MAC write per-
388 mission to the existing file) and opening a FIFO (which requires MAC write
389 permission to the FIFO file).

390 Unlinking a file might appear to need MAC write access to the containing
391 directory only. However, the unlink operation updates the link count on the
392 file, which is effectively a write operation to the file. Hence, MAC write access
393 is required. Similarly, removing a directory updates the directory link count,
394 and consequently MAC write access is required to the directory being removed.

395 Clearing setuid/setgid and Privileges

396 One security-relevant issue not addressed by this standard is resetting of the
397 setuid/setgid bits. For example, most historical implementations clear the
398 setuid and setgid bits when a file is written into. The security risk is that if a
399 setuid utility is improperly installed (e.g., with write permission) and the
400 setuid bit is not cleared, a malicious user could replace the utility with a dif-
401 ferent version. However, neither IEEE Std 1003.1-1990 nor this standard
402 require (nor prohibit) clearing the setuid and setgid bits.

403 There were several reasons for not specifying the behavior. The most impor-
404 tant was determining which interfaces should trigger clearing setuid/setgid
405 bits. Should they be cleared when the file is opened, when it is written to,
406 when it is closed, or some combination? Each leaves certain timing windows,
407 and has potential performance implications.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.3 Revisions to Process Primitives 247

408 The capability flags provided by this standard provide an extension to the
409 notion of setuid/setgid, with somewhat finer granularity. If setuid/setgid bits
410 are to be cleared, should capability flags also be cleared? Just as this standard
411 makes no statements about setuid/setgid, it does not require (nor prohibit)
412 clearing of capability flags.

413 If capability flags are cleared when a file is written, the implementor should
414 also consider whether they should be cleared when file attributes are changed.
415 For example, consider a program file which has the MAC read-up exemption
416 capability, and the file has a MAC label of secret. When executed, that pro-
417 gram may read top secret data, but at worst it can relabel it as secret (because
418 only a user with at least a secret security level will be able to access the file,
419 and hence execute the program). If the file’s MAC label is changed to
420 unclassified, then an uncleared user may be able to execute it, thus allowing
421 top secret data to be written into an unclassified file. Thus, the change in the
422 MAC label of a file impacted the system security, by allowing additional risks.
423 System implementors may wish to consider these types of threats, even though
424 they are not required by this standard.

425 Finally, system implementors should consider whether capability and
426 setuid/setgid bits should be cleared when the file owner is changed.

427 Object Reuse and File Erasure

428 Another topic of concern in trusted systems is object reuse, particularly as it
429 applies to files. POSIX.1 requires that newly allocated files be cleared, so the
430 previous contents of the file are inaccessible. While some historical systems
431 overwrite the contents of a file when the file is deleted, this standard imposes
432 no such requirement. Because the contents are cleared when the file is first
433 read, this is not an issue except when the device which stores the file (i.e., the
434 disk) can be accessed outside the file system (e.g., through a raw device). Such
435 concepts are beyond the scope of this standard.

436 Initial Information Labels

437 When a file (including a directory or FIFO) is created, the initial information
438 label on the file must be set. This standard does not specify an information
439 label policy. Hence, the standard does not specify what the initial label will
440 be. In most cases the initial label will be the same as the result of a call to
441 inf_default().

442 ⇒ B.6.1 Pipes (POSIX.1: line 3380) Rationale for changes to this section in
443 POSIX.1 is provided below:

444 Pipes provide communication between related processes (typically a parent
445 and child). Excluding the effects of privileged processes, the related processes
446 by definition have the same MAC label. Hence, specifying the MAC label of
447 the pipe is somewhat irrelevant. However, processes can request the MAC
448 label of the file associated with a file descriptor. This standard defines the
449 MAC label of the pipe as the MAC label of the creating process so such a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

248 B Revisions to Rationale and Notes

450 request can be answered.

451 ⇒ B.6.5.2 File Locking (POSIX.1: line 3613)

452 The file locking mechanism defined in IEEE Std 1003.1-1990 allows advisory
453 locks to be placed and detected on a file. The mechanism does not specify the
454 file mode used by processes placing or testing the locks. When a MAC policy is
455 added, the locking mechanism can be used as an information flow channel. At
456 earlier stages of development of this standard strict requirements for MAC
457 access were specified and varying capabilities specified to obtain MAC access.
458 Due to significant ballot objections to the granularity of the capabilities
459 required, it was decided to let this standard be mute on the enforcement of
460 MAC for file locking operations. Implementations concerned with closing the
461 information flow channel have been left free to handle the channel in whatever
462 way they choose. See B.25.4.3 for more discussion of this issue. c

463 ⇒ B.8 Language-Specific Services for the C Programming Language
464 Rationale for changes to this section in POSIX.1 is provided below:

465 Historical implementations implement the interfaces defined in this section
466 using the base POSIX.1 interfaces. This concept is reflected by the description
467 of the interfaces as having underlying functions. However, there is no require-
468 ment that implementations use the underlying functions, as noted in POSIX.1
469 Section 8, lines 341-345. As a result, this standard defines the extensions to
470 the C standard I/O primitives.

471 Some consideration was given to defining security effects of making a
472 longjmp() call. For example, to provide time bounding of capabilities the
473 current capability set could be restored to its state as of the setjmp() call. This
474 standard makes no such requirements, as applications are not required to time
475 bound capabilities. Rather, applications developers are encouraged to clear
476 appropriate capabilities in the code invoked from the longjmp() call.

1 B.23 Access Control Lists

2 The overall requirements for an Access Control List (ACL) mechanism in a secure
3 system include the following:

4 (1) Allow authorized users to specify and control sharing of objects

5 (2) Supply discretionary access controls for objects.

6 (3) Specify discretionary access by a list of users and groups with their
7 respective access rights to the protected objects

8 (4) Allow discretionary access to an object to be denied for a user or, in cer-
9 tain cases, a group of users.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 249

10 (5) Allow changes to the ACL only by the owner of the object or by a process
11 with the required access or appropriate privilege.

12 (6) Not allow more permissive discretionary access than either the initial or
13 final access rights while the ACL is being written by acl_set_file() or
14 acl_set_fd().

15 The primary goal in defining access control lists in a POSIX.1e system is to pro-
16 vide a finer granularity of control in specifying user and/or group access to objects.
17 Additional goals for the ACL mechanism are:

18 (1) The mechanism should be compatible with the existing POSIX.1 and
19 POSIX.2 standards and, to the extent possible, existing interfaces should
20 continue to work as expected.

21 (2) Reasonable vendor extensions to the ACL mechanism should not be pre-
22 cluded. At a minimum, the specification of read, write and
23 execute/search permissions should be supported. Other permissions
24 should neither be required nor should they be precluded as extensions.

25 (3) New interfaces should be easy to use.

26 (4) Intermixing use between the existing mechanism and newly defined ACL
27 functions/utilities should provide predictable, well understood results.

28 Another goal is to be compatible with existing POSIX.1 standards. Current inter-
29 faces will continue to exist and will affect the overall ACL. Some users will con-
30 tinue to only use the file permission bits. Existing programs may not be modified
31 to use the ACL interface and may continue to manipulate DAC attributes using
32 current POSIX.1 interfaces. These programs should operate on objects with ACLs
33 in a manner similar to their operation on objects without ACLs. However, com-
34 plete compatibility between the existing POSIX.1 DAC interfaces and the
35 POSIX.1e ACL interfaces is simply not achievable. For a discussion of these
36 issues, please refer to B.23.1.

37 The POSIX.1e ACL interfaces should not restrict vendors from providing exten-
38 sions to the basic ACL mechanism; the POSIX.1e ACL interface should not
39 exclude such extensions.

40 For the sake of usability and user acceptance, new interfaces should be as simple
41 as possible while maintaining a reasonable level of compatibility with existing
42 POSIX.1 interfaces.

43 The intermixing of usage between the existing POSIX.1 DAC and the POSIX.1e
44 ACL mechanisms should be well defined and produce reasonable results.

45 The DAC interfaces described in POSIX.1 are adequate for some needs. The file
46 permission bits defined in POSIX.1 are associated with three classes: owner,
47 group, and other; access for each class is represented by a three-bit field allowing
48 for read, write, and execute/search permissions. The POSIX.1e ACL interfaces
49 extend the POSIX.1 interfaces by defining access control lists (ACLs) in order to
50 provide finer granularity in the control of access to objects. ACLs can provide the
51 ability to allow or deny access for individually-specified users and groups of users.
52 However, implementations which allow processes to modify the process’ group

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

250 B Revisions to Rationale and Notes

53 membership may not be capable of denying access to users based on groups.

54 Several methods exist for allowing discretionary access control on objects. These
55 methods include capability lists, profiles, access control lists (ACLs), permission
56 bits, and password DAC mechanisms. ACLs were selected for the POSIX.1e inter-
57 faces because they meet the goals stated earlier in this section. ACLs are a
58 straightforward extension of the existing POSIX.1 file permission bits which may
59 be viewed as a limited form of ACL containing only three entries.

60 The following features are outside the scope of this document:

61 — Shared ACLs

62 An ACL is shared if it is associated with more than one object; changes to a
63 shared ACL affect the discretionary access for all objects with which the
64 ACL is associated. Shared ACLs are useful as a single point of control for
65 the specification of DAC attributes for large numbers of objects.

66 Although the implementation of shared ACLs is not precluded, shared
67 ACLs are not defined in this standard for the following reasons:

68 g It may be difficult to determine the set of objects sharing an ACL. A
69 user could modify the ACL associated with an object and unintention-
70 ally grant access to another object.

71 g When changing a shared ACL, it may be necessary to produce an audit
72 record for each file system object that is protected by the ACL.

73 g Any changes to a shared ACL which have an unintended security result
74 affect all objects sharing the ACL.

75 — Named ACLs

76 A named ACL is an ACL which exists in the file system space and can be
77 referred to by name. Named ACLs are primarily useful for implementing
78 shared ACLs.

79 Although the implementation of named ACLs is not precluded, named
80 ACLs are not defined in this standard for the following reasons:

81 g As file system objects, ACLs themselves may be required to contain dis-
82 cretionary access controls which could require recursive ACLs.

83 g The owner of a named ACL may not be the owner of the object(s) with
84 which the ACL is associated. The owner of an object could lose control of
85 the DAC attributes associated with that object.

86 B.23.1 General Overview

87 POSIX.1 specifies basic DAC interfaces consisting of permissions which specify
88 the access granted to processes in the file owner class, the file group class, and the
89 file other class. These classes correspond to the intuitive notions of the file’s
90 owner, members of the file’s owning group, and all other users.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 251

91 B.23.1.1 Extensions to POSIX.1 DAC Interfaces

92 The specification of the POSIX.1 interfaces provides for two ways to extend discre-
93 tionary access controls beyond the basic file permission bits:

94 g An additional access control mechanism may be provided by an implemen-
95 tation, however, the mechanism must only further restrict the access per-
96 missions granted by the file permission bits.

97 g An alternate access control mechanism may be provided by implementa-
98 tion, however, POSIX.1 requires that a chmod() function call disable any
99 alternate access control attributes which may be associated with the file.

100 The POSIX.1e access control interfaces are defined as an additional access control
101 mechanism in order to satisfy the basic goal of working in conjunction with the
102 existing DAC functions and commands; essentially, the ACL interfaces can be
103 viewed as an extension of the base POSIX.1 file permission bits. Also, the
104 POSIX.1e definition of the ACL interfaces only further restrict the access specified
105 by the file permission bits. If the POSIX.1e interfaces were to be defined as an
106 alternate access mechanism, then the POSIX.1e interfaces would have to operate
107 independently of the existing POSIX.1 interfaces with no correlation between the
108 permissions granted by the alternate mechanism and the file permission bits.

109 B.23.1.2 Extensions to File Classes

110 POSIX.1 permits that implementation-defined members may be added to the file
111 group class. As such, the ACL entries for individually specified users and groups
112 are defined as members of the file group class. Since the file permission bits for
113 the file group class are defined as the maximum permissions which can be
114 granted to any member of the file group class, then the POSIX.1e interfaces con-
115 form to the POSIX.1 definition of an additional access mechanism.

116 An alternative is to define the additional ACL entries as members of the file other
117 class instead of the file group class. The apparent advantage of extending the file
118 other class is that the permissions granted to the file’s owning group would be
119 explicitly specified in the base file permission bits. However, this would not be the
120 case since individually named user entries would be checked prior to the owning
121 group permissions even if the specified user was a member of the owning group.

122 Refer to B.23.3 for more details on how ACL entries map to the different file
123 classes.

124 B.23.2 ACL Entry Composition

125 An ACL entry consists of at least three pieces of information as defined in the
126 standard: the type of ACL entry, the entry tag qualifier, and the access permis-
127 sions associated with the entry. The standard permits conforming implementa-
128 tions to include additional pieces of information in an ACL entry.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

252 B Revisions to Rationale and Notes

129 B.23.2.1 ACL Entry Tag Type Field

130 Seven distinct ACL entry tag types are defined to be the minimum set of tag types
131 which must be supported by a conforming implementation: ACL_USER_OBJ,
132 ACL_GROUP_OBJ, ACL_OTHER, ACL_USER, ACL_GROUP, ACL_MASK, and
133 ACL_UNDEFINED_TAG.

134 The ACL_USER_OBJ, ACL_GROUP_OBJ, and ACL_OTHER tag type ACL
135 entries are required to exist in all ACLs. If no other entries exist in the ACL, then
136 these entries correspond to the owner, group, and other file permission bits. Since
137 these permission bits can never be removed from a file, the ACL entries
138 corresponding to the permission bits are also required. If an ACL contains any
139 additional ACL entries, then an ACL_MASK entry is also required since it then
140 corresponds to the file group permissions and serves as the maximum permissions
141 that may be granted to the additional ACL entries.

142 While implementations can define additional tag types, the standard does allow
143 an implementation to require the existence of any additional entries in an ACL. If
144 this were allowed, then an file containing only the file permission bits (i.e., an
145 ACL with only three entries) would not be a valid ACL. This would prevent a
146 strictly conforming application from executing correctly on such an implementa-
147 tion which would violate the goal of providing compatibility with the existing
148 POSIX.1 interfaces.

149 An additional ACL entry tag type that could be defined is a ‘‘user and group’’
150 where such entries specify the access permissions for an individual user within a
151 specific group. While such an ACL entry is useful in some environments, it is not
152 required in the standard since it does not appear to provide widely useful func-
153 tionality. Implementations are not precluded from defining a ‘‘user and group’’ tag
154 type.

155 Implementations which currently allow ‘‘user and group’’ tag type ACL entries
156 can consider the ACL_USER_OBJ and ACL_USER ACL entry tag types to
157 represent access to a user regardless of group membership, e.g., ‘‘user.∗’’. Like-
158 wise, ACL_GROUP_OBJ and ACL_GROUP ACL tag types represent group access
159 regardless of user identity, e.g., ‘‘∗.group’’, and ACL_OTHER represents anybody
160 in any group, e.g., ‘‘∗.∗’’.

161 The names of all ACL entry tag types all begin with the prefix ‘‘ACL_’’ in order to
162 provide consistency in naming with other areas of the POSIX standards. While
163 this may make the use of such names slightly more cumbersome for the program-
164 mer, avoiding name conflict through a consistent naming scheme is more impor-
165 tant.

166 POSIX.1e defines two types of ACLs: access and default ACLs. All objects have an
167 access ACL since the POSIX.1 file permission bits are interpreted as a minimal
168 ACL. In addition, a default ACL may be associated with a directory. The rules for
169 ACL entry tag types are the same for both types of ACL. As such, an application
170 can create an ACL and apply it to a file as either an access ACL or a default ACL
171 without changing the ACL structure or any of the ACL data. If POSIX.1e defined
172 ACL entry types which applied to only one type of ACL or if the rules for required
173 ACL entries differed between the types of ACL, then a single ACL could not be

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 253

174 applied as both an access and a default ACL.

175 B.23.2.2 ACL Entry Qualifier Field

176 The data type of the qualifier field in an ACL entry is specific to the ACL entry
177 tag type. Also, the qualifier field is not extensible for POSIX.1e defined tag types.
178 However, implementations may define the type and structure of the qualifier for
179 entries with implementation-defined tag types. For example, an implementation
180 that wishes to allow the assignment of permissions to an individual user within a
181 specific group could create a tag type, ACL_USER_GROUP, with a qualifier con-
182 taining the identification of both the user and the group. An implementation could
183 also define a user/time entry which could use the qualifier to identify a process
184 within a specified time of day interval.

185 If an implementation could extend the POSIX.1e defined ACL entry qualifier
186 fields, then a strictly conforming application might not function as expected when
187 manipulating an ACL with extended qualifier fields. For example, an implemen-
188 tation extends the qualifier field of the ACL_USER entry type to include a time of
189 day (TOD) interval. A strictly conforming application attempts to manipulate an
190 object’s ACL which contains two entries for user fred; one entry contains a TOD
191 qualifier for 0800->1800 and one entry has a TOD qualifier for 1800->0800. If the
192 strictly conforming application intends to change the access allowed for user fred,
193 then the application would call acl_get_entry() and acl_get_qualifier() until it
194 locates an ACL_USER entry for fred and would then update the entry. The appli-
195 cation would expect only one ACL_USER entry for fred and would only update
196 one entry; since there are two entries for fred, the resulting access for user fred
197 may not be as desired.

198 The special qualifier field value, ACL_UNDEFINED_ID, is defined as a value
199 which cannot be used by the implementation as a valid group or user id. This
200 value is used to initialize the qualifier field within a newly created ACL entry to a
201 value which is not a valid group or user id.

202 B.23.2.3 ACL Entry Permissions Field

203 ACL entries are required to support read, write, and execute/search permissions
204 for the following reasons:

205 (1) These permissions allow the abstraction of the POSIX.1 file permission
206 bits as ACL entries.

207 (2) Existing practice dictates that at least these permissions must be
208 retained.

209 File permissions in addition to read, write, and execute/search are allowed by an
210 implementation because this would allow finer-grained and extended control of
211 access to objects. For example, an implementation could add ‘‘append only’’ or
212 ‘‘delete object allowed’’ permissions. However, such extended permissions are not
213 required by this standard because such permissions are not universally required.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

254 B Revisions to Rationale and Notes

214 B.23.2.4 Uniqueness of ACL Entries

215 The combination of ACL entry tag type and qualifier are required to be unique
216 within an ACL. The requirement for unique ACL entries, in combination with the
217 order in which access is checked, provides a simple and unambiguous model for
218 the specification of access information for an object.

219 Note that it is possible for the owner of a file to be explicitly named in an
220 ACL_USER entry within the ACL associated with the file. While this entry may
221 appear to conflict with the entry for the file’s owner (i.e., the ACL_USER_OBJ
222 entry), the ACL_USER_OBJ entry will be encountered before any ACL_USER
223 entries during the ACL access check algorithm. Thus, in this case the
224 ACL_USER_OBJ entry would uniquely determine the access permissions for the
225 owner of the file; the individual ACL_USER entry for the file’s owner would be
226 ignored. The requirement is that the combination of tag type and qualifier must
227 be unique. Also, the ACL_USER_OBJ entry and the ACL_USER entry are quite
228 different semantically even if the ACL_USER entry contains the identity of the
229 file owner.

230 Likewise, an ACL_GROUP entry with a qualifier id matching the owning group of
231 a file does not conflict with the ACL_GROUP_OBJ entry in the ACL. In such a
232 case, all applicable group entries would be examined to determine if any entry
233 grants the access requested by the process. Both the ACL_GROUP_OBJ entry
234 and the ACL_GROUP entry matching the owning group would be examined and
235 might provide the desired access.

236 B.23.3 Relationship with File Permission Bits

237 ACLs expand upon the discretionary access control facility which is already pro-
238 vided by the file permission bits. Although file permission bits do not provide fine
239 granularity DAC, they are sufficient for many uses and are the only mechanism
240 available to existing applications. All existing applications that are security cons-
241 cious use file permission bits to control access. The relationship between the ACL
242 and the file permission bits must be defined in order to determine the level of
243 compatibility provided to existing programs which manipulate the file permission
244 bits.

245 Several approaches are possible for handling the interaction of ACLs with file per-
246 mission bits. Each approach is presented in a separate sub-section with a
247 description of the approach, a list of the advantages, and a list of the disadvan-
248 tages. Final commentary and a conclusion follow the presentation of the
249 approaches.

250 B.23.3.1 ACL Always Replaces File Permission Bits (Pure ACL)

251 In this approach, the file permission bits are no longer consulted for ACL deci-
252 sions. Instead, each object has an ACL and the ACL completely determines
253 access. File permission bits would be unused in the standard and the interaction
254 between the file permission bits and ACL entries should be implementation-
255 defined. This method would prevent the use of the old access control mechanism

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 255

256 in a strictly conforming application.

257 This approach has the following advantages:

258 — Reduces complexity because there are no compatibility issues between
259 ACLs and permission bits. Permission bits are no longer used for DAC
260 decisions.

261 — A single, well defined discretionary access policy is employed.

262 — Increases security. The old access control mechanism does not provide the
263 proper level of security to meet the requirements of this document.

264 This approach has the following disadvantages:

265 — existing applications that use chmod() or stat() must be examined to see if
266 they are making DAC decisions. This is because chmod() and stat() update
267 and return, respectively, more than just DAC information.

268 — existing applications that make DAC decisions must be rewritten to use the
269 new interfaces.

270 — Compatibility between file permission bits and ACLs is left up the vendors
271 who, realistically, must provide some compatibility with their old imple-
272 mentations. Without standardization the compatibility solutions will be
273 vendor specific and not portable.

274 B.23.3.2 Owner Selects ACL Or File Permission Bits

275 In this approach, either the file permission bits or the ACL are consulted for the
276 access control decision on a per object basis. The owner of the object determines
277 whether to use the file permission bits or the ACL. If an ACL is set on a file, then
278 the functions that manipulate file permission bits would return an error. If file
279 permission bits are set on a file, then the ACL manipulation functions would
280 return an error for that file.

281 This approach has the following advantages:

282 — If ACLs are never set, then there are no compatibility problems.

283 — If an access ACL is set on an object or a default ACL set on a directory,
284 then the behavior is like the pure ACL system.

285 This approach has the following disadvantages:

286 — Like the previous approach, existing applications that use chmod() or stat()
287 must be examined to see if they are making DAC decisions.

288 — Existing applications that make DAC decisions must be rewritten to deter-
289 mine which mechanism is in effect for each object it manages and then use
290 the correct interface.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

256 B Revisions to Rationale and Notes

291 B.23.3.3 Independent ACL And File Permission Bits (AND)

292 In this approach, both the file permission bits and the ACL are consulted for the
293 discretionary access control decision. Access is granted if and only if it is granted
294 by both the ACL and the file permission bits.

295 This approach has the following advantages:

296 — Calls to chmod() have the desired effect from a restrictive point of view;
297 ACL entries can further restrict access.

298 — The relationship between ACLs and file permission bits is easily defined:
299 to be allowed access both must grant access.

300 This approach has the following disadvantages:

301 — To fully utilize the ACL as the effective access control mechanism requires
302 that the file permission bits be set wide-open, i.e. read, write, and execute
303 bits are set for user, group and other.

304 — In order to grant access, users must be prepared to change both the ACL
305 and the file permission bits.

306 — An application would have to use chmod() and stat() to manipulate the file
307 permission bits and the ACL functions to manipulate the ACL entries on a
308 file.

309 B.23.3.4 Independent ACL And File Permission Bits (OR)

310 In this approach, both the file permission bits and the ACL are consulted for the
311 discretionary access control decision. Access is granted if it is granted by either
312 the ACL or the file permission bits. The ACL is used to grant access beyond what
313 is set in the file permission bits.

314 This approach has the following advantage:

315 — Calls to chmod() have the desired effect from a permissive point of view.

316 — The relationship between ACLs and file permission bits is easily defined:
317 to be allowed access either must grant access.

318 This approach has the following disadvantages:

319 — A chmod(<object>, 0) call does not deny all access to an object with an ACL.

320 — In order to deny access, users must be prepared to change both the ACL
321 and the file permission bits.

322 — An application would have to use chmod() and stat() to manipulate the file
323 permission bits and the ACL functions to manipulate the ACL entries on a
324 file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 257

325 B.23.3.5 File Permission Bits Contained Within ACL Without a Mask

326 In this approach, only the ACL is consulted for discretionary access control deci-
327 sions. The file permission bits are logically "mapped" to three base entries in the
328 ACL. Calls to chmod() modify the ACL_USER_OBJ, ACL_GROUP_OBJ, and
329 ACL_OTHER entries contained in the ACL. Calls to stat() return this informa-
330 tion from the ACL.

331 This approach has the following advantages:

332 — The mapping of ACL entries to permission bits is straight forward. There
333 is no mask entry that may or may not be there.

334 — With no additional entries, the semantic meaning of the file permission bits
335 are preserved.

336 — There is some compatibility between file permission bits and ACLs. Use of
337 chmod() to grant access is compatible. Use of stat() to return access for the
338 owning group is compatible.

339 This approach has the following disadvantages:

340 — chmod(<object>, 0) may or may not prevent access to the object depending
341 on the number of ACL entries. With additional entries, the chmod() call
342 does not prevent access to the object and this breaks old style file locking.

343 — chmod go-rwx <object> may or may not restrict access only to the owner
344 depending on the number of ACL entries. With additional entries, the
345 chmod() call does not give owner only access.

346 — creat(<object>, 0600) may or may not restrict access to the newly created
347 object to the owner. If a non-minimal default ACL exists on the parent
348 directory, then owner only access is not guaranteed.

349 B.23.3.6 File Permission Bits Contained Within ACL Including a Mask

350 In this approach, only the ACL is consulted for discretionary access control deci-
351 sions. The file permission bits are logically "mapped" to entries in the ACL. Logi-
352 cally, the file permission bits are the equivalent of a three entry ACL. Calls to
353 chmod() modify the ACL entries corresponding to the file permission bits. Calls
354 to stat() return this information from the ACL.

355 If there are ACL_USER, ACL_GROUP or implementation-defined ACL entries,
356 then an ACL_MASK entry is required and it restricts the permissions that can be
357 granted by these entries. If there is an ACL_MASK entry, then chmod() changes
358 the ACL_MASK entry instead of the ACL_GROUP_OBJ entry and stat() returns
359 information from the ACL_MASK entry instead of the ACL_GROUP_OBJ entry.

360 This approach has the following advantages:

361 — chmod(<object>, 0) prevents access to the object. This provides compatibil-
362 ity with the old locking mechanism.

363 — chmod go-rwx <object> restricts access only to the owner. This utility call,
364 especially when used with the ffiinndd utility, is useful for restricting access

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

258 B Revisions to Rationale and Notes

365 to objects to the owner.

366 — The ACL_MASK entry restricts the permissions that are granted via
367 ACL_USER, ACL_GROUP and implementation-defined ACL entries during
368 object creation. For example, without these restrictions, a creat(<object>,
369 0600) would not restrict access of a newly created object to the owner.

370 This approach has the following disadvantages:

371 — The mapping between the file group class permission bits is not constant.
372 If the ACL_MASK entry exists, then the bits map to it. Otherwise, the bits
373 map to the ACL_GROUP_OBJ entry. This means that chmod() and stat()
374 update and return, respectively, different information based on the
375 existence of the ACL_MASK entry. This behavior adds complexity to the
376 ACL mechanism.

377 — The ACL_MASK entry does not provide complete compatibility with the
378 uses of chmod() and stat(). chmod g+rwx <object> may grant more access
379 than expected due to additional ACL entries.

380 There are several sub-issues with having an ACL mask. The following sub-
381 sections describe those issues.

382 (1) Using ACL_GROUP_OBJ as a Mask

383 The working group considered having the ACL_GROUP_OBJ perform
384 the masking for additional ACL entries.

385 This approach has the following advantages:

386 g Removes the five (5) ACL entry to four (4) ACL entry transition prob-
387 lem as described in "Automatic Removal of the ACL_MASK".

388 g Removes the special cases in chmod() for four (4) ACL entries versus
389 five (5) or more ACL entries as described in "Requiring ACL_MASK to
390 be Present".

391 This approach has the following disadvantages:

392 g The permission bits associated with the ACL_MASK limit the access
393 granted by additional ACL entries that are added during object crea-
394 tion. There are two solutions if the ACL_MASK is removed. First,
395 simply do not limit the access granted by the additional ACL entries.
396 See section "File Permission Bits Contained Within ACL Including a
397 Mask" for more details on why this solution is not acceptable. The
398 second solution is to modify the additional ACL entries to grant no
399 more access than was specified by the creating process. See B.23.5.1
400 for more details on why this solution is not acceptable.

401 g It is not possible to grant an additional ACL entry more access than
402 the owning group. It is possible to solve this by using a special group
403 with no members as the owning group. However, this solution compli-
404 cates the sseettffaaccll utility. In the case where an object only grants
405 read access to the owning group and a user wants to add an addi-
406 tional ACL entry that grants read-write access, the sseettffaaccll utility

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 259

407 would have to add an explicit entry for the owning group, change the
408 owning group to the special group, and add the new ACL entry. This
409 solution adds extreme complexity that will be visible to the user.

410 g If the file is setgid, then write access is unlikely to be granted by the
411 ACL_GROUP_OBJ entry. This means that additional ACL entries
412 would be unable to be granted write access. However, it is question-
413 able if the owner would want to grant write access to a setgid file.

414 While using the ACL_GROUP_OBJ entry as the mask reduces the com-
415 plexity associated with masking additional ACL entries, its benefits do
416 not outweigh the disadvantages in the areas of object creation and useful-
417 ness of the ACL_GROUP_OBJ entry itself. Therefore, a separate
418 ACL_MASK entry is defined and the ACL_GROUP_OBJ entry is used
419 only to specify the permissions granted to the owning group.

420 (2) Requiring ACL_MASK to be Present

421 The working group considered a strategy to require the ACL_MASK ACL
422 entry to always be present.

423 Either decision adds complexity to the chmod() interface. If the
424 ACL_MASK is required, then chmod() will behave differently if there are
425 four (4) ACL entries versus five (5) or more ACL entries. If the
426 ACL_MASK is optional, then chmod() will behave differently if the
427 ACL_MASK is present versus if the ACL_MASK is absent.

428 This approach has the following advantages:

429 g Requiring the presence of an ACL_MASK ACL entry provides con-
430 sistency. Consider the following sequence: A user creates an object in
431 a directory without a default ACL. The user examines the ACL and
432 will only see the ACL_USER_OBJ, ACL_GROUP_OBJ and
433 ACL_OTHER entries. The user adds an additional ACL entry. The
434 user examines the ACL and will see the new ACL entry and the
435 ACL_MASK entry, in addition to the ACL_USER_OBJ,
436 ACL_GROUP_OBJ and ACL_OTHER entries. The ACL_MASK entry
437 has suddenly "sprung" into existence.

438 This approach has the following disadvantages:

439 g Requiring the presence of an ACL_MASK entry requires mapping four
440 ACL entries (ACL_USER_OBJ, ACL_GROUP_OBJ, ACL_OTHER and
441 ACL_MASK) onto three groups of permission bits if only the base ACL
442 entries are present.

443 g The ACL_MASK serves no purpose if there are no additional ACL
444 entries. Since it serves no purpose in this case, it should not be
445 required.

446 The expected use of a system with ACLs includes the use of default
447 ACLs. Therefore, objects without an ACL_MASK ACL entry are expected
448 to be rare, and most users will not see an ACL_MASK entry "spring" into
449 existence. The standard does not require the ACL_MASK entry to be

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

260 B Revisions to Rationale and Notes

450 present if there are no ACL_GROUP, ACL_USER or implementation-
451 defined ACL entries present.

452 (3) Automatic Removal of the ACL_MASK

453 The working group considered requiring that the ACL_MASK entry
454 automatically be removed when all ACL entries other than
455 ACL_USER_OBJ, ACL_GROUP_OBJ, ACL_OTHER and ACL_MASK
456 were removed.

457 This approach has the following advantages:

458 g Requiring automatic removal makes the existence of the ACL_MASK
459 less obvious to the user.

460 g Requiring automatic removal is simply a clean-up step. The
461 ACL_MASK has performed its function and is no longer needed.

462 This approach has the following disadvantage:

463 g Requiring automatic removal of the ACL_MASK and the resultant
464 resetting of the ACL_GROUP_OBJ permission bits leads to execution
465 order specific results (in the absence of automatic recalculation). See
466 below for an example.

467 If ACL_MASK is explicitly removed, then the permissions of
468 ACL_GROUP_OBJ must be set to reasonable values. The working group
469 considered the following cases:

470 g Leave ACL_GROUP_OBJ unchanged.

471 If the ACL_GROUP_OBJ has more access than the old ACL_MASK,
472 this case could unintentionally grant increased access rights. Since
473 this is a security violation, this case is rejected.

474 g Set ACL_GROUP_OBJ to the value of ACL_MASK.

475 If the ACL_MASK has more access than the old ACL_GROUP_OBJ,
476 this case could unintentionally grant increased access rights. Since
477 this is a security violation, this case is rejected.

478 g Return an error to the user if an attempt is made to delete
479 ACL_MASK when ACL_MASK and ACL_GROUP_OBJ differ.

480 This case was viewed as confusing and was rejected, because deleting
481 an ACL entry should be independent of the ACL_MASK and
482 ACL_GROUP_OBJ interactions. It does force the user to understand
483 the problem and take immediate action, rather than waiting until the
484 inadvertent access reductions from the next case are discovered.
485 Finding out about a problem immediately is generally better than dis-
486 covering it inadvertently much later.

487 g Logically AND the ACL_MASK and ACL_GROUP_OBJ together and
488 set ACL_GROUP_OBJ to the result.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 261

489 This case can lead to inadvertent access reduction (in the absence of
490 automatic recalculation). For example, an object has an ACL with
491 ACL_GROUP_OBJ ACL entry with read-only access and an
492 ACL_USER(fred) entry with read-write access. Deleting the
493 ACL_USER(fred) entry and then adding an ACL_USER(wilma) entry
494 will produce an ACL that does not allow wilma to have write access to
495 the object. However, adding ACL_USER(wilma) followed by deleting
496 ACL_USER(fred) produces the desired affect.

497 While automatically removing the ACL_MASK when it is no longer
498 needed makes the mask less obvious to the user, its benefits do not
499 outweigh the complexity it adds to the programmatic interface. There-
500 fore, the application must take an explicit action to remove the
501 ACL_MASK entry when it is no longer needed within the ACL.

502 (4) Migration Path Flag

503 It is possible to define a flag to indicate whether masking is enabled or
504 disabled for the implementation.

505 This approach has the following advantages:

506 g This flag would give individual system administrators the choice of
507 determining the type of operation required for their specific installa-
508 tion.

509 g The flag would provide a migration path for some applications which
510 use the chmod() function for file locking.

511 This approach has the following disadvantages:

512 g The existence of a flag would complicate DAC knowledgeable applica-
513 tions. Software vendors would have to provide different versions of
514 the applications for the different environments or will have to modify
515 their applications to work within the different environments.

516 g The existence of a flag will complicate the utility interfaces defined by
517 this standard when used in a networked environment where some
518 systems have the flag enabled and some systems have the flag
519 cleared.

520 g The working group is chartered with only producing interfaces. Pro-
521 viding a migration path to a future usage model is beyond the scope of
522 this standard.

523 Given the complexity involved with providing a migration path flag, this
524 standard does not include such a flag.

525 B.23.3.7 The Conclusion

526 Compatibility with the existing DAC interfaces in some form or another is the
527 overriding goal of this section. Most of the approaches considered provided some
528 level of compatibility with the existing DAC interfaces. The file permission bits
529 cannot reflect all the information that can be contained in an ACL. However, the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

262 B Revisions to Rationale and Notes

530 stat() function should still reflect a reasonable amount of information regarding
531 the access rights of files and the chmod() function should still be reasonably com-
532 patible with the previous semantics regarding the update of access information on
533 files. Each approach has compelling advantages and discouraging disadvantages.

534 g The "ACL Always Replaces File Permission Bits (Pure ACL)" approach was
535 rejected because it provides no compatibility.

536 g The "Owner Selects ACL Or File Permission Bits" approach was rejected
537 because it requires existing applications that manage DAC to be modified
538 to be used on a system with ACLs.

539 g The "Independent ACL and File Permission Bits (AND)" approach was
540 rejected because it leads to wide-open file permission bits on systems that
541 make use of ACLs with additional entries.

542 g The "Independent ACL and File Permission Bits (OR)" approach was
543 rejected because a user of the existing DAC interfaces can be fooled into
544 thinking that an object with additional ACL entries is secure when, in fact,
545 others have access to the object.

546 g The "File Permission Bits Contained Within ACL Without a Mask"
547 approach was rejected because a user of the existing DAC interfaces can be
548 fooled into thinking that an object with additional ACL entries is secure
549 when, in fact, others have access to the object.

550 g The "File Permission Bits Contained Within ACL Including a Mask"
551 approach was chosen because it provides the "best" compatibility with the
552 existing DAC interfaces.

553 B.23.3.8 Altering Permission Bit Mapping

554 Allowing implementation-defined ACL entries to alter the mapping between file
555 permission bits and ACL entries defined by this standard was considered. If an
556 implementation-defined entry is allowed to modify the permission bits, then it is
557 possible for a strictly conforming POSIX.1e application to fail. Note that a strictly
558 conforming application cannot add the implementation-defined entry to an ACL,
559 but the strictly conforming application may not function properly if it modifies an
560 ACL that contains the implementation-defined ACL entry. Consider the follow-
561 ing: an strictly conforming application modifies the ACL_USER_OBJ entry in an
562 ACL that contains an implementation-defined ACL entry. The implementation-
563 defined ACL entry modifies the permission bits. The strictly conforming applica-
564 tion expects the middle permission bits to be identical to the permission bits in
565 the ACL_GROUP_OBJ entry. However, the permission bits have been modified
566 by the implementation-defined ACL entry. The strictly conforming application is
567 broken.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 263

568 B.23.4 Default ACLs

569 A default ACL is a defined set of ACL entries that are automatically assigned to
570 an object at creation time. There were five major decisions with default ACLs.
571 The following subsections explain the rationale for these decisions.

572 (1) Why Define Default ACLs?

573 (2) Types of Default ACLs

574 (3) Inheritance of Default ACLs During Object Creation

575 (4) Compulsory versus Non-compulsory ACLs

576 (5) Default ACL Composition

577 B.23.4.1 Why Define Default ACLs

578 Should support for default ACLs be defined by the standard? The following rea-
579 sons support inclusion of default ACLs in the standard:

580 (1) ACL use is encouraged in secure systems.

581 (2) Default ACLs allow the finer granularity of control provided by ACLs to
582 be automatically applied to newly created objects. This control can be
583 either restrictive or permissive.

584 (3) In a pure ACL environment, it is necessary to provide some initial access
585 rights to a newly created object.

586 The following reasons support exclusion of default ACLs from the standard:

587 (1) It is not clear that the benefit of default ACLs outweighs the complexity
588 introduced in object creation and object attribute management. Object
589 creation will have to accommodate the existence of default ACLs in addi-
590 tion to the umask and the object creation mode bits. Either a new set of
591 interfaces has to be created for manipulating default ACLs or the inter-
592 faces for access ACL manipulation will have to be modified to accommo-
593 date default ACLs.

594 (2) The default ACL in any form is a new influence on the ACL of a newly
595 created object and cannot be manipulated or worked around by existing
596 applications. Most existing applications will be able to coexist with
597 default ACLs. However, existing applications that make security
598 relevant decisions may not work on a system with default ACLs. See
599 B.23.5 for specific examples.

600 In general, default ACLs appear to be a useful feature. Several existing ACL
601 implementations have some form of default ACL mechanism. Certainly, default
602 ACLs add complexity to the standard; however, they also add considerable value
603 and should have a well defined standard interface.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

264 B Revisions to Rationale and Notes

604 B.23.4.2 Types of Default ACLs

605 Several different types of default ACLs were discussed by the working group. The
606 advantages and disadvantages of each type of default ACL are discussed in the
607 following paragraphs. The final paragraph of this section discusses why a partic-
608 ular type of default ACL was chosen.

609 (1) System Wide Default ACLs

610 One specific default ACL is assigned to any object created on the system
611 by any process, in any directory. System wide default ACLs have the fol-
612 lowing advantages:

613 — Can only be set by the system administrator who is likely to be secu-
614 rity conscious

615 — Is not complex or difficult to understand and explain

616 System wide default ACLs have the following disadvantage:

617 — Limits the specification of the initial discretionary access control on
618 objects to system administrators rather than the user

619 (2) Per-Process Default ACLs

620 Each user process defines a default ACL which is assigned to any object
621 created by the process. Per-process default ACLs have the following
622 advantages:

623 — Models an existing interface, i.e., the umask paradigm

624 — Allows the user to retain complete control over the configuration of
625 discretionary access

626 Per-process default ACLs have the following disadvantages:

627 — Follows a paradigm that is considered to be inadequate for present
628 needs, i.e., the umask paradigm

629 — Requires the user to be security cognizant at all times; however, a
630 knowledgeable user will only make security relevant decisions with a
631 modest degree of frequency

632 — Might not be the right default ACL in a shared directory

633 — Allows the user to set only a single default ACL for all files created

634 (3) Per-Directory Default ACLs

635 Each directory is allowed to have a default ACL which is assigned to all
636 objects created in the directory. Newly created subdirectories inherit the
637 default ACL of the parent directory. Per-directory default ACLs have the
638 following advantages:

639 — Allows the user to set up the hierarchy once

640 — Prevents the user from having to set a new default ACL as working
641 directories are changed

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 265

642 — Allows system administrators to establish initial default ACLs on
643 users’ home directories which will propagate to objects created within
644 the directories

645 — Allows project administrators to establish initial default ACLs on
646 shared directories which will propagate to objects created within the
647 directories

648 Per-directory default ACLs have the following disadvantages:

649 — Propagates the default ACL down through the file system hierarchy in
650 cases where it is not necessary

651 — An implementation written to conserve disk space may have to imple-
652 ment a default ACL sharing mechanism

653 — Gives the choice of the default ACL to the directory owner instead of
654 the file creator

655 The working group recognizes that a per-directory default ACL gives the
656 directory owner control over the default value. However, the directory
657 owner currently has control over at least one attribute of objects created
658 in the directory: specifying the owning group. Also note that the direc-
659 tory owner has control over object creation, deletion, renaming and
660 replacement.

661 The value added by per-directory default ACLs outweighs the complexity intro-
662 duced by the mechanism and was, therefore, selected as the default ACL mechan-
663 ism.

664 B.23.4.3 Inheritance of Default ACLs During Object Creation

665 While the working group felt that default ACLs on a per-directory basis provided
666 the best solution, it considered alternatives to simply propagating the default
667 ACL to all newly created objects in a directory. The working group considered
668 two basic schemes for inheritance of ACLs involving the default ACL mechanism:

669 (1) Inheritance of Default ACLs for All Objects

670 The first alternative considered was to have all objects created in a direc-
671 tory inherit the default ACL of the directory. The working group felt that
672 this solution provided an ACL inheritance mechanism that was con-
673 sistent across all objects. This option does not take into account any
674 differing permission requirements for directories as opposed to non-
675 directory objects.

676 (2) Inheritance of Access ACLs for Directory Objects

677 The second alternative specified inheritance of the default ACL as the
678 access ACL for all newly-created objects except directories. A newly-
679 created directory would inherit the access ACL of its parent directory as
680 its access ACL instead of inheriting the parent’s default ACL. This
681 approach was attractive because it allowed propagation of common pro-
682 perties through a sub-hierarchy which was thought to be the most

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

266 B Revisions to Rationale and Notes

683 common case. It further allowed different permissions to be applied to
684 directories and non-directories which was considered a useful feature.

685 The disadvantages to this approach were the following:

686 — The implementation would not be consistent across all objects. The
687 semantics for applying initial access control information to a single
688 type of file object would differ from the semantics for all other types of
689 file.

690 — In the case where a parent directory has no default ACL, counter-
691 intuitive side effects were unavoidable.

692 g If the access ACL were applied to a newly created directory object
693 only when a default ACL is present, the application of initial
694 access attributes to the directory is determined by an event unre-
695 lated to the action of creating the directory, i.e., the presence of a
696 default ACL. This behavior violates the Principle of Least Aston-
697 ishment.

698 g If the access ACL were always applied to a newly created direc-
699 tory, the semantics of POSIX.1 are violated. The method for apply-
700 ing initial access attributes to directories no longer would allow
701 the capability to create a minimal ACL, i.e., one corresponding to
702 permission bits, in a manner consistent with the POSIX.1 umask
703 capability.

704 The working group selected the first mechanism because the ease in which it
705 could be consistently applied. The working group felt that the advantages of the
706 second approach were not sufficiently beneficial to warrant accepting the disad-
707 vantages. If a more flexible default ACL mechanism providing some of the advan-
708 tages of the second alternative is desired, an implementation may include addi-
709 tional default ACLs for this purpose.

710 B.23.4.4 Compulsory Versus Non-Compulsory Default ACLs

711 The standard requires a conforming implementation to support a per-directory
712 default ACL mechanism. The working group discussed whether or not default
713 ACLs should be required on every directory.

714 The following supports requiring default ACLs on every directory:

715 (1) Allows a consistent ACL policy to be maintained for all newly created
716 objects

717 (2) minimizes the need for the umask

718 The following supports the optional use of default ACLs:

719 (1) Allows users who wish to use only the permission bits to use only the
720 existing DAC mechanism

721 (2) Allows existing mechanisms to further restrict access on the newly
722 created object, i.e. creat and umask

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 267

723 The working group feels that allowing users to use either default ACLs or the
724 umask interface provides a significant amount of flexibility. Thus, the working
725 group decided to make the use of default ACLs on directories optional.

726 B.23.4.5 Default ACL Composition

727 The working group discussed having the same required entries for default and
728 access ACLs or to have no required entries in default ACLs.

729 The following supports having identical required entries for default and access
730 ACLs:

731 (1) Supporting optional default ACL entries leads to a more complex object
732 creation algorithm that is difficult to explain.

733 The following supports having no required entries in default ACLs:

734 (1) The user has the flexibility to configure the default ACL with the
735 minimum amount of access information that is necessary.

736 The working group feels that consistency between default ACLs and access ACLs
737 contributes dramatically to the conceptual simplicity of the default ACL mechan-
738 ism and that the need for simplicity far outweighs the small increase in flexibility
739 provided by optional default ACL entries. Therefore, default ACLs have the same
740 required entries as access ACLs.

741 Note that default ACLs are optional on individual directories. However, if a direc-
742 tory has a default ACL, then that ACL must contain at least the three required
743 entries for owning user, owning group, and all other users. It may contain addi-
744 tional named user and group entries. If a default ACL contains ACL_USER,
745 ACL_GROUP or implementation-defined ACL entries, then an ACL_MASK entry
746 is also required.

747 Also note that a default ACL with no entries is not equivalent to no default ACL
748 existing on a directory. A default ACL with no entries is an error and any attempt
749 to associate such a default (or access) ACL on an object will be rejected with an
750 appropriate error code. The appropriate functions (or options on the sseettffaaccll
751 utility) must be used to completely remove a default ACL from a directory.

752 B.23.5 Associating an ACL with an Object at Object Creation Time

753 The following goals guided the working group in determining how ACLs should be
754 assigned on object creation:

755 g The object creation calls and the open() call with the O_CREAT flag specify
756 the mode to use when an object is created. The mode provided is the
757 program’s way of indicating the access limitations for the object. It was a
758 goal that no access be permitted to the object if it would not traditionally
759 have been granted.

760 g There are many existing programs that use creat(filename, 0) as a locking
761 mechanism. Although this is no longer a recommended way of doing

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

268 B Revisions to Rationale and Notes

762 locking, preserving this functionality shall be given high priority.

763 g The process umask is the user’s way of specifying security for newly created
764 objects. It was a goal to preserve this behavior unless it is specifically over-
765 ridden in a default ACL.

766 g The access determined by an ACL is discretionary access control. But dis-
767 cretion of whom, the creator or the directory owner? Traditionally, discre-
768 tion has been up to the creator. However, ACLs are often used by projects
769 in shared directories. It was a goal to permit the directory owner to have
770 control, but only within the limits specified by the creator.

771 g The Principle of Least Astonishment is a guideline that states that changes
772 to existing interfaces should provide a minimal amount of surprise.

773 The working group considered whether the creating process should be allowed to
774 control the inheritance of default ACLs. If the process controls inheritance, then
775 the process can keep a default ACL from further restricting the permissions. But
776 the creator can achieve this anyway, by changing the ACL after creation. There-
777 fore no additional control for the creator was provided.

778 The algorithm chosen for determining the mode of a newly-created object is in the
779 body of the standard. The reasons why this algorithm was chosen are:

780 (1) If there is no default ACL on the parent directory of the created object,
781 the ACL assigned to the object is fully compatible with the access granted
782 to the object in a POSIX.1 system.

783 (2) The entries of the default ACL are used in place of the equivalent umask
784 bits. Thus, the creator of the default ACL can control the maximum per-
785 missions for newly created files in the directory.

786 If umask were used when a default ACL exists, then the user is likely to
787 set a very permissive umask to permit the full utilization of the default
788 ACL. This permissive umask would be inappropriate in a directory
789 without a default ACL. The chosen solution allows umask and default
790 ACLs to co-exist.

791 (3) The newly created object has all the ACL_USER and ACL_GROUP ACL
792 entries specified in the default ACL. The ACL_USER_OBJ,
793 ACL_GROUP_OBJ, and ACL_OTHER entries are as close to the ones
794 specified in the default ACL as possible, within the constraints of the
795 creator’s mode parameter. If the default ACL contains an ACL_MASK
796 entry, then it is constrained by the creator’s mode parameter instead of
797 the ACL_GROUP_OBJ entry. In this case, the newly created object has
798 the ACL_GROUP_OBJ entry as specified in the default ACL.

799 (4) The overall effect is that the access granted to the newly created object
800 has the granularity specified by the default ACL, while preserving the
801 constraints specified by the object creator.

802 The only disadvantage recognized by the working group for this algorithm is that
803 the umask is not taken into consideration when creating files in a directory with a
804 default ACL. This solution gives the user little protection against a program that

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 269

805 specifies an unwise create mode when creating a file in a directory with an inap-
806 propriate default ACL.

807 Another possible approach is to ignore both the mode parameter of the creat()
808 function and the umask value if a default ACL entry exists. This approach was
809 considered because it gives the directory owner complete control over newly
810 created objects in her/his directory. Allowing the directory owner to have control
811 over the permissions of newly created objects is a logical extension. This solution
812 also supports the contention that the directory owner knows how to set up the
813 permissions for newly created objects in a particular hierarchy.

814 This algorithm was not selected because the directory owner can override the
815 program’s advice about the use of a newly created object, i.e., override the create
816 mode. Traditionally, the creator of an object has complete control over the mode
817 of a newly created object. This solution would completely usurp that control from
818 the creator.

819 The specification of the semantics for applying ACLs on a newly created object is
820 included as part of this standard so that applications can predict reliably the
821 access that will be granted (or more accurately, the maximum access that will be
822 granted) based on a default ACL set by that application. This is simply an exten-
823 sion of the specification of the setting of the file permission bits for newly created
824 files in the POSIX.1 standard without the ACL option.

825 B.23.5.1 Modification of ACL Entries on Object Creation

826 The working group considered changing the default ACL mechanism to modify
827 the permissions granted by additional ACL entries that are added during object
828 creation. The permissions would be modified to grant no more access than was
829 specified by the creating process.

830 This strategy has the following advantage:

831 g If the permissions of the additional ACL entries are modified as described
832 above, then the mode parameter specified at object creation could be used
833 to remove undesired permissions from all entries in the new object’s access
834 ACL.

835 This strategy was rejected for the following reasons:

836 g If the permissions of the additional ACL entries are modified as described
837 above, then information that the creator of the default ACL entered is lost.
838 The most common example is that a creat(file, 0600) would lose the infor-
839 mation in the default ACL for all ACL_USER and ACL_GROUP entries.
840 This represents a potential for considerable information loss.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

270 B Revisions to Rationale and Notes

841 B.23.6 ACL Access Check Algorithm

842 The ACL access check algorithm has several important characteristics.

843 (1) Support for concurrent membership in multiple groups.

844 If a process belongs to multiple groups, the specific access modes
845 requested are granted if they are granted by the owning group entry or
846 by a matching group entry in the ACL.

847 (2) Consistency with existing POSIX.1 features.

848 The chmod() and stat() functions will continue to operate on the permis-
849 sions associated with the object’s owner, owning group, and other users
850 not matching entries in the ACL.

851 (3) Relative ordering of algorithm steps.

852 The relative ordering of the algorithm steps is essential to be able to
853 exclude specific users even if they belong to a group that otherwise may
854 be granted access to the resource.

855 (4) Support for extensibility.

856 Implementations that include additional ACL entry tag types or exten-
857 sions may insert them as appropriate into the relative order of the
858 defined steps in the algorithm.

859 The rationale for the first of these characteristics is covered in detail below. The
860 issue of interoperability is discussed in detail in B.23.3.

861 B.23.6.1 Multiple Group Evaluation

862 The design of supplemental groups in POSIX.1 was intended to provide flexibility
863 in allowing users access to files without requiring separate actions to first change
864 their group identities. The ACL mechanism facilitates that intent by allowing the
865 inclusion of multiple named group entries in the ACL. Since it is possible for a
866 process to match more than one named group entry in the ACL at a time, it is
867 necessary to define the access that is granted by the matched entries.

868 The following paragraphs discuss the approaches that were considered:

869 (1) First group-id match. In this approach, the first entry that matches one
870 of the process’s groups is used to determine access. Access is granted if
871 the matched entry grants the requested permissions.

872 This approach does provide a simple solution to the problem, but it does
873 so by putting a burden on the user to order the ACL_GROUP entries
874 correctly to get the desired result. Also, while this is an efficient method
875 to implement, it does dictate implementation details because the ACL
876 entries must be maintained by the system in the order that they were
877 entered by the user.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 271

878 (2) Intersection of matching entries. In this approach, the permissions of all
879 the entries which match groups of the process are intersected (ANDed)
880 together. Access is granted if the result of the intersection grants the
881 requested permissions.

882 This approach does provide a slightly complex solution (from a user point
883 of view) to the problem, but it is considered very restrictive. It is difficult
884 to justify that a process that is granted read access through one group
885 and write access through another group should actually get no access.

886 (3) Union of matching entries. In this approach, the union is taken of the
887 permissions of all the entries which match groups of the process. Access
888 is granted if the result of the union grants the requested permissions.

889 This approach does provide a slightly complex solution (from a user point
890 of view) to the problem, but it is considered rather permissive. It is not
891 possible to ensure denial of access to all members of a group via a restric-
892 tive group entry because members of that group may be allowed access
893 via membership in other groups. It is also possible for a process to be
894 granted more access than is granted by a single entry, e.g., one entry
895 grants read access, one entry grants write access and the process is
896 granted read and write access.

897 (4) Permission match. In this approach, the permissions of all the entries
898 which match groups of the process are compared with the requested
899 access. Access is granted if at least one matched entry grants the
900 requested permissions.

901 This approach provides a simple solution to the problem that is very
902 similar to the POSIX.1 semantics. In POSIX.1, if a process is in the file
903 group class and the file group class permissions grant at least the
904 requested access, then the process is granted access. In this approach, if
905 a process is in the file group class and the permissions of one of the ACL
906 entries in the file group class grant at least the requested access, then
907 the process is granted access.

908 One of the goals of the ACL mechanism is to be compatible with POSIX.1. Of the
909 different approaches considered, the "Permission match" approach provides the
910 semantics that most closely match POSIX.1 and is the chosen approach.

911 B.23.6.2 Multiple User Evaluation

912 If the effective group ID or any of the supplementary group IDs of a process
913 matches the group ID of an object, then the POSIX.1e access check algorithm uses
914 the permissions associated with the ACL_GROUP_OBJ entry and the permis-
915 sions associated with any matching ACL_GROUP entries in determining the
916 access which can be granted to the process. However, if the effective user ID of
917 the process matches the user ID of an object owner, then only permissions associ-
918 ated with the ACL_USER_OBJ entry are used to determine the access allowed for
919 the process. No ACL_USER entries are used even if the process matches the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

272 B Revisions to Rationale and Notes

920 qualifier information for one or more entries.

921 This type of behavior is consistent with the previous POSIX.1 interface since a
922 process could not match multiple user identities yet could match multiple groups.

923 B.23.7 ACL Functions

924 B.23.7.1 ACL Storage Management

925 These issues apply to both access ACLs and default ACLs. The decision to mani-
926 pulate ACL entries in working storage was made for two reasons: 1) the possibil-
927 ity of unsecure states and 2) the fact that there can be a variable number of ACL
928 entries.

929 If ACL entries could be manipulated directly, or if ACL entries could be manipu-
930 lated while the ACL continued to protect the object, unsecure states could arise.
931 This is because the functions which manipulate ACL entries only manipulate sin-
932 gle entries. The procedural interfaces we have chosen are not capable of changing
933 several entries in a single autonomous operation. Because of this the possibility
934 exists that a less secure state could arise during the modification of an ACL.

935 B.23.7.1.1 Allocating ACL Storage

936 Since an ACL can contain a variable number of ACL entries, mechanisms to allo-
937 cate and free dynamic memory are required. The working group considered four
938 approaches. The first approach was to have a single function that allocates a
939 specific amount of memory for the ACL. The disadvantage to this approach is
940 that the user must allocate enough storage or an error will occur and new larger
941 working storage will have to be allocated and the ACL entries recreated.

942 The second approach is to have two functions that allocate space for the ACL.
943 The first function allocates a specific amount of space for the ACL and the second
944 function increases the space allocated by the first function to a specific size.

945 The third approach is to have a single function that allocates an initial amount of
946 memory. Applications would then provide the address of the pre-allocated ACL
947 storage area to the ACL manipulation functions. The acl_copy_int(),
948 acl_create_entry(), acl_from_text(), acl_get_fd(), and acl_get_file() functions would
949 manipulate the ACL within the ACL storage area provided by the application and
950 would allocate additional memory as needed.

951 The fourth approach is to have the routines which work with working storage
952 areas for opaque data types allocate the working storage as needed and then
953 return pointers to descriptors for those areas. Functions which then manipulate
954 the ACL in the working storage area would allocate additional memory for work-
955 ing storage as needed. In addition, a function to allocate storage for an ACL with
956 no entries would be provided.

957 The final approach has been chosen for inclusion in the standard in order to pro-
958 vide a consistent interface among the various sections of POSIX.1e.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 273

959 B.23.7.1.2 Copying ACL Storage

960 The acl_copy_entry() function is provided for several reasons: an acl_entry_t is a
961 descriptor and cannot be byte copied; an implementation can have extensions and
962 without the function it is not possible for a portable application to copy an entry.

963 The acl_copy_entry() function is also provided to allow an application to copy an
964 entry from one ACL to another ACL. This is useful when the source ACL is a list
965 of "defaults" that the application provides for building ACLs to apply to arbitrary
966 objects.

967 The acl_copy_entry() function allows an application an easy means of copying an
968 ACL entry from one ACL to another ACL. For example, one implementation of an
969 ACL builder application may maintain an ACL "scratch pad" that is used to build
970 ACLs to be applied to objects. The application may provide a means of highlight-
971 ing specific ACL entries in the "scratch pad" to be copied to the ACL that is being
972 built.

973 B.23.7.1.3 Freeing ACL Storage

974 An explicit interface for freeing ACL storage is provided. The working group con-
975 sidered embedding this functionality into the acl_set_file() and acl_set_fd() inter-
976 faces. The disadvantage is that a program wanting to apply a single ACL to mul-
977 tiple files would have to create or read the ACL for each application of the ACL.

978 B.23.7.2 ACL Entry Manipulation

979 Interfaces are provided to manipulate ACL entries. There were five major deci-
980 sions with ACL entry manipulation. The following subsections explain the
981 rationale for these decisions.

982 B.23.7.2.1 Procedural Versus Data Oriented Interfaces

983 This standard uses a procedural interface to manipulate ACL entries instead of
984 the traditional UNIX style data oriented interface.

985 A data oriented interface specification typically defines a small set of primitives to
986 access data objects, e.g. read, write, or commit. The application must be aware of
987 the structure of the data and is responsible for direct manipulation of the data.
988 The advantages of a data oriented interface is that it provides the application a
989 substantial amount of flexibility in accessing and manipulating the data. How-
990 ever, because the application must know the structure of the data, any change in
991 the ordering, size, or type of the data will impact the application.

992 A procedural interface isolates the application from the structure of the data. The
993 interface consists of a larger set of functions where each function performs one
994 operation on one field within the object. The application manipulates the data
995 items within an object by using a series of functions to get/set each data item and
996 a smaller set of functions to read and write the object. The advantage of a pro-
997 cedural interface is that it allows changes and extensions to the structure of the
998 data without any impact to applications using that data. However, isolating the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

274 B Revisions to Rationale and Notes

999 application from the data structure provides the application with less flexibility in
1000 accessing and manipulating the data and exhibit poorer performance.

1001 A data oriented interface has the following advantages:

1002 g consists of a small set of functions.

1003 g can be manipulated by language primitives.

1004 g is consistent with traditional UNIX calls, e.g., stat(), chmod(), etc.

1005 A procedural interface has the following advantages:

1006 g allows changes/extensions to the data structures without impacting appli-
1007 cations.

1008 g contains fewer visible data structures

1009 g supports a move toward object oriented interfaces which tends to encourage
1010 more portable code

1011 The advantages of isolating applications from the structure of ACLs and ACL
1012 entries are substantial. Thus, a procedural interface was chosen to manipulate
1013 access control list information.

1014 We originally did not choose to define a procedural interface for manipulating the
1015 permission set within an ACL entry. Our reason was that the application must
1016 be aware of the structure of permission sets (bits within a long data type) and
1017 should be responsible for manipulating the bits directly. In our original opinion,
1018 the ease of direct language manipulation of the permission bits far exceeded any
1019 advantage gained in hiding the structure of the information.

1020 During balloting it became clear that procedural interfaces for permission bits
1021 had additional advantages. Functions to manipulate permission sets were added
1022 later to allow an implementation to have more permissions than could fit in a
1023 natural data type (32 bits). While it is somewhat difficult to imagine why more
1024 than 32 permissions are needed, it is not good design to preclude such an imple-
1025 mentation.

1026 B.23.7.2.2 Automatic Recalculation of the File Group Permission Bits

1027 The initial proposal was to recalculate the file group permission bits whenever
1028 a new ACL entry is added. The following example illustrates a problem with this
1029 approach.

1030 Consider a file created with a file creation mask of 0 in a directory that
1031 contained a fully populated default ACL. This file will have file group
1032 permission bits of 0, i.e., ---, yet may have named ACL_USER or
1033 ACL_GROUP entries specifically granting permissions. (These entries
1034 will be effectively ignored during access checking because of the masking
1035 effect of the 0 file group permission bits.) If the file group permis-
1036 sion bits are automatically recalculated whenever a new ACL entry is
1037 added, the result of adding a ACL_USER entry specifically denying a
1038 user access will be to effectively grant access to the previously masked
1039 ACL entries.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 275

1040 It seems counter-productive at best to have an entry that denies a user access also
1041 grant access to other users. However, there does not exist a technique to allow for
1042 the application of a single entry in an ACL and the exclusion of others.

1043 Other proposed alternatives include providing a mechanism in the sseettffaaccll util-
1044 ity to specifically request recalculation. A problem with this alternative is that
1045 typically a user adds an entry to an ACL with the intent of having the new entry
1046 affect the access decision. It isn’t possible to have one new named ACL_USER or
1047 ACL_GROUP entry be guaranteed effective in the access algorithm without recal-
1048 culating the file group permission bits based on all entries.

1049 The final alternative considered by the working group is to provide an explicit
1050 interface for recalculating the mask.

1051 B.23.7.2.3 Convenience Functions

1052 The acl_calc_mask() function is provided for the convenience of applications.
1053 Applications could be required to perform this function, but DAC knowledgeable
1054 applications are likely to need it. Therefore, it is better to provide a standard
1055 interface.

1056 The acl_valid() function is provided as a convenience for applications. Applica-
1057 tions could be required to perform this function, however this functionality will
1058 likely be used by ACL cognizant applications. Therefore it is better to provide a
1059 standard interface for this functionality.

1060 It is possible to merge the acl_valid() and acl_set_∗() functions together. How-
1061 ever, it may be useful for ACL cognizant applications to be able to perform the
1062 acl_valid() function without having to apply (write out) the ACL to an object.
1063 This was seen as particularly useful for interactive tools in dealing with access
1064 and default ACLs.

1065 The group considered providing program interfaces for the creation of objects with
1066 a specified ACL and other security attributes. The motivation for this is that
1067 security-conscious programs may wish to ensure that objects they create have
1068 correct ACL and other security attributes throughout their life, from the instant
1069 they are created. The group decided not to standardize such interfaces because
1070 programs can achieve the security objective by creating the object using existing
1071 POSIX.1 interfaces specifying very restrictive permissions and then setting the
1072 ACL to the required value.

1073 The acl_first_entry() function was added to allow applications to revisit ACL
1074 entries previously referenced with acl_get_entry(). This is particularly needed by
1075 applications which are creating an ACL in working storage and need to revisit a
1076 previously created entry.

1077 B.23.7.2.4 Hooks For Sorting

1078 The acl_valid() function may change the ordering of ACL entries. This behavior
1079 allows an implementation to sort ACL entries before passing them to the
1080 acl_set_∗() function. This allows a performance improvement to be recognized.
1081 Since the acl_set_∗() function does not require any specific ordering, the system

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

276 B Revisions to Rationale and Notes

1082 will likely sort all entries so that it may check for duplicates. If the sorting is per-
1083 formed by the acl_valid() function, the system may only need to make one pass
1084 through the ACL resulting in an order (N) sort when the acl_set_∗() function is
1085 called.

1086 Functions which may add entries to an ACL, or remove them, are also allowed to
1087 reorder the entries of an ACL. This permits, but does not require, an implemen-
1088 tation to keep an ACL in some implementation specific order.

1089 Note that the standard requires that even implementations that reorder the
1090 entries of an ACL do not invalidate any existing ACL entry descriptors that refer
1091 to the ACL: these must continue to refer to the same entries even if the imple-
1092 mentation reorders the entries.

1093 B.23.7.2.5 Separate Functions for Tag and Permission

1094 A single function (for example, acl_get_entryinfo()) could have been provided for
1095 retrieving ACL entry fields rather than separate functions. However, the stan-
1096 dard provides individual interfaces for retrieving and setting each logical piece of
1097 information within an ACL entry. Implementations can add information to an
1098 entry and add a separate interface for that implementation-specific information
1099 rather than changing the ones specified in this standard.

1100 Implementations are allowed to define additional ACL entry types with arbitrary
1101 size qualifier fields. Because of this, acl_get_qualifier() cannot simply copy out a
1102 user ID or group ID size object. The acl_get_qualifier() interface returns a pointer
1103 to an independent copy of the qualifier data in the ACL entry. The copy is
1104 independent because the ACL entry may be relocated by an acl_create_entry() or
1105 acl_delete_entry() call. When the application is done with the ACL entry, the
1106 space needs to be released; hence, the need for for a call to acl_free().

1107 B.23.7.3 ACL Manipulation on an Object

1108 Interfaces for manipulating an ACL on an object are provided for reading an ACL
1109 into working storage and for writing an ACL to a file. These functions provide a
1110 type parameter to allow for implementations which include additional types of
1111 default ACLs not defined in the standard. See the rationale for ‘‘ACL Storage
1112 Management’’ for additional information.

1113 An earlier version of the draft contained a requirement that modifying an an ACL
1114 on an object and removing a default ACL from a directory be implemented as
1115 "atomic operations". The specific requirement was that the operations be atomic
1116 with respect to the invocation and termination of the function calls and any use of
1117 the ACL (access or default ACL). There was also the requirement that changes to
1118 an existing access or default ACL could not result in any intermediate state such
1119 that both the original ACL and the result ACL were both associated with the tar-
1120 get file. While these requirements are certainly necessary, they are requirements
1121 upon the implementation, not the functional interface. As such, it is left to the
1122 implementation to define and enforce its own atomicity requirements. In addition
1123 to not being an interface issue, such atomicity requirements are inherently non-
1124 testable. As such, it is unreasonable to require the construction of tests to

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 277

1125 demonstrate conformance these atomicity requirements. For these reasons, all
1126 atomicity requirements were removed from the acl_delete_def_file(), acl_set_fd(),
1127 and acl_set_file() functions.

1128 B.23.7.4 ACL Format Translation

1129 There are three formats of an ACL visible to the programmer:

1130 (1) An internal representation that is used by the ACL interfaces.

1131 (2) A self contained data package which can be written to audit logs, stored
1132 in databases, or passed to other processes on the same system.

1133 (3) A NULL terminated text package (string) that can be displayed to users.

1134 The ACL copy and conversion functions provide the means to translate an ACL
1135 among the various ACL representations.

1136 The NULL terminated text package may contain a representation of an ACL in
1137 either a long text form or a short text form. The following is an example of a valid
1138 ACL in the long text form:

1139 user::rwx
1140 mask::rwx
1141 user:jon:rwx
1142 user:lynne:r-x
1143 user:dan:−−−
1144 group::rwx
1145 group:posix:r−x
1146 other::−−x

1147 The following is a representation of the same ACL in the short text form:

1148 u::rwx,m::rwx,u:jon:rwx,u:lynne:r-x,u:dan:−−−,g::rwx,g:posix:r−x,o::−−x

1149 The working group considered using the self contained data package as the inter-
1150 nal representation of an ACL. The working group rejected this option for the fol-
1151 lowing reasons:

1152 (1) Implies that some implementations would have to translate an internal
1153 form into a self contained form on every POSIX.1e compliant ACL opera-
1154 tion.

1155 (2) The programmer has to keep track of the size and location of the ACL
1156 with every operation that can modify the ACL. The size must be tracked
1157 because the ACL size may grow or shrink. The location must be tracked
1158 because an ACL may not be able to grow in its present location and
1159 would have to be relocated.

1160 B.23.7.5 Function Return Values and Parameters

1161 The acl_get_∗() functions can return pointers, descriptors and discrete values. If
1162 an acl_get_∗() function returns a pointer, then it is returned as the function
1163 return value. This is because a NULL pointer is valid indicator for error

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

278 B Revisions to Rationale and Notes

1164 conditions. If an acl_get_∗() function returns a descriptor or a discrete value, then
1165 it is returned as a write-back parameter. This is because there is not a well
1166 defined value that can be returned to indicate that an error has occurred.

1167 B.23.7.6 File Descriptor Functions

1168 The working group decided to specify functions that operated via file descriptors
1169 in addition to functions that operated via a file name. These functions allow an
1170 application to open an object and then pass around a file descriptor to that object
1171 instead of both the name and the file descriptor. BSD has found the related
1172 fchdir(), fchmod(), fchown() and fchroot() interfaces to be useful.

1173 B.23.8 Header

1174 Values for acl_perm_t are defined in the header because no definitions in POSIX.1
1175 were suitable. Those definitions considered in POSIX.1 were:

1176 (1) Definitions in POSIX.1, 5.6.1.2. These definitions refer to the nine per-
1177 mission bits whereas ACL entry permissions have only three values.

1178 (2) Definitions in POSIX.1, 2.9.1. These names, e.g., R_OK, were not
1179 appropriate for ACL entry permissions.

1180 B.23.9 Misc Rationale

1181 B.23.9.1 Objects Without Extended ACLs

1182 This standard specifies that each file will always have an ACL associated with the
1183 file, but does not require each file to have an extended ACL.

1184 Originally, the provided ACL functions allowed for returning [ENOSYS] if
1185 {_POSIX_ACL} was defined and the specified file cannot have an extended ACL.
1186 This was subsequently changed because of objections to the overloading of
1187 [ENOSYS] to return [ENOTSUP] for the cases where a file cannot have an
1188 extended ACL.

1189 A pathconf() variable {_POSIX_ACL_EXTENDED} is provided to allow applica-
1190 tions to determine if a file can have an extended ACL. This standard does not
1191 specify the specific situations where a file cannot have an extended ACL. Exam-
1192 ples of possible situations are: CD-ROM file systems, and pre-existing file systems
1193 with insufficient space to insert extended ACLs. The acl_get_fd() and
1194 acl_get_file() functions will always return an ACL because each file will always
1195 have an ACL associated with the file. The acl_delete_def_file(), acl_set_fd(), and
1196 acl_set_file() functions can return [ENOTSUP] if the specified file cannot have an
1197 extended ACL.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.23 Access Control Lists 279

1 B.24 Audit

2 B.24.1 Goals

3 The goals for the POSIX.1e audit option are:

4 (1) Support for Portable Audit-generating Applications

5 (a) Define standard interfaces for applications to generate audit
6 records.

7 (b) Define standard interfaces for applications to request that the sys-
8 tem suspend its generation of audit records for the current process.

9 (c) Define capabilities for these interfaces.

10 (2) Support for Portable Audit Post-processing Applications

11 (a) Define a standard format for system- and application-generated
12 audit records, as viewed through audit post-processing interfaces.

13 (b) Define a minimum set of the POSIX.1e interfaces which shall be
14 reportable in a conforming implementation.

15 (c) Define a standard set of record types, corresponding to the report-
16 able POSIX.1e interfaces, and the required content of those record
17 types as viewed through the audit post-processing interfaces.

18 (d) Define standard interfaces for reading an audit log and processing
19 the audit records that are read.

20 (3) Extensibility for Implementation-specific Requirements

21 (a) Ensure that standard reading and writing interfaces allow
22 specification of arbitrary data in application-defined audit records.

23 (b) Allow for reporting of additional implementation-defined events by
24 conforming implementations.

25 (c) Ensure that standard definitions of the content of required audit-
26 able events allow for extension by conforming implementations.

27 (d) Define standard interfaces for access to implementation-specific
28 audit storage mechanisms (audit logs).

29 The auditing interfaces specified by this standard are intended to be compatible
30 with the auditing requirements of a number of specifications, including but not
31 limited to the U.S. TCSEC levels C2 and above and the European ITSEC func-
32 tionality levels F-C2 and above. It should be noted that this compatibility extends−
33 only to the functional specifications; and also that meeting the requirements of
34 this standard would not necessarily be sufficient to meet all of the audit require-
35 ments of any of the above specifications.

36 There was recognition by the working group that it should be possible for a
37 number of differing implementations to be developed all meeting the POSIX.1e
38 audit requirements. Additionally, consideration was given to the fact that

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

280 B Revisions to Rationale and Notes

39 implementations may (will) wish to extend the set of audit functions, audit events
40 and audit records in various ways. For these reasons, flexibility in the POSIX.1e
41 audit requirements was a primary goal.

42 In developing the POSIX.1e audit functions, the working group envisaged two dis-
43 tinct types of auditing applications. First were the class of applications which
44 need to generate their own audit data. These applications, usually trusted, should
45 be able to generate audit data in a standard audit log, rather than simply adding
46 data to an application specific log file. Second were the class of applications that
47 process audit logs. These analysis tools typically read, analyze and produce
48 reports based on the audit data contained in the log. Optimally, these tools
49 should be able to read and analyze audit logs from any POSIX.1e audit conform-
50 ing application. Currently this goal is only partially met. The POSIX.1e audit
51 option provides functions which could be used to develop a audit analysis tool,
52 however, a common (portable) audit log format is not currently defined by this
53 standard. Note that the POSIX.1e audit option specifies only the functions which
54 an analysis tool would use, not the tool itself. The definition of a portable post-
55 processing utility is left to a later stage, when security administration utilities are
56 standardized.

57 B.24.1.1 Goal: Support for Portable Audit-Generating Applications

58 Commonly, portable applications, for example a data base, generate and record
59 application specific audit data. Preferably, this data should be recorded in a sys-
60 tem audit log rather than maintaining application-specific log files, or, worse, just
61 ignoring security-relevant events as is common today. It is clearly more desirable
62 for applications to use the standard system auditing mechanism than for each to
63 invent its own.

64 In support of this goal, POSIX.1e audit provides a set of portable interfaces which
65 an application could use to construct audit records and deliver them to an
66 appropriate destination. In some cases it may be desirable to have these records
67 added directly to the system audit log while in other cases a separate log may be
68 required.

69 In order to provide maximum flexibility, the ability to support multiple audit logs
70 has been provided. Applications get access to logs (other than write access to the
71 current system audit log) via the POSIX file abstraction: that is, the POSIX.1
72 open() function is used. An additional function, aud_write(), is provided to allow
73 records to be added to an audit log by self-auditing applications, since records
74 written will normally have additional data added to them, and may be
75 transmuted into some internal format, by the system in a way which is not con-
76 sistent with the normal semantics of write(). A file descriptor parameter is nor-
77 mally used to tell this aud_write() interface which log is the destination, but a
78 special value is defined to identify the system audit log (see ‘‘Protecting the Audit
79 Log’’ below for rationale for this).

80 Records of security-relevant events, generated by an application, often relate to
81 actions performed by, or on behalf of, a process (ie, acting as a subject), on one or
82 more objects. The record needs to be structured so that the data that relates to

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 281

83 the subject, or a particular object, or other aspects of the event, can be related
84 together: for example, if the record contains a UID, it needs to be clear which sub-
85 ject or object it is related to. The standard therefore provides means for an appli-
86 cation to build structured audit records, with separate sections for each subject or
87 object. Such records can be quite complex, and it would be inefficient if the appli-
88 cation had to build each one from scratch. The standard therefore provides means
89 for the application to alter fields within a record it has constructed, allowing reuse
90 of records.

91 In general, applications that generate audit records will also perform operations
92 that cause the system to record audit records on their behalf. For example, a data
93 base may open several files in normal course of action. For some applications,
94 these system-generated records may be irrelevant and confusing, because the
95 application itself might generate records that are more precise and informative.
96 Therefore a provision is made to allow these, presumably trustworthy, applica-
97 tions to request that recording of system-generated records be suspended because
98 they will provide their own. To ensure the integrity of the audit log, appropriate
99 privilege is required to request suspension of audit records. Also note that this is

100 a ‘‘request’’ to suspend the generation of audit records; an implementation is free
101 to ignore this request.

102 B.24.1.2 Goal: Support for Portable Audit Post-Processing Applications

103 The working group recognized that a practical need for audit analysis tools, appli-
104 cations which read, analyze and formulate audit reports, existed. Additionally, to
105 be of maximum value, these tools must be able to access and analyze audit logs
106 from any conforming implementation. Currently, few audit analysis tools exist,
107 and none of the tools examined by the working group were very sophisticated. It
108 is therefore difficult to determine what functions are required for these analysis
109 tools to function adequately. The working group determined that, at minimum,
110 an analysis tool would need to access (open), read and terminate access (close) to
111 the audit log.

112 In Draft 14 the working group recognized the need to make audit records avail-
113 able as they are committed to the audit log. The group felt that tools such as
114 intrusion detection programs would require such a feature. The function
115 aud_tail() was added to allow an application to request that records be made
116 available to it as they are being written. However, it was later pointed out that
117 the required effects could be obtained without use of a specialized interface: for
118 example, an intrusion detection application could read from the end of the file
119 currently used for the system audit log, using mechanisms similar to tail(1); and
120 it could be told by the administrator (or other software) when the file correspond-
121 ing to the system audit log gets altered. Accordingly, the interface was removed
122 again. (There was some concern that this might result in records not being
123 delivered for analysis until after a delay due to system buffering, but this was felt
124 to be an implementation matter.)

125 The working group considered the addition of functions to query (selectively read)
126 the audit log but rejected the idea for several reasons:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

282 B Revisions to Rationale and Notes

127 1. Understanding of need. The group could not determine what type of query
128 functionality would be required by a portable analysis tool. Lack of market
129 models made the task more difficult.

130 2. Defined query language. The group was unable to locate an agreed upon
131 standard language for formulating a query. The working group was reluc-
132 tant to invent a query language for POSIX.1e audit.

133 3. Extraneous functionality. The working group felt that as long as an analysis
134 tool could access the next sequential record, that an analysis tool could pro-
135 vide its own query capability.

136 In addition to a set of common functions, a portable analysis tool may need to
137 read and analyze audit logs from various sources. Thus, a portable tool may be
138 dependent upon the definition of a standard audit record format. This standard
139 does define a set of standard audit events, and the required record content for
140 those events; it also defines means by which additional information in those
141 records, and information in other records, can be obtained in a syntactically
142 meaningful way.

143 Early versions of this standard contained requirements for storage of data in a
144 standard form. This form proved to be unacceptable for most implementations,
145 which have varying requirements for efficient storage of audit data. The working
146 group decided to allow for storage of data in ‘‘native format’’ by default with an
147 option to record data in a ‘‘portable format’’, to be defined. Without this inter-
148 change format, analysis of audit data across multiple storage implementations
149 requires the application to do several conversions; from native format to human
150 readable text (e.g., internal to external), gather the data on a single machine and
151 then convert the human readable text to internal format (e.g., external to inter-
152 nal).

153 Since the portable audit log definition has yet to be developed, a possible goal of
154 support for portable audit post-processing applications is currently satisfied only
155 in part, primarily by defining functional interfaces to audit data.

156 In addition to the definition of standard functions, POSIX.1e audit also defines a
157 set of standard audit events. These events, based on standard POSIX.1 and
158 POSIX.1e interfaces, define the minimum data elements to be supplied by a con-
159 forming implementation when the event occurs (assuming auditing is enabled).

160 Events generated by standard POSIX.1 operations are defined to ensure that a
161 portable analysis tool has some common ground in any system, although in prac-
162 tice, application-specific analysis tools (using standard interfaces to read
163 application-specific data) will probably be fairly common. By defining the event
164 types in this standard, a consistent mapping across all conforming systems is
165 achieved.

166 There was some debate on whether to include events related to the relatively
167 small set of POSIX.2 interfaces that are (arguably) security-relevant. However, a
168 POSIX.2 interface is not necessarily built over POSIX.1; conversely, a POSIX.1
169 system does not necessarily provide POSIX.2 commands and utilities. There is
170 thus no basis for defining POSIX.1e audit events for the POSIX.2 interfaces. The

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 283

171 following were also seen to be reasons for excluding these events:

172 1. If a POSIX.2 implementation is built over POSIX.1, many of the POSIX.2
173 interfaces are adequately audited by the underlying audit events: eg,
174 chmod(1) is adequately audited by the events for exec(2) of the command and
175 chmod(2).

176 2. The most important security relevant commands, such as login, are not
177 included in POSIX.2; those that are administrative are generally deferred to c
178 the POSIX 1387 working group.

179 3. In many cases, the commands that are included in POSIX.2 are not the ones
180 that need to be audited. For example, it is not particularly relevant that a
181 user has requested that a file be printed, or a batch job be started; what is
182 relevant is the actual printing or starting of the job, which may or may not
183 occur. POSIX.2 does not define the means by which these latter actions
184 actually occur, any more than it specifies login or administrative interfaces,
185 so it is not possible to standardize audit records for these occurrences.

186 The working group had debated including commonly known functions such as
187 login, cron, etc to the set of standard events. However, the majority of the working
188 group felt that adding non-POSIX events was not acceptable because (a) while
189 these events were ‘‘common’’ they were not ‘‘standard’’, hence the ‘‘common’’
190 events were not deemed acceptable for inclusion and (b) systems which did not
191 support these ‘‘common’’ functions would still have to support all the POSIX.1e
192 audit event types. Additionally, there was some variance between the implemen-
193 tations of the ‘‘common’’ events. For these reasons the working group decided to
194 limit the scope of POSIX.1e audit events to the domain of POSIX standards.

195 The working group debated the set of included events at great length; the goal
196 was to include only those events which were security related and/or critical to the
197 audit log. For example, consideration was given to including AUD_READ in the
198 set of auditable events, however, it was felt that the information deemed desirable
199 would be obtained by auditing the opening of the audit log. The AUD_WRITE
200 event was also debated, with similar results (except that it was decided to audit
201 AUD_WRITE failures). The working group felt that the amount of information
202 derived from events such as these did not justify the potential performance
203 penalty (e.g., auditing each read/write). Consideration was given to making these
204 events optional. The group felt that the concept of ‘‘optional’’ events had little
205 value because portable applications could not depend on the events being sup-
206 ported (because the events were optional) and hence the ‘‘optional’’ events would
207 be of little use.

208 B.24.1.3 Goal: Extensibility for Implementation-Specific Requirements

209 It is important to allow applications to generate arbitrary records. Rather than
210 having a single generic record, however, applications are permitted to place infor-
211 mation in audit records that, while application-specified, has existing syntax asso-
212 ciated with it that allows an analysis program to process the information. For
213 instance, an application refers to a file by pathname, and because there is a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

284 B Revisions to Rationale and Notes

214 standard way to describe a file in an audit record, an analysis program can select
215 records concerning a particular file without knowing anything about the applica-
216 tion generating the record that mentions the file.

217 Similarly, it is important to allow applications to specify arbitrary information in
218 audit records, because not all the items an application needs to specify will be of
219 the sort that can be interpreted in a portable way. The set of audit attributes is
220 extensible to allow this, and additionally includes an explicitly defined opaque
221 data object for application use.

222 Not all applications will want to use the system audit log; indeed, a particular
223 implementation may not permit such use. So, it is important to allow implemen-
224 tations to provide other audit logs. Because the POSIX file abstraction provides
225 defined interfaces without mandating any particular implementation mechanism,
226 it is appropriate to use this for access to audit logs. Some proposals for this stan-
227 dard specified that audit logs were independent of the normal file systems, having
228 their own set of interfaces (e.g., aud_open(), aud_close()) however these were not
229 seen to provide any particular advantages.

230 Apart from the above application-oriented considerations, it is important that
231 implementations be able to extend the set of auditable system interfaces, and to
232 extend the set of data that is reported in audit records for the standard auditable
233 interfaces. They will thus be able to report the occurrence of security relevant
234 events that are beyond the current scope of ratified POSIX.1 standards, and to
235 record additional security information for the standard events.

236 B.24.2 Scope

237 The scope of security auditing specifications in POSIX.1e is defined by the above
238 goals. In addition, the following items are specifically excluded:

239 (1) Administration
240 Functions and utilities to support security audit administration are
241 excluded. These exclusions include the assignment of audit control
242 parameters to specific users, and pre-selection of which auditable events
243 are to be recorded.

244 (2) Audit data storage
245 The definition of formats and organization for permanent audit data
246 storage is not addressed, nor is there any required storage organization
247 for a system’s audit log.

248 (3) Portability/Data interchange
249 The definition of formats and organization required for a portable audit
250 log and for interchange of audit data are not addressed.

251 (4) Audit delivery mechanism
252 The definition of a mechanism for delivering records is not addressed,
253 although the interface to this mechanism, 24.4.40, is included.

254 Administrative functions are excluded from the POSIX.1e auditing scope, these
255 are the province of POSIX.7.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 285

256 The specification of criteria for the pre-selection of which audit records should be
257 recorded is deemed to be an administrative issue. It was felt that portable
258 trusted applications could not reasonably make use of interfaces to control pre-
259 selection.

260 A grouping of event types into classes of events for post-processing were excluded
261 from the scope because it was felt that not enough is currently known about post-
262 processing to allow a solid set of post-processing classes to be included in the
263 POSIX.1 standard. The group felt there were two compelling reasons why it was
264 inappropriate to standardize event classes: (1) the grouping of events into classes
265 is inherently arbitrary; while the group could easily agree on a standard set of
266 common events (based on POSIX.1) the grouping of these events into classes dif-
267 fered widely, (2) the definition of classes does not add greatly to application porta-
268 bility because the event type rather than class is what is stored in the audit
269 record.

270 This standard does not address audit data storage. It is expected that each con-
271 forming implementation may have a different form of permanent storage for audit
272 data. Similarly, the issues of interchange of audit data are not addressed. A key
273 problem in the definition of data interchange is that current standards do not
274 address data size issues at all.

275 This standard does not address the actual mechanism for delivering audit records
276 from a trusted application (or from the operating system itself) to a system’s audit
277 log. However, the interfaces that an application (or the operating system) would
278 use to perform the delivery are specified. An actual delivery mechanism might
279 involve spooling daemons, special network protocols, etc.

280 This standard also does not address the issue of protection of the audit data, that
281 being an implementation’s responsibility (see below for further rationale for this).

282 B.24.3 General Overview

283 In this standard, the general architecture for audit record processing is that the
284 internal format of audit records is opaque, and functional interfaces are provided
285 both for audit-generating applications to construct audit records (adding, chang-
286 ing and deleting fields) and for audit post-processing applications to analyze
287 records (reading fields). The system manages the working storage used to hold
288 the record; interfaces are provided to create new (empty) records in the working
289 store, to read records from an audit log into the working store, and to write
290 records from working store into an audit log.

291 An earlier version of this document used explicitly different storage representa-
292 tions for data structures used in reading records and in writing records. Writing
293 records used opaque storage (called an Audit Record Descriptor), whereas reading
294 used a caller-supplied buffer that was implied (but not required) to be a directly
295 accessible storage representation of the portable audit record format. In princi-
296 ple, this would have allowed a processing program to have performed manipula-
297 tions directly on the record contents, without using the reading interfaces.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

286 B Revisions to Rationale and Notes

298 A major criticism of this proposal was that it required that all data should be
299 written in a portable format that was biased toward machines that support
300 expanded data types. In abandoning the requirement that all audit data should
301 be stored directly in the portable format, it became impossible to provide this abil-
302 ity. It also became apparent that the defined set of interfaces had become
303 sufficiently complete and efficient that the ability was no longer important.

304 The original proposal defined audit records as consisting of individual ‘‘tokens’’
305 where a ‘‘token’’ represented an independent element of a record, for example a
306 pathname. To make the token opaque all manipulation of the token (read/write)
307 was done using per-token interfaces. For example get_pathname_token and
308 put_pathname_token would be required to get (read) and put (write) a specific
309 token. It is easy to see how this style of interface could lead to an excessive
310 number of token types and in turn, an excessive number of interfaces required to
311 manipulate each token type. There was also the possibility of inconsistent use of
312 the tokens by applications performing their own auditing. The concerns regarding
313 efficiency of storage and number of interfaces led to the replacement of the ‘‘token
314 based’’ proposal.

315 In draft 13, self-auditing applications were required to construct audit records in
316 user-managed storage, because the user (application) knows the size and contents
317 of the record, and there is no point in making the data opaque. Also, the record
318 may be used as a ‘‘template’’, that is the record may be modified and written mul-
319 tiple times without requiring multiple allocate/free operations of system managed
320 storage. However, this proposal was criticized in ballot for not providing either
321 sufficient record structuring capabilities or sufficient support for portable applica-
322 tions; extending the proposal to provide additional structuring would add consid-
323 erably to the complexity of the data structures applications would have to mani-
324 pulate (giving problems in some language bindings), and would exacerbate the
325 second criticism. In contrast, system-managed storage was used for reading
326 records, because in many cases the application will rapidly eliminate most records
327 from the analysis, and keeping them in system-managed space saves the cost of
328 converting the whole of each record from an internal to a standard format. Also,
329 programs reading records are likely to be processing many records sequentially,
330 and correspondingly benefit from eliminating application-level storage manage-
331 ment overhead.

332 The current set of interfaces and corresponding data structures have been
333 designed to provide reasonable application support with reasonable efficiency,
334 without an excessive number of interfaces. Data storage representations are not
335 defined. The interfaces deal with opaque structures at the top level, and indivi-
336 dual components at a lower level; the latter use ’get item’ interfaces, and a ’type
337 length pointer’ data structure, thus providing flexible functionality through a
338 small number of interfaces. The interface for application generation of audit
339 records similarly uses ’put_item’ interfaces and the ’type length pointer’ structure
340 to specify the data to be recorded. Several tradeoffs exist, as described below, and
341 these are not the most efficient interfaces imaginable; merely the most efficient
342 portable interface proposed so far.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 287

343 One tradeoff exists in the granularity of information access to the audit record. An
344 audit record consisting of individual attributes is the more general interface but
345 also is more inefficient. Structure-based interfaces that put and get information in
346 large chunks are more familiar to programmers but it may be more difficult to
347 validate the attributes; and structures are inconvenient if there are a large
348 number of variable size components (or components with opaque structure that
349 may be variable size).

350 Another tradeoff is caused by offering only indirect access to the audit record,
351 because the information must be retrieved procedurally. The cost could be minim-
352 ized by implementing these interfaces as macros and a procedural interface
353 allows an implementation greater flexibility in defining audit log storage and
354 access methods.

355 B.24.4 Audit Logs and Records

356 B.24.4.1 Protecting the Audit Log

357 Of all the data in a secure computing system, the audit log is perhaps the one
358 item which is most important to protect against invalid manipulations EVEN by
359 apparently authorized users. For instance, if an intruder can defeat a system’s
360 access control mechanisms, and assume all the rights and powers of an author-
361 ized system administrator, it would still be extremely useful to be able to audit
362 the intruder’s activities. To any extent possible, the auditing mechanism and the
363 audit log should be protected against external attacks.

364 The group considered specifying a few possible mechanisms that provide elements
365 of protection against this threat, but decided not to do so. The group took this
366 position because any mechanism that is sufficiently general (not implementation-
367 dependent) to specify in a standard would not, itself, provide significant protec-
368 tion. Only a combination of mechanisms, most of them implementation-
369 dependent and outside the scope of POSIX, can protect a system’s audit log to a
370 meaningful degree beyond basic file protection.

371 If the audit file is protected using the normal filesystem protection mechanisms,
372 the degree of protection increases with the security of the system. Thus in an
373 ACL based system with a single super-user, it could be read/write to superuser
374 only. On a system with the administrative roles divided according to the principle
375 of least privilege, it could be owned by the audit administrator, with read access
376 available also to the security administrator. On a system with MAC controls of
377 disclosure and integrity, it could be owned by audit administrator with a disclo-
378 sure label making it readable only to security and audit administrators, and an
379 integrity label making it writable only by the system. Of course, these access con-
380 trols do not prevent the audit subsystem itself from writing to the audit log to
381 record actions of users, even though the users don’t have write access to the audit
382 log file.

383 Thus when audit logs are accessed via the POSIX file abstraction, this standard
384 does not mandate any protection mechanism other than the normal file system
385 access control mechanisms. The exception to this occurs in the case where an

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

288 B Revisions to Rationale and Notes

386 application needs to write to the current system audit log. There are two reasons
387 why it would not be appropriate to rely on the usual file protection mechanisms,
388 exercised through open(), in this case. Firstly, a self-auditing application should
389 generally not have the ability to open the system audit log for write, since this
390 would confer the ability to corrupt data that was already in the log, for example
391 by writing random data at random positions in the log. Thus in this case an alter-
392 native means of accessing the log is needed to ensure its integrity. Secondly, an
393 implementation may not have a fixed mapping between the current system log
394 and a POSIX file: either the log data may be sent to different files at different
395 times (e.g. when the current file reaches a certain size), or the data may not be c
396 sent to a medium that is accessible through a POSIX file name. Therefore this
397 standard specifies that the current system log is written without use of open(),
398 and uses appropriate privileges as the means to control access to that log.

399 The working group debated whether self-auditing applications should be permit-
400 ted to provide all the data of an audit record, some people holding the view that
401 the system should be required to provide some of the data (especially in the record
402 header) in order to protect the integrity of the audit log and provide accountability
403 for application-generated records. However, others held that it is only necessary
404 to protect the integrity of the audit log, and that the application is trusted to
405 create the entire contents of the audit record itself - some even suggested that the
406 application should not even have to be privileged to do this. The final consensus
407 took the ‘middle way’: that the integrity of the audit log should be protected (by
408 allowing applications to write records without giving them general write access;
409 and by allowing the system to check the format of audit records); and that only
410 ‘trusted’ applications should be able to write records, the control being provided
411 by use of appropriate privilege. The latter control allows implementations, or
412 even installations, to set their own policy about the degree of trust needed in self-
413 auditing applications, since they can control how widely the privilege to write
414 audit records is distributed.

415 B.24.4.2 Audit Log and Record Format

416 The logical audit log is a stream of audit records. That is, an audit log appears to
417 the application program as a sequence of discrete, variable length records. Each
418 record contains a complete description of an audit event: records are intended to
419 be largely independent entities. An important distinction must be made between
420 the ‘‘logical’’ and ‘‘physical’’ descriptions of the audit record. The ‘‘logical’’ appear-
421 ance of the audit log refers to the appearance of the audit records returned by the
422 functions defined by this standard. The ‘‘physical’’ description of the audit record
423 refers to the audit record as it exists in the audit log, that is how the record would
424 appear if the audit log were read in its raw state. This standard does not define
425 the ‘‘physical’’ view of the audit log. Additionally, this standard does not define
426 the ‘‘logical’’ view of audit records when viewed by interfaces not defined by this
427 standard.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 289

428 B.24.4.3 Audit Record Contents

429 The statement above that audit records should be largely independent is an ack-
430 nowledgement that no audit data can be completely context-independent, and an
431 encouragement that audit records contain enough context to be meaningful for
432 analysis in most circumstances.

433 Each audit record contains at least a header and a set of subject attributes (the
434 term ‘subject attributes’ is used in preference to ‘process attributes’ because a pro-
435 cess can also be an object (e.g. when receiving a signal), and also the particular c
436 set of attributes reported is that appropriate to the process’s role as a subject, as
437 opposed to all the attributes of the process). Most records also contain one or
438 more sets of event specific data, and zero or more sets of object specific informa-
439 tion. The header defines a version number (see below), the data format the record
440 is written in, and includes fields for event type, event time, and event status. The
441 event time is compatible with the timespec structure in POSIX.1b 1993.

442 To allow future versions of this standard to extend the audit record format and
443 retain compatibility with previous versions, a version number in each record
444 header identifies the version of the standard the record conforms to. For example,
445 the version number defined by this iteration of the standard may be c
446 AUD_STD_1997_1 (the digits implying 1997, POSIX.1) while the version number
447 defined by the first revision of this standard may be AUD_STD_1998_1. Thus, a c
448 conforming implementation, by reading the version number will know what audit
449 record definition matches the audit record read. Note that the current defined ver-
450 sion identifier AUD_STD_NNNN_N will have to be updated to reflect this itera- c
451 tion of the standard, such as AUD_STD_1997_1. c

452 The format field specifies the format of the data contained in the audit log.
453 Currently, only the format AUD_NATIVE is supported. The AUD_NATIVE for-
454 mat indicates that the audit data contained in the log is written in native
455 machine format. This field is primarily a place holder for future revisions of this
456 standard which are expected to add other formats such as a portable audit format.
457 It is important for the portable application to know what type of data is written in
458 the field, thus the application knows what kind of data to expect (i.e., byte order-
459 ing, data type sizes, etc.)

460 The status value was added to indicate the status of the audit event with some
461 indication greater than success or failure. The following event statuses are
462 currently defined:

463 AUD_SUCCESS The event completed successfully.

464 AUD_PRIV_USED The event completed successfully and privilege was exer-
465 cised. Conforming implementations are not required to
466 report this value (reporting AUD_SUCCESS instead), since
467 not all audit policies require that use of privilege be audited.
468 If the value is reported, however, this does imply that
469 privilege was required, not just that privilege was available
470 and was used. The working group felt this distinction was
471 important because although some implementations may not
472 need to distinguish between a privilege which was used and

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

290 B Revisions to Rationale and Notes

473 a privilege which was required, existing practice has shown
474 that for security auditing it is important to report the use of
475 privilege to achieve an operation that would have failed
476 without it.

477 AUD_FAIL_DAC The event failed because of discretionary access control
478 checks.

479 AUD_FAIL_MAC The event failed because of mandatory access control checks.

480 AUD_FAIL_PRIV The event failed because of lack of appropriate privilege. −
481 The audit record does not contain an indication of what the
482 appropriate privileges were, though if the POSIX capability
483 option is in use it does indicate the capabilities available to
484 the subject, and other security attributes of the subject and
485 object; thus it would be possible to deduce which capabilities
486 would have been needed to complete the operation.

487 AUD_FAIL_OTHER The event failed for some reason, none of the above. This
488 includes implementation-defined policy extensions.
489 Note that implementations are free to extend this list with additional status
490 values. Note also that the standard does not define which of the various
491 AUD_FAIL statuses is to be returned if the event could have failed for more than
492 one reason: if this were specified it would imply that implementations had to per-
493 form tests in a certain order, or carry out all tests even if one had already failed,
494 and the working group did not think this a reasonable requirement.

495 The audit record header includes an identifier, the audit ID, for the individual
496 human user accountable for the event: it is a fundamental principle of accounta-
497 bility that each event should identify the human user accountable for it (see below
498 for further rationale related to audit IDs). For system-generated events, if the
499 process initiating an action does so on behalf of a user who is not directly associ-
500 ated with the process (e.g., a server process acting on behalf of a client) the
501 directly accountable user should probably be the one that initiated the server.
502 However, if there is no accountable user (e.g., the server was started automati-
503 cally at system initiation) then the standard does allow the system to provide a
504 null audit ID. For application-generated records, the standard specifies interfaces
505 that allow a server process to record the audit ID of the client process for which it
506 is acting.

507 The subject attributes are required to include the process ID and the basic secu-
508 rity attributes of the subject: the effective UID and GID; means for reporting
509 other security attributes (e.g., supplementary groups, labels, capabilities) is also
510 provided. The working group considered requiring that all these attributes be
511 present (at least if the relevant POSIX options are implemented) but rejected this
512 because it was not clear that all systems implementing audit would need to pro-
513 vide this information. It is a matter for the policy of the system. Accordingly the
514 standard defines how the information can be provided, and what happens if it is
515 not, and allows implementations to decide on policy.

516 The object specific information includes fields for the type and name of the object,
517 and object security attributes. Again, some of the security attributes are optional,

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 291

518 it being up to the implementation security policy to define whether they are pro-
519 vided. In general, the standard requires that object details be supplied whenever
520 the attributes or data of an object may be accessed or altered; it does not require
521 it otherwise (for example, on a chdir()).

522 The audit events for interfaces that operate on files via file descriptors include the
523 fd among the data reported. There was some feeling that this was in itself not
524 very useful, since the file descriptor is not directly meaningful to an audit
525 administrator, but the audit record for the open() call that created the file descrip-
526 tor is also reportable, and does enable an audit post-processing tool, or audit
527 administrator, to make the link back to a human-readable name.

528 For records that report changes to subject or object attributes, the standard
529 includes the new attributes, through inclusion of the function arguments. It also
530 requires that details of the relevant subject/object are included; it specifies that if
531 the relevant attribute is included in the details, then the old value shall be given.
532 However, it does not generally require that the relevant attribute must be
533 included in the details. There are several reasons for this: not all security policies
534 require that the old attributes be audited; in some implementations there is no
535 reason for the old attribute to be available to the audit subsystem; for some attri-
536 butes there could be a significant performance/space impact (e.g. recording 1000- c
537 entry ACLs!). Thus the standard always requires the new attribute to be
538 recorded, and permits (but does not require) the old attribute.

539 B.24.4.3.1 Semantics of Audit Event Types

540 The standard includes a set of pre-defined system event types with fixed interpre-
541 tations (corresponding to interfaces defined in POSIX.1). These system event
542 types are defined primarily for use by audit analysis tools such that they can have
543 a base set of defined, standard event types for analysis. It was felt by the working
544 group that a standard means of uniquely identifying these system event types
545 was required to avoid collisions (e.g., various definitions of the same event type);
546 therefore the standard includes a means of identifying the event types them-
547 selves, that is, a standard naming of system event types is provided. The event
548 type defines the minimum logical content of the record as it is returned by the
549 POSIX.1e audit functions.

550 The working group felt that some applications may need to query the list of sys-
551 tem event types supported by a system. For example, a interactive audit analysis
552 tool may want to get all the system event types supported on a system, then
553 prompt the user to determine what event types to analyze the audit log for. This
554 type of capability also requires a interface to convert the audit event type from its
555 internal representation (numeric) to text for display purposes, then from text (or
556 numeric-text) to internal format (numeric). To provide this functionality to an
557 analysis tool the following interfaces were defined: aud_get_all_evid(),
558 aud_evid_to_text(), aud_evid_from_text().

559 Applications also need some defined semantics for audit events. A portable appli-
560 cation wishing to generate its own audit records must be able to specify the form
561 and content of the record so that it can convey this information to an audit
562 analysis application. Like system events, application events also require some

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

292 B Revisions to Rationale and Notes

563 means of identifying the event type.

564 The working group debated how best to define the event types. Some iterations of
565 this standard specified the event types as numeric constants (e.g., 1,2, ... nnnn).
566 The working group felt that a portable analysis tool would be most efficient
567 searching for and comparing numeric event type identifiers. For example, an
568 analysis tool searching for records of type AUD_AET_KILL could simply search
569 for records of event type 1. However, the working group felt that the expression of
570 event types as character strings, e.g., "AUD_AET_AUD_OPEN" allowed for easier
571 future expansion. The standard could thus reserve the AUD_AET_ prefix for
572 future use (as opposed to reserving 1-xxx). The former option was proposed in the
573 first ballot of the standard (attracting ballot objections related to extensibility,
574 and the likelihood of applications choosing the same event types); the latter was
575 proposed in the second ballot (attracting ballot objections related to efficiency of
576 processing and storage). Finally, it was decided to adopt a combination, using
577 numeric identifiers for system events and string identifiers for application events.
578 This accomplished several goals:

579 A. System events can be recorded and processed with maximum efficiency.

580 B. Applications wishing to do self-auditing were less likely to have audit event
581 type collisions. For example a database could generate records of
582 AET_<MYNAME>_DB as opposed to records of event type 150. The group
583 felt it was far less likely that two applications would choose the same char-
584 acter string.

585 C. Application event types cannot clash with system event types.

586 B.24.4.4 Audit Record Data Format

587 The physical format of an audit record is unspecified - that is, a post-processing
588 application may make no assumptions about the format and location of the
589 header, subject, object and event specific data as it actually exists in the record.
590 Logically, an audit record is a collection of opaque segments (headers, sets of sub-
591 ject attributes, etc) each of which is referred to by a descriptor and accessed only
592 by functions referencing that descriptor.

593 The segments of a particular type in a record are ordered, so that semantics may
594 be attached to their relative positions; this is likely to be particularly important if
595 a record contains details of more than one object, since these may represent the
596 source and sink of data. Descriptors for the various structures can be obtained
597 either serially or by random access (e.g. to the second set of object attributes). c

598 The segments which comprise a system-generated audit record contain at least
599 the data items defined by this standard and may include additional,
600 implementation-defined data items. The data type of each of the required data
601 items is defined by this standard, as is the ordering of the items. Note that the
602 size and byte-ordering of the data items may vary from system to system. That is,
603 there is no intention that the binary data in the opaque structures is directly port-
604 able from system to system.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 293

605 A header segment must be (logically) included in every record. For system-
606 generated records, the fields of it are set by the system; for application-generated
607 records, the application is required to specify values for certain fields, and may
608 supply more (the system will supply certain fields if the application does not).
609 Similarly, the subject attributes of system-generated records are provided entirely
610 by the system, but for application generated records the application is trusted to
611 provide subject attributes, for example of a client process (again, the system will
612 supply ’default’ values, describing the current process, if the application provides
613 none). There was considerable debate in the working group about whether the
614 application could be trusted to supply header and subject attributes; some
615 members felt that the system should always provide the header (except for the
616 event type and status) and subject attributes for the current process. However,
617 the alternative view prevailed, that an application that is trusted to generate
618 audit records (in the system audit log) can also be trusted to do it right.

619 Although the number and ordering of segments in the record is important, it
620 should be noted that for failed events, some objects and data in the record for the
621 standard event types may be omitted, because this information may be missing
622 from the function or utility invocation.

623 B.24.4.4.1 Portable Audit Record Format

624 The current version of the standard does not contain a definition for a portable
625 audit log format. This is currently being investigated for a future iteration of the
626 standard. Earlier drafts of this standard did contain a portable audit log format.
627 However, the standard required that all records be written in this format which
628 proved to be controversial. The rationale contained here defines the reasons why
629 the working group felt a portable format was necessary.

630 A portable audit log format allows the audit data to be analyzed on systems other
631 than the systems which generated it. Several methods were proposed to place
632 audit records in portable format. One method proposed was to write all audit
633 records in the portable format. This method was rejected because it had the
634 potential to impose performance penalties on those implementations which did
635 not support the data sizes required by the portable format as their ‘‘native’’ data
636 types, in other words, some systems may be required to do size and type conver-
637 sions on each record written.

638 To avoid this unnecessary penalty, the data that is returned in the structures is
639 always in the local format. An alternate method proposed was to allow the audit
640 records to be written in native machine format with the conversion to the portable
641 format to be done by some form of audit record filter. These records can then be
642 transferred to other systems.

643 There are two costs to this approach, however. The first is that each system must
644 be prepared to read the portable format(s) defined. The second is that these
645 records are always translated twice - once on the generating system and once on
646 the system used for analysis.

647 The portable data formats are not defined in this document. That is, the size of
648 uids, gids, MAC labels, etc. is unspecified at this point. While the elements of a

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

294 B Revisions to Rationale and Notes

649 portable audit log can be outlined, the definition of the portable audit log format
650 is not defined.

651 Auditing by nature is the gathering of data, not the definition of it. Almost all the
652 data types contained in a typical audit record are external to the audit group.
653 True data portability is a problem much larger than the need for a portable audit
654 log. Currently, neither the POSIX.1 standard nor the POSIX.2 standard address
655 data interchange sufficiently to define a portable audit format.

656 After extensive research and discussion, the audit subgroup has concluded that
657 the portable audit format is a subject that cannot be resolved with the present
658 amount of information obtainable from other internationally recognized standards
659 bodies.

660 Analysis of the problem revealed the following issues, all of which need to be
661 resolved before a portable audit log format can be developed. The issues are:

662 (1) Data format (byte ordering)

663 (2) Data field sizes (very specific! number of bytes or equivalent)

664 (3) Field mappings (user ID <-> user name, etc.)

665 (4) Time coherence (time zone, etc.)

666 (5) Internationalization issues (at least for text strings contained in the file)

667 (6) Byte size

668 (7) Field identification and boundaries (how to tell where a record begins
669 and ends)

670 (8) Naming convention (uniqueness of user, for example user ID plus process
671 ID)

672 It was decided that the audit log header file needs to contain: an indicator that
673 marks the log as being in POSIX.1e portable format, the version of the standard
674 of the portable format, the data format indicator of the log (XDR, NDR, or ASN1
675 format), the time zone in which the log was created and any applicable maps
676 required by that machine. There may be several machine identifiers and associ-
677 ated maps, keyed by machine_id. Not much more information can be generated
678 without input from the interchange format group.

679 The audit subgroup has also yielded the format of the MAC label, ACL, and capa-
680 bilities associated with the portable audit format to those associated groups.
681 However, they too will be unable to determine the data sizes to be used in a port-
682 able interchange format without input from the interchange format subgroup.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 295

683 B.24.5 Audit Event Types and Event Classes

684 The distinction between event types and event classes has generated considerable
685 controversy. Two differing proposals were considered. One suggested that group-
686 ing types into event classes is arbitrary and may differ from one system to
687 another. Another proposal suggested that event types should belong to a small,
688 fixed set of standard event classes. This proposal also suggested that the event
689 class be recorded in a header, with the event type, thus making it the responsibil-
690 ity of the auditing program to fix the relationship between the two.

691 Initially the latter proposal was accepted. However, after further reflection, it
692 was decided that recording the event class in a header was not tenable. If an
693 event type belongs to many classes, but only one can be recorded in a header, then
694 the inclusion of such a value might serve to confuse rather than clarify the reason
695 for the audit record. Eventually it proved impossible to reach consensus on how
696 event classes should be standardized; there was also a body of opinion that said it
697 was unnecessary to standardize them, because post-processing applications could
698 group event types into classes at that level. Accordingly, the concept of event
699 class was removed from the standard.

700 It also turns out to be very hard to define precisely when an event deserves an
701 event type of its own. For instance, are successful and failed open calls the same
702 event type? Probably so, because they can be differentiated by the result field in
703 the record header (though looked at another way, that really means that the
704 result field is part of the event type, and so they are two different types).

705 Are open of a file for reading, and open of a file for read/write, different event
706 types? Though they differ only in one bit of a system call argument, maybe they
707 ought to be different types, because they represent very different abilities being
708 exercised. This example leads to a circular definition of event types: two types
709 should be separate when it would make sense to assign them to separate classes.

710 It was finally decided to define no more than one event type for each of the POSIX
711 interfaces being audited; in a few cases a single event type was used for several
712 closely related interfaces (e.g. the exec() family). The separation of, eg open-read c
713 and open-write can then be done by post-processing tools on the basis of informa-
714 tion in the record; implementation-specific means could be used to separate these
715 for event pre-selection purposes too (see below).

716 B.24.6 Selection Criteria

717 At various times, drafts of this standard have included facilities for both pre-
718 selection and post-selection of audit records: that is, selection of the records that
719 are recorded in the log, and those that are reported from the log to an audit post-
720 processing application. However, the standard does not finally contain any selec-
721 tion facilities. The pre-selection interfaces have been removed because they are
722 seen to be an administrative facility, and therefore out of scope. The post-
723 selection interfaces have been removed on more pragmatic grounds: there was no
724 agreement on what facilities are needed, or how post-selection criteria should be
725 specified. Additionally, the group felt that so long as the next sequential record

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

296 B Revisions to Rationale and Notes

726 could always be made available, applications could build selection criteria them-
727 selves.

728 B.24.7 Audit Interfaces

729 B.24.7.1 Gaining access to the Audit Log

730 In earlier drafts of this standard, to provide some separation of audit log from file
731 the concept of an audit_log_descriptor was conceived. The audit log descriptor pro-
732 vides a level of abstraction above the file descriptor interface. An attempt was
733 made to define a set of interfaces for use in analyzing abstract audit logs, conceal-
734 ing the storage method, location and format of the actual data. In draft 13 (and
735 previous drafts) there were two functions provided to initiate and terminate
736 access to the audit log; aud_open() and aud_close(). However, this resulted in a
737 need to reinvent a complete I/O package for such objects. Also, it did not succeed
738 in defining any particularly useful interfaces, other than a record-oriented read
739 function.

740 In draft 13 several balloters objected to the concept of an "audit descriptor". There
741 were two flavors of objection. One type of objection cited existing practice claiming
742 that existing practice (or all that was known to the objector) used files so the
743 abstraction of an audit descriptor was not reflective of current practice. Another
744 type of objection stated that since the descriptor was largely implementation
745 defined that it was of little use to the portable application. In response to these
746 ballot objections, the aud_open() and aud_close() as well as all concept of "audit
747 descriptor" was deleted. The aud_open(), aud_close() and "audit descriptor" were
748 replaced by the P1003.1 open() and close() calls while the audit log descriptor was
749 replaced with a file descriptor. The result of this change was to make the POSIX
750 audit functions more reflective of existing practice.

751 B.24.7.2 Distinction Between System Audit Log and Audit Log Files

752 With the removal of the audit descriptor abstraction some semantic differences
753 between the "system audit log" and file-based audit logs (i.e. non-system logs) sur-
754 faced. The primary difference being the fact that the system has some a priori
755 knowledge of the system audit log while the file-based audit log may only be
756 known by the application. An example of the difference between the "system log"
757 and file based logs lies in the amount of support which may be provided by the
758 system in ensuring the integrity of the audit records and the audit files. In the
759 case of the system log, the system is responsible for ensuring the integrity of the
760 audit log. For example if an application issues an aud_write() call on the system
761 audit log, the system is responsible for ensuring that the audit data is eventually
762 written to a properly formatted audit log. The system is also responsible for
763 proper sequencing of the records and supplying any accessory information neces-
764 sary to post-process the record (e.g. UID to text representation). When dealing c
765 with a file based audit log the system cannot guarantee that the file specified as
766 an "audit log" is in fact properly formatted (i.e. meets the system’s requirements
767 for a proper audit log), that the file offset is correct or that any accessory

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 297

768 information required for later translation (by aud_rec_to_text()) is properly
769 represented in the file. Additionally, if multiple aud_write() calls are made to the
770 file based audit log the system has little control over the sequencing of the
771 records. The only method provided by the standard for providing the concept of
772 "next" record is via the POSIX concept of file append. That is if the file based
773 audit logs are opened with the O_APPEND option the system can provide the
774 assurance that the "next" record written is properly placed in the audit log.

775 B.24.7.3 Read/Write access to the Audit Log

776 Appropriate privilege is required to write to the system log, but is not normally
777 required to read it. The rationale for this is that the write interface does not
778 require that the log has previously been opened (because the application should
779 not have unrestricted write access to the audit log, but only the ability to request
780 that records be added to the log (subject to an implementation specific pre-
781 selection policy); indeed, it may not even know the name of the file in which the
782 log is stored). However, for the read interface the log must first be opened, and
783 normal system access controls can be applied.

784 No privilege requirements are placed on implementation-defined audit logs
785 though implementation-defined forms of access control (including privilege) may
786 be applied.

787 B.24.7.4 Space Allocation

788 Space allocation for auditing functions is handled by the system throughout, with
789 the user only being required to notify the system when an item is no longer
790 required (by calling aud_free()). Functions that create or read in data on behalf of
791 the user automatically allocate space for the data: for example, for records read
792 from audit logs and for text strings created by aud_id_to_text(). The only excep-
793 tion is aud_copy_ext() which specifically copies into user-created space.

794 B.24.7.5 Audit Identifiers

795 The audit ID, an identifier conceptually different from a UID, was introduced as a
796 means of satisfying the requirement for individual accountability. While this
797 requirement can be met in other ways (e.g., unique UIDs) it was felt that the
798 introduction of the audit ID was the best means of meeting the requirement.

799 In many existing systems, the user has a username and a user ID. Neither of
800 these is appropriate for use as the audit ID, because POSIX.1 does not require
801 that either of these be mapped to an individual human user. Further, the user ID
802 is the basis of the (DAC) authorization policy of the system, which is logically dis-
803 tinct from the accountability policy. In particular, some systems allow aliasing of
804 one user ID to several usernames that all have the same DAC authorizations, or
805 permit several users to share a username; this is incompatible with use of the
806 user ID as an audit ID. An audit ID has its own unique type aud_id_t, because
807 only by doing this could an audit file be analyzed on systems of a different type to
808 the one on which it was generated. Some implementations might wish to define

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

298 B Revisions to Rationale and Notes

809 mappings between aud_id_t values and implementation-defined identifiers, such
810 as personnel numbers; this is not subject to standardization.

811 Note that there is nothing to stop a particular implementation from implementing
812 user ID and audit ID for each user as the same value, as long as it maintains indi-
813 vidual accountability. However, confusion might arise from the existence of two
814 sets of interfaces to the same value. There is no requirement on how the audit ID
815 is assigned, thus it can be administrator or system assigned (in the latter case,
816 perhaps equal to the UID).

817 Currently, two functions are provided for processing audit IDs. The function,
818 aud_id_to_text() is provided to allow an application to convert an audit ID to a
819 string identifying the corresponding individual user. The function,
820 aud_id_from_text() is provided to allow an application to convert a string identify-
821 ing an individual user to an audit ID. The audit option does not define any rela-
822 tionship between the strings handled by these functions and the pw_name field
823 obtainable from the function getpwuid(). Using these interfaces, an audit post-
824 processing application could provide record-selection facilities that permit an
825 auditor to select records based on the identity of the individual accountable for
826 actions; or could present the identity of the individual responsible for a particular
827 record to the auditor.

828 A further function, aud_get_id() is provided to allow a process that generates
829 records of its own activities to obtain the audit ID of the user accountable for the
830 actions of a client process and include it in such records.

831 Note that the functions to set, store and allocate audit IDs are not defined by this
832 standard, since these are considered to be administrative and therefore out of
833 scope.

834 B.24.7.6 Audit Post-Processing Interfaces

835 B.24.7.6.1 Reading the Audit Log

836 This standard provides a single read function aud_read() which operates with a
837 file descriptor returned via open().

838 The aud_read() function returns a pointer to the next sequential record in the
839 audit log. Note that it is up to the underlying implementation to ensure that the
840 next sequential record is returned. Certain events occur on a system for which
841 sequence is important. For example, a parent process forks a child. It is possible
842 that audit records from the child may appear in the physical log prior to the
843 record indicating the fork event had occurred. In any case, it is important that the
844 record for the parent’s fork is returned prior to any subsequent records for the
845 child (provided, of course, that the implementation-specific pre-selection policy
846 causes the fork event to be recorded). While the records in the internal audit log
847 may not be in the proper logical sequence, the sequence returned by aud_read()
848 must reflect the proper sequence.

849 Note that if an application chooses to write its own audit records to a file-based
850 audit log (e.g. not the system log) it is left largely up to the application to ensure c
851 that the records are properly sequenced. The only mechanism provided by POSIX

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 299

852 for maintaining the sequencing of records written to a file-based audit log is via
853 the O_APPEND flag supplied on open().

854 Since the system is not controlling the file-based audit log there may be no addi-
855 tional (system supplied) sequencing information provided.

856 B.24.7.6.2 Parsing Audit Records

857 An audit log may contain records in multiple data formats. All data in any given
858 record will be of the same format. The only format currently defined is
859 AUD_NATIVE; previously an AUD_PORTABLE format specifier was also
860 included, but this has been removed in the current draft because of the decision to
861 delay addressing the issue of portable data interchange formats.

862 A previous draft stated that access to the sets of data within the various sections
863 (headers, subjects, event-specific data and objects) of an audit record and to the
864 individual fields within these sets was sequential, i.e., to get to the nth field
865 required reading all the fields up to that one also. Several objections were made
866 to this claiming that it was both restrictive and inefficient: it prevented the read-
867 ing of the fields or sets in an arbitrary order and it required the processing of
868 fields or sets that were not needed. To respond to these objections, a third param-
869 eter has been added to the aud_get_∗() and the aud_get_∗_info() functions, where
870 ∗ is one of hdr, subj, event or obj.

871 For the aud_get_∗() functions, this parameter represents the ordinal number of
872 the set being requested in the appropriate section. This allows random access to
873 the sets, while at the same time allowing all of the sets in a section to be pro-
874 cessed sequentially.

875 For the aud_get_∗_info() functions, the third parameter represents a field_id,
876 identifying the field being requested; for system-generated records there are
877 defined values of field_id for each item; and the interfaces for construction of
878 application-generated records allow the application to specify the field_id for each
879 item (see below). Thus the field_id allows access to specific fields within the set.
880 Note that field_ids are not necessarily sequential. In addition, two special
881 field_ids, AUD_FIRST_ITEM and AUD_NEXT_ITEM are provided to allow
882 sequential access to the fields within a set. This can be used for rewinding a set.
883 Thus, both random and sequential access to the fields in a set are provided.

884 Note that the aud_get_∗() interfaces operate on audit record descriptors as
885 returned by any of aud_read(), aud_init_record() and aud_dup_record (). The
886 decision to use symmetric interfaces allows applications greater latitude in pro-
887 cessing a record and allows the implementation to be considerably simplified
888 because separate writing functions are not needed for records that are read from
889 the log as opposed to those that are created from scratch.

890 As mentioned above, the aud_read() function returns a pointer to an opaque
891 structure defining the next sequential record in the audit log. This record is then
892 read in logical pieces: the record header, subject attributes, event-specific informa-
893 tion and object attributes. The record segments are read by calls to the following
894 functions:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

300 B Revisions to Rationale and Notes

895 1. aud_get_hdr()

896 2. aud_get_hdr_info()

897 3. aud_get_subj()

898 4. aud_get_subj_info()

899 5. aud_get_event()

900 6. aud_get_event_info()

901 7. aud_get_obj()

902 8. aud_get_obj_info()

903 aud_get_hdr() returns a descriptor for the header information.
904 aud_get_hdr_info() takes the descriptor returned by aud_get_hdr(), and returns
905 the data item from within the header of the audit record identified by the field_id.
906 If sequential access is being used, then repeated calls using AUD_NEXT_ITEM as
907 the field_id return the data items from the header in a predefined order.

908 aud_get_subj() returns a descriptor for a set of subject attributes.
909 aud_get_subj_info() takes the descriptor returned by aud_get_subj(), and returns
910 the data item from within the subject information of the audit record identified by
911 the field_id. If sequential access is being used, then repeated calls return the
912 data items from the subject attributes in a predefined order.

913 aud_get_event() returns a descriptor for an opaque data item defining a set of
914 event-specific data from the record. aud_get_event_info() takes the descriptor
915 returned by aud_get_event() and returns the data item from within the event-
916 specific information identified by the field_id. There are defined items of informa-
917 tion to be returned in a defined order for the standard audit event types when
918 sequential access is being used. Repeated calls to aud_get_info(), are required to
919 read all items of event specific information.

920 aud_get_obj() returns a descriptor for an opaque data item defining a set of object
921 attributes. aud_get_obj_info() takes the descriptor returned by aud_get_obj() and
922 returns the data item from within the object specific information of the audit
923 record identified by the field_id. If sequential access is being used, then repeated
924 calls return data items from the object information segment in a predefined order.

925 Implementations are free to add additional fields to system audit records. As
926 such, any of the audit record segments defined above may be extended. If the
927 implementation extends an audit record segment, the implementation-defined
928 data items are appended. That is, the implementation-defined data items will be
929 read using AUD_NEXT_ITEM after all the items defined by this standard. Note
930 that this means that an application must issue successive calls to the above inter-
931 faces to make sure all data items in a record are read.

932 B.24.7.6.3 Example of Use

933 The following describes a brief example of the POSIX.1e audit functions used to
934 read records from an audit log:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 301

935 int sys_ad1; /∗ file descriptor to the audit log ∗/
936 aud_rec_t aud_rec1; /∗ record descriptor ∗/
937 aud_hdr_t aud_hdr; /∗ audit record header ∗/
938 aud_subj_t aud_subj; /∗ audit subject info ∗/
939 aud_event_t aud_event_info; /∗ audit event information ∗/
940 aud_obj_t aud_obj; /∗ audit object information ∗/
941 aud_info_t aud_info_descr; /∗ audit info descriptor ∗/

942 sys_ad1 = open (log, O_RDONLY) /∗ Open an audit log ∗/

943 while ((aud_rec1 = aud_read (sys_ad1)) != (aud_rec_t) NULL)
944 {

945 /∗ Get audit header & header information ∗/

946 aud_get_hdr (sys_rd1, 1, &aud_hdr);
947 aud_get_hdr_info (aud_hdr, AUD_EVENT_TYPE_ID, &aud_info_descr);

948 [repeated calls to aud_get_hdr_info to get all hdr info]

949 /∗ Get audit subject & related information ∗/

950 aud_get_subj (sys_rd1, 1, &aud_subj);

951 /∗ Get the UID from the subject portion of the record ∗/

952 aud_get_subj_info (aud_subj, AUD_EUID_ID, &aud_info_descr);

953 [additional calls to aud_get_subj_info for example ...]

954 aud_get_subj_info (aud_subj, AUD_MODE_ID, &aud_info_descr);

955 /∗ Get audit object & related information ∗/

956 aud_get_obj (sys_rd1, 1, &aud_obj);

957 [additional calls to aud_get_obj_info for example ...]

958 aud_get_obj_info (aud_obj, AUD_ACL_ID, &aud_info_descr);

959 /∗ You could now use the POSIX.1e ACL i/fs to analyze the ACL ∗/

960 /∗ Get audit event & related information ∗/

961 aud_get_event (sys_rd1, 1, &aud_event_info);

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

302 B Revisions to Rationale and Notes

962 [additional calls to aud_get_event_info for example ...]

963 aud_get_event_info (aud_event_info, AUD_PATHNAME,
964 &aud_info_descr);
965 }

966 close (sys_ad1);

967 In the above example, the while loop reads records sequentially from the audit
968 log, referenced by sys_rd1. The record is then parsed by a series of calls to;
969 aud_get_hdr(), aud_get_hdr_info(), aud_get_subj(), aud_get_subj_info(),
970 aud_get_obj(), aud_get_obj_info(), aud_get_event(), aud_get_event_info().

971 Note that the addition of the field_id allows for (somewhat) random access to the
972 record. In previous versions of this standard, access of this nature was not pro-
973 vided and access to a particular part of the record was sequential. Additionally
974 there had to be some a priori knowledge of the format of the record (i.e. that UID
975 was the 4th field in the record). This problem has been eliminated with the addi-
976 tion of the field_id.

977 The audit records are processed in logical blocks, the header, subject, object and
978 event information. The aud_get_∗() interfaces are used to (logically) extract the
979 corresponding logical block of the audit record so it may be processed by the appli-
980 cation. In an implementation, the aud_get_∗() may simply position a index to a
981 portion of the audit record. For example a call to aud_get_hdr() may simply posi-
982 tion a index to the beginning of the audit record header. After the call to
983 aud_get_∗(), subsequent calls to aud_get_∗_info() are used to extract data fields
984 from the record. For example, repeated calls to aud_get_hdr_info() are made to
985 extract the header data items from the audit record.

986 B.24.7.6.4 Audit Record Conversion

987 A function is provided to allow audit records to be converted from internal (native)
988 format to human readable format. This function is primarily intended to allow
989 applications to display audit records to a user.

990 The function aud_rec_to_text() converts an audit record, pointed to by an
991 aud_rec_t, from internal format to human readable text. The function returns a
992 pointer to the converted record. All space required for the converted record is allo-
993 cated by the underlying implementation. Aside from the ordering of information
994 in the converted record, the standard does not specify any details of the text; thus
995 the output of the function can be displayed to a user, but cannot be further pro-
996 cessed by an application (e.g. adding special formatting). Portable post- c
997 processing applications that want to provide formatted text for audit records
998 themselves can do so by using the aud_get_∗() and aud_get_∗_info() functions to
999 obtain the content of the record, and other POSIX.1 functions to convert each item
1000 to text. In draft 13 and 14 there was an attempt to define more details of the out-
1001 put of aud_rec_to_text(), but this was widely criticized (for example, it used new-
1002 line characters as delimiters, but these were taken to be formatting which was
1003 stated to be inappropriate to POSIX.1); therefore these details were withdrawn.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 303

1004 The converse function is not provided by the standard: there is no requirement to
1005 be able to take a human readable record and convert it to internal form in order to
1006 support either post-processing or self-auditing applications.

1007 B.24.7.6.5 Copying Audit Records

1008 The working group determined that some applications would find it desirable to
1009 save audit records. They may be saved for functions such as backup/restore or for
1010 applications which are building a database of audit records for later processing.
1011 One way to achieve this is just to aud_read() records from one log and
1012 aud_write() them to another. However, this is not very flexible, since the destina-
1013 tion has to be an audit log. It is desirable that it be possible to store a record in
1014 any user-defined destination. Since the POSIX.1e audit functions use system
1015 allocated space to store audit records, a provision needed to be made to copy the
1016 audit record from system managed space into user-managed space. Conversely,
1017 the ability to move the record back into system managed space and allow it to be
1018 processed by the POSIX.1e audit functions was also needed.

1019 The function aud_copy_ext() copies an audit record from system managed space to
1020 user-managed space. It is the responsibility of the application to ensure that ade-
1021 quate space is reserved for the copied record. To allow the application to deter-
1022 mine the space required to hold the copied record, the function aud_size() is pro-
1023 vided. The aud_size() function, accepts a pointer to an audit record in internal for-
1024 mat and returns the size required to hold the audit record in user-managed space.
1025 Note that the size returned by aud_size() may not be reflective of the space allo-
1026 cated for the internal record because pointers or various compression techniques
1027 may be used by the underlying implementation to reduce the amount of space
1028 required to store audit records.

1029 The function aud_copy_int() copies an audit record from user-managed space back
1030 to system managed space. This function was provided to allow applications to re-
1031 process audit records that have previously been copied to user space and, maybe,
1032 saved. It was suggested that if the POSIX.1e audit functions could be made to
1033 operate on the user-managed copy of the record this capability would not be
1034 needed. However, because the underlying implementation may use various tech-
1035 niques to compress the size of internally stored records (e.g., pointers) the
1036 assumption that the POSIX.1e audit functions could be used on copied records
1037 was not valid. The working group did not want to constrain implementations by
1038 requiring that the internal and user-managed copies of audit records be identical.

1039 B.24.7.7 Application Auditing Interfaces

1040 B.24.7.7.1 Constructing Audit Records

1041 In draft 12, interfaces were defined that allowed an application to construct an
1042 audit record before writing it to an audit log. However, although it was clearly the
1043 intent that the application should be able to alter fields in the record, and thus
1044 reuse the record, this was not in fact possible. In ballot, this deficiency was
1045 widely criticized, as was the efficiency of such interfaces without an ability to
1046 reuse records.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

304 B Revisions to Rationale and Notes

1047 In draft 13, a major simplification of the interfaces was proposed. All interfaces
1048 for constructing audit records were removed, and instead a data structure
1049 approach was proposed; the application constructed the record using rows of
1050 type/length/pointer structures to define the data, then passed these structures to
1051 aud_write(). This too was widely criticized, as being insufficient application sup-
1052 port, incompatible with the style of the rest of the standard, and providing
1053 insufficient structuring capabilities: there was, for example, no means to indicate
1054 that a particular group of data items in the record all related to one object or sub-
1055 ject.

1056 The standard has now reverted to interfaces based on those of draft 12, but
1057 extended and completed to allow records to be built with all the structure of a
1058 system-generated record, and full facilities for altering and reusing records.
1059 Thus the objections to both the draft 12 and the draft 13 proposals should be
1060 satisfied. Indeed, much of the flexibility of the earlier, token based, proposal has
1061 been achieved, without however proposing as many interfaces as that did.

1062 The intent of the supplied interfaces is that an application should be able to
1063 implement any reasonable strategy for constructing audit records. For instance,
1064 an application is able to include much or little structure information in records: it
1065 can specify that most of the data in the record has no defined structure; or it can
1066 structure the data according to the subject(s) and object(s) to which it relates, and
1067 give meaningful data types for much of the data. Also, an application can chose to

1068 g Create a new aud_rec_t for each record it constructs, deleting the aud_rec_t
1069 when the record has been written to the audit log, or

1070 g Reuse a single aud_rec_t for various records, using the various aud_put_∗()
1071 and aud_put_∗_info() interfaces to add information, and using the various
1072 aud_delete_∗() and aud_delete_∗_info() interfaces to remove information,
1073 between invocations of aud_write().

1074 The aud_put_∗() interfaces allow an application to ask the implementation to
1075 create new sections (e.g. header, sets of object attributes) in an audit record; the c
1076 interface returns to the application an identifier (an opaque data item) for the
1077 newly created section. The application used this identifier when adding content to
1078 the section, and also when it wants to add another new section before the existing
1079 one.

1080 The aud_put_∗_info() interfaces allow an application to add content to a section
1081 created as above. The application tells the i/f an identifier (an integer) for the
1082 item that it is adding to the section; it can also give the i/f an identifier for a previ-
1083 ously added item before which the new item is to be placed.

1084 B.24.7.7.2 Writing the Audit Log

1085 The ability to write to the system audit log cannot be generally available, because
1086 it could provide a malicious user with a means of denying service to other users
1087 (by filling up the audit file) or misleading an audit administrator (by seeding the
1088 audit log with disinformation). Accordingly, utilities that use the aud_write()
1089 interface to write to the system audit log must have appropriate privilege and be
1090 trusted to use it properly.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.24 Audit 305

1091 The aud_write() function accepts an aud_rec_t pointing to an audit record which
1092 may have been constructed using the interfaces described above, or may have
1093 been read from another audit log. Some earlier drafts of the standard did not per-
1094 mit an application calling aud_write() to specify all the sections of a record; some
1095 did not permit the internals of a record to be structured into sets of related details c
1096 (e.g. object attributes); some did not permit a record to be read from one log and
1097 written to another. All of these earlier restrictions were the subject of ballot
1098 objections, leading to the current interfaces.

1099 B.24.7.7.3 Auditing Suspension and Resumption

1100 Any process doing its own auditing may wish to suspend standard auditing of its
1101 operations. This is likely to be used mainly by processes auditing themselves at a
1102 much finer or coarser granularity than the kernel. For example, a program that
1103 scans the filestore periodically and moves to tape any files that have been unused
1104 for a long time could audit the movement of the files itself (in a more meaningful
1105 way than the kernel); it seems unnecessary to record that it checked the access
1106 dates of all files in the system, which would merely clutter the audit log with
1107 data. Even standard utilities (with appropriate privilege) might make use of this
1108 facility, to provide a higher level view of events than would be given by the kernel.
1109 The interface used to request that the system suspend and resume system audit-
1110 ing of the current process is aud_switch().

1111 B.24.7.7.4 Error Return Values +

1112 If the symbol {_POSIX_AUD} is defined, then the implementation supports the +
1113 audit option and is required to support the audit functions as described in this +
1114 standard. If the symbol {_POSIX_AUD} is not defined, then the implementation +
1115 does not claim conformance to the audit option and the results of an application +
1116 calling any of the audit functions are not specified within this standard. An alter- +
1117 native is for the audit functions to specify that the error return code [ENOSYS] be+
1118 returned by the functions if the audit option is not supported. However, in order +
1119 to remain compliant with the policies of POSIX.1, this standard cannot specify +

1 any requirements for implementations that do not support the option.

2 B.25 Capability

3 B.25.1 General Overview

4 Goals

5 The primary purpose of defining interfaces for a capability mechanism within this
6 standard is to provide for a finer granularity of controlling and granting system
7 capabilities than the traditional super-user model.

8 The major goals of this standard are to:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

306 B Revisions to Rationale and Notes

9 (1) Provide a portable means of supporting the assignment of an ability for a
10 process to invoke or perform restricted system services.

11 (2) Support the implementation of least privilege security policies by provid-
12 ing the means to constrain a process by enabling it to invoke only those
13 system capabilities necessary to perform its specific tasks.

14 The additional goals of this standard are to:

15 (1) Define a common terminology for addressing the topic of capability.

16 (2) Define the semantics of how process capabilities are acquired and
17 altered.

18 (3) Define the system functions and utilities necessary to utilize capabilities.

19 (4) Provide compatibility with programs that depend upon the set user id on
20 execution and set group id on execution behavior to gain access to system
21 resources.

22 (5) Provide the means by which an implementation may grant capabilities in
23 order to emulate the traditional super-user.

24 (6) Allow for extensibility by future implementations.

25 (7) Define a minimum set of capabilities necessary to support the develop-
26 ment and execution of security-relevant programs.

27 (8) Ensure that there is a mechanism by which capabilities may be tran-
28 sported with their associated files.

29 It has been pointed out that the term privilege has been commonly used for a
30 mechanism that achieves the above stated goals. However, the term privilege is
31 also commonly used in the international community to mean something else
32 entirely. It is felt that the confusion that would result from using the term
33 privilege would not serve this standard well. −

34 A capability mechanism is a common requirement for most operating systems.
35 Capability controls the availability of particularly important system services to
36 processes that are known to maintain system integrity.

37 The principle of least privilege is a common requirement of security policies, that
38 is, granting to a process only the minimum rights and capabilities necessary to
39 perform a task. The purpose of this principle is to constrain the damage that may
40 arise from a violation of the security policy, e.g., disclosing confidential informa-
41 tion or corrupting the integrity of the system. We must emphasize here that the
42 standard does not (nor can it) specify a least privilege mechanism—only interfaces
43 that, when used with a correctly defined set of capabilities, could successfully be
44 used to implement a least privilege security policy.

45 An example of the application of the principle of least privilege in the commercial
46 environment is the separation of roles in an accounting department. In most firms
47 of any size, the person who records and manages the Accounts Receivable is NOT
48 the person who records and manages the Accounts Payable. This is so one person
49 cannot create false bills and then write checks to pay them. A current example in

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 307

50 the computer world is the use of the restricted shell (rsh) for computer operator
51 consoles — the operator, who has a great deal of potential access to the entire
52 computer system by virtue of his or her physical access to the machine, can have
53 that access limited to those functions actually required to perform his or her job
54 by the system administrator.

55 Additional goals 1 and 2 are natural intermediate goals for meeting our major
56 goals. Before a capability mechanism can be defined, a terminology and the basic
57 concepts of capability must be laid out. Once that has been achieved, then the
58 semantics of how capabilities are acquired, manipulated, and controlled need to
59 be defined. Only after this step has been accomplished — deciding what opera-
60 tions are required to provide a capability mechanism — can the next step be
61 taken.

62 Additional goal 3 is the end result of this effort — the definition of the interfaces
63 that can be used to provide the semantics developed above. The specification of
64 these interfaces is the entire purpose of this effort — to provide a set of tools that
65 can be used by conforming applications to perform those tasks necessary for its
66 functions.

67 Additional goals 4 and 5 are compatibility goals. The set user id and set group id
68 mechanisms of POSIX.1 continue to function as they have in the past, providing
69 DAC access to objects based upon the owning ids of the executed file. Set uid root
70 functionality may be provided by appropriate use of the file permitted capability
71 set. While our goal is to provide a mechanism that will support implementations
72 intended for high levels of trust, there will be implementations that will still need
73 to support existing setuid root programs, and implementations that will still pro-
74 vide the ’superuser’ identity to administrators. While we would like to discourage
75 both of these practices, we understand that current practice is often slow to
76 change and that some existing applications will have to run unmodified on secure
77 machines for at least a transition period.

78 Goal 6 is a basic goal of all systems — motherhood and apple pie to engineers. All
79 systems need to permit extensibility and flexibility so that unforeseen situations
80 and future improvements do not require an architectural change in order to
81 accommodate them. At some point, every system will need to be completely
82 replaced, but one would like to push that off as long as possible. Implementations
83 will need to provide capabilities not specified here to accommodate various secu-
84 rity policies and system functions not part of this standard. Extensibility is there-
85 fore an absolute requirement.

86 Goal 7 is the specification of a standard set of capabilities — is a necessary part of
87 this effort. Trusted applications will need to be able to acquire a certain capabil-
88 ity to perform a specific function across all compliant implementations in order to
89 be portable, and that capability will need to have the same meaning across imple-
90 mentations.

91 Goal 8 was agreed upon primarily to support system backup and restoration
92 operations. This goal does not include the transfer of capabilities from system to
93 system necessarily. Indeed, there is a good argument that requiring that degree
94 of portability adds risk to a system, and that a system administrator should be

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

308 B Revisions to Rationale and Notes

95 required to approve every new trusted program before it is assigned capability
96 attributes. As a result we define file capability attributes, but not their actual
97 representation or how they are stored with the file on a tape.

98 Scope

99 The scope is the natural result of our goals. In order to support the principle of
100 least privilege, interfaces that provide the means for programs to enable and dis-
101 able capabilities while running are necessary. In order to support the compatibil-
102 ity goals, there must be a means for programs to pass capabilities to other pro-
103 grams that they execute, and the semantics of that inheritance must therefore be
104 specified to some degree. Because it is programs that are the ‘‘trusted’’ agents on
105 implementations, there must be some method to identify them as trusted —
106 therefore attributes associated with program files must be specified. Finally, a
107 small set of capabilities to be used with the interfaces and utilities in the existing
108 POSIX.1 specifications must be defined so that writers of conforming applications
109 know which capabilities will be available to perform various functions and their
110 appropriate use.

111 Purpose of a Capability Mechanism

112 The purpose of a capability mechanism is to provide a finer granularity of control
113 over the access to restricted system services to specific users or processes than
114 that provided by the traditional POSIX.1 "UID 0" access mechanism. A general
115 purpose capability mechanism supports not only the ability to implement the
116 principle of least privilege, but also provides the foundation for building an
117 authorization mechanism to support security administration. The interfaces and
118 concepts presented in this document have been designed to meet these require-
119 ments.

120 Authorization vs Capability

121 The power to perform an action in a trusted system based on user identity is
122 called an ‘‘authorization.’’ Authorizations are generally designed around opera-
123 tional requirements and tasks rather than system services. For example, an
124 authorization to perform backups would be granted to a user. The backup pro-
125 gram however, would enable and disable specific capabilities to perform the
126 backup function. A system that supports authorizations simplifies the adminis-
127 trative task of the security officer by eliminating the need to comprehend exactly
128 which capabilities each program requires and how to allocate those capabilities to
129 users.

130 The establishment of a user identity and a user’s authorizations based on that
131 user’s identity is presently outside the scope of the POSIX standards. Because of
132 this, the assignment of authorizations to users through a program such as llooggiinn
133 and the use of an authorization mechanism for determining utility capability
134 bracketing is presently undefined, as is the relationship between the authoriza-
135 tion mechanism and the capability mechanism used by a program. It is not, how-
136 ever, our intention to preclude any implementation of a user authorization
137 mechanism with this standard.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 309

138 General Discussion of Capability

139 Currently, most POSIX.1 and POSIX-like implementations grant all capabilities
140 to a particular user ID − 0 (root). Most of the time, the ability to log in as or to
141 assume this identity is restricted to a small set of users on a system, one of whom
142 is the system administrator. The ‘‘root’’ account has the ability to execute any
143 utility or use any system function regardless of what security restrictions may be
144 involved. Such special rights are necessary to do many administrative tasks, such
145 as system backups and restores, writes into special files, and to operate processes
146 such as line printer daemons and mail handling servers.

147 In the vast majority of cases, however, a process needs to invoke only a few
148 specific restricted system services or override a single type of access permission in
149 order to accomplish its task. A line printer daemon, for instance, needs to be able
150 to read any file in the system, but does not need the ability to write into them,
151 and the same with a backup program. A login program needs to be able to change
152 its user identity, but it does not need to modify disk quotas, and so forth.

153 As has been demonstrated numerous times, the requirement that a process be
154 granted the ability to bypass all the security restrictions in a system just to
155 bypass some of them leads to accidents and purposeful misuse. Many times,
156 users do not realize that they are in privileged mode and perform a destructive
157 action (rrmm ∗) without realizing that the system will not stop them in their current
158 state. Other times, a user acquires the ability to become ‘‘root’’ for a perfectly legi-
159 timate reason, and then passes it on to other users or applies the special abilities
160 ‘‘root’’ provides in ways not intended by the system administrator.

161 A capability mechanism provides the means for a system administrator to grant a
162 program the ability to use a restricted system service or bypass specific security
163 checks. For instance, user Joe can run the backup program for an entire network
164 (that can read every file on the network) from the ‘‘admin’’ host. Properly imple-
165 mented and administered, the capability mechanism could permit Joe to perform
166 his assigned task, but could prevent abuse of the world read access capability
167 such as browsing files normally not accessible to Joe.

168 Principle of Least Privilege

169 A process’s need for capability access to system resources and functions does not
170 justify giving the process uncontrolled use of capabilities. It is also not appropri-
171 ate to establish for a process chain (a sequence of programs within a single pro-
172 cess) a set of capabilities that remains fixed and active throughout the life of that
173 chain. Rather, the set of active capabilities of a process can be expected to change
174 as the functions of the process change, so that the process has active at any time
175 just those capabilities needed to perform its current function. This is an applica-
176 tion of the principle of least privilege, and it applies equally to users and to
177 processes.

178 Implications of the Principle of Least Privilege

179 Any capability mechanism will associate with each process a set of capabilities
180 that the process can potentially use, but capabilities should be controlled at the

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

310 B Revisions to Rationale and Notes

181 level of granularity of individual programs. The most straightforward way to do
182 that is to associate capability controls with the individual program files. The first
183 requirement implied by the principle of least privilege, to control capability at the
184 granularity of individual programs, leads to the assignment of capability attri-
185 butes to program files; this is the file capability state.

186 If a program is always executed in a single context, e.g., by a single user to per-
187 form a single function, then the specific set of capabilities for that context-
188 program combination applies to all invocations of the program. However, in gen-
189 eral a program is executed in varying contexts, e.g., by different users, or on dif-
190 ferent files, or for different purposes—such as a printer spooling program. Thus
191 we need to be able to change the capabilities of a process as its circumstances
192 change.

193 This is the second requirement implied by the principle of least privilege: to con-
194 trol use of capability within the context of intended use. It further suggests that
195 process capabilities be divided into two classes: capabilities that are currently
196 active, and capabilities that could be activated. We do this by creating two
197 corresponding kinds of process capability flags: effective (indicating that the capa-
198 bility is active) and permitted (indicating that the capability could be activated).
199 Thus a process can increase its current set of active capabilities by making effec-
200 tive any capability that it is currently permitted , and can reduce its active capa-
201 bilities at any time while retaining the ability to restore them. This ability of a
202 process to adapt its active capabilities to the needs of the moment is referred to in
203 the standard as the ‘‘time bounding of capability’’ and is sometimes also referred
204 to as capability bracketing.

205 If a process image is instantiated from a program file, its capabilities will be
206 affected by the capability state associated with the file. A program will exec a pro-
207 gram file to instantiate its successor program in a process chain. Here too the
208 principle of least privilege implies that we adapt the use of capability to the con-
209 text of use. There are two general ways to do this.

210 In the first, exec() constrains the maximal extent of capabilities for the
211 process image it instantiates from a program file. In this way the
212 invoking process image can limit the capabilities of the successor pro-
213 cess image.

214 In the second, exec() plays no role in limiting the set of capabilities that
215 the instantiated process image may have; rather, the successor process
216 image sets the capabilities itself, choosing them from the set of capabil-
217 ities associated with the program file from which it was instantiated,
218 and possibly from a set of capabilities that a predecessor process image
219 had passed on.

220 In either case, the advantage of passing capabilities along a process chain is that
221 it allows the process to dynamically build up a capability context, rather than lim-
222 iting its capability context to a single, per−process image state.

223 Besides providing a capability for a process image to pass capability information
224 to subsequent process images, it may be desirable that a specific process image
225 have capabilities that are not permitted to any of its predecessors. We therefore

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 311

226 need a way to increase the capabilities of a process based on the program file
227 being exec’ed.

228 Finally, we observe that a process image may wish to pass capabilities to some
229 successor process image through an intermediate third process image that is not
230 itself trusted to properly use the passed capabilities. For example, a process may
231 initiate an untrusted shell that in turn will exec a third program file.

232 B.25.2 Major Features

233 There must be some method for a process to acquire capability(s) it needs if it is to
234 be able to use it(them) at some point. Because capabilities are security relevant,
235 this method must be restricted to a trusted part of the system, which must grant
236 the ability to use capability based on one or more characteristics of the process.
237 We assert that the characteristic most relevant is the identity of the program or
238 programs that are run within that process.

239 A result of this assertion, that the identity of programs is the primary characteris-
240 tic used to assign trust, is the requirement that there be some means to identify a
241 program file as trusted. There are several means available to do this. The first is
242 to embed some form of identification in the program file itself in such a way that
243 the loader can interpret it. This leads to problems, however, in that different ins-
244 tallations may have different security policies, and that system administrators
245 may not trust the program developer enough to set the proper capability attri-
246 butes. The second alternative is to attach capability attributes to the program
247 file. This alternative provides a much larger degree of flexibility, in that system
248 administrators can differ in their trust of a particular program without modifying
249 or altering the actual program itself, and is much more consistent with current
250 practice and methods. As a result, file capability attributes were proposed.

251 B.25.2.1 Task Bounding of Capability

252 This standard has the advantage of being flexible enough that a given capability
253 may be bound either for the duration of an executable program or the duration of
254 a single system call. This allows flexibility in the granularity of capability, pro-
255 vides support for backwards compatibility, and allows trusted programs to sup-
256 port capability bracketing. The main advantage in task bounding of capability is
257 that it reduces the chance that program errors will have security-relevant side
258 effects.

259 B.25.2.2 Capability Inheritance

260 Trusted programs can perform complicated functions and, as a result, can be very
261 large. The larger and more complicated a program is, however, the harder it is to
262 evaluate for trust and the more difficult it becomes to maintain. In addition, one
263 of the basic tenants of the POSIX.1 operating system is to provide a set of simple
264 utilities that can be executed together or in series to perform more complicated
265 functions. As a result, it is desirable for a trusted program to be able to pass on
266 its capability characteristics to other programs to perform functions it would

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

312 B Revisions to Rationale and Notes

267 otherwise have to implement itself.

268 While one trusted program may want to pass all of its capabilities to another,
269 more often the child program only needs a subset of the parent program’s capabil-
270 ities to perform its functions. Also, should the child program be trusted, the
271 parent trusted program may not be aware of how much trust that child program
272 actually has at any given time. Finally, a conforming program CANNOT be
273 trusted to handle implementation-defined capabilities. Therefore, the developer
274 needs to have the ability to restrict what capabilities he or she desires to pass on
275 to the child program, and the system developer and administrator need to have a
276 means of controlling what capabilities they are willing to permit the child pro-
277 gram to have.

278 Since the exec() function is the means by which one program invokes another, it
279 must be modified:

280 g To grant capabilities to programs when they are executed.

281 g To permit programs to pass capabilities to other programs.

282 g To restrict which capabilities may be passed from one program to another. −

283 So far, we have provided the basis for program level capabilities. In other words,
284 programs that are granted capabilities using the attributes specified so far have
285 those capabilities during their entire scope of execution. For many systems,
286 program-level capabilities may not provide the level of granularity desired by the
287 security policy. For instance, a program may need to have the capability to write
288 to a system administrative file only during a single call to the open() system func-
289 tion. For the remainder of the time the program executes, the capability is avail-
290 able but not required. In order to support implementations that support the con-
291 cept of least privilege to a finer level of granularity, we need to provide the means
292 by which a program can enable a capability only during the scope of execution for
293 which it is actually required.

294 In summary, then, the view of the principle of least privilege presented here and
295 the desired functionality described above implies the following:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 313

296 (1) There is capability state associated with program files as well as with
297 processes.

298 (2) There are two kinds of process capability attributes: one which defines
299 what capabilities may be invoked by the process image, and another that
300 defines what capabilities are currently invoked by the process.

301 (3) There is a way to increase the capabilities of a process that depends on
302 the process image file that it exec’s.

303 (4) There is a way to conditionally transmit capabilities from a process
304 image to its successor image(s).

305 (5) There is a way to restrict which capabilities may be passed to any partic-
306 ular process image that depends on the process image file.

307 (6) The exec() system function determines the capability attributes of the
308 process it instantiates.

309 B.25.2.3 Process Capability Flags c

310 A process image acquires capabilities from the set of capabilities attached to the
311 program file from which it is initiated. The effective flag determines whether the −
312 capability is active for the process. The permitted flag determines whether the
313 process may choose to make the capability effective . The inheritable flag deter- c
314 mines whether the process may pass on to its successor process image a condi- c
315 tional right to use a capability. The right must be conditional because the capa-
316 bility may be inappropriate for intermediate image(s). Indication of the
317 successor’s appropriate capabilities is reasonably associated with the successor’s
318 process image file. In fact, this indication can be made precisely by the permitted c
319 file capability flag. The determination of the right to use a capability depends on −
320 the current process’s value of the inheritable flag and on the values of the permit- c
321 ted and inheritable flags of the corresponding file capability. This determination
322 is made by exec(). In implementations that depend more heavily on use of the c
323 effective flag, the inheritable flag can be used by a process image to determine the
324 trust associated with its predecessor process image and therefore provide a basis
325 for enforcing its own security policy.

326 B.25.2.4 File Capability Flags

327 As we have seen, the principle of least privilege requires that with each program
328 file there is associated the set of capabilities that a process image, instantiated
329 from that file, requires to do any of its functions. c

330 The inheritable flag determines which capabilities the resulting process image c
331 may pass to subsequent process images and which ones the program may chose toc
332 use if the previous program image possessed the capability. c

333 The permitted flag determines which capabilities the resulting process image c
334 needs to have available in order for the program to function properly, regardless c
335 of the capabilities of the previous process image. c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

314 B Revisions to Rationale and Notes

336 The effective flag determines which capabilities the resulting process image will c
337 possess in its effective process set. c

338 The ability to support capability unaware applications on a per executable basis
339 ensures that these programs will continue to function with a limited set of capa-
340 bilities, thus reducing the risk of unauthorized access to restricted functions.
341 Additionally, the risk of a trojan horse gaining unauthorized access to capabilities
342 is reduced if the inclusion of capabilities into the effective set is automatically lim-
343 ited to a per file basis.

344 Earlier versions of this standard provided a single set_effective flag instead of the c
345 effective set. The new process permitted set was promoted to the effective set on c
346 exec() when this flag was set.

347 B.25.2.5 The Determination of Process Capability by fork()

348 This is a simple case. The fork() system function is meant to create a new process
349 that is, as much as possible, identical to its parent. Because capability is not an
350 attribute that uniquely identifies a process, such as process ID, the capability
351 state of a child process should be identical to that of its parent immediately after
352 the execution of the fork() system function.

353 B.25.2.6 The Determination of Process Capability by exec()

354 The inheritable and permitted capability flags of the program file and the inherit- c
355 able capability flags of the current process together determine the context-
356 dependent set of capabilities permitted to the instantiated process. The
357 context−independent set of capabilities that is included in the permitted capability
358 set of the program when it is executed is derived from the permitted file capability c
359 flags associated with the program file. The union of these two sets comprise the
360 set of capabilities that the exec() function permits the new process image to use.

361 The initial state of the effective flags of the new process image depends on the c
362 inheritable flags in the old image and the values of inheritable, permitted, and c
363 effective flags of the program file. The justification for selecting the transforma- c
364 tion function for process capability state is incorporated throughout the text of
365 this section.

366 B.25.2.7 Support of the Capability State Attribute on Files

367 The intent of these interfaces is not to limit the manner in which processes can
368 gain appropriate privilege. Thus, if the value of the pathname variable
369 {_POSIX_CAP_PRESENT} is zero (meaning that the file does not support the
370 POSIX capability state attributes), then it is possible for an implementation to
371 specify other mechanisms. For example, the USL implementation provides both a
372 privilege mechanism and a superuser mechanism.

373 Certainly, there are implementations that allow files to be exec’ed from file sys-
374 tems that do not support capability attributes (for example, an NFS file system
375 mounted from a system not supporting the capability option). In this case, it is

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 315

376 suggested that an implementation treat this file exactly as it would a file without
377 a capability state attribute from a file system that does support capability attri-
378 butes.

379 B.25.2.8 Extensions to This Standard

380 This specification does not preclude providing additional implementation-defined
381 constraints, such as a system-wide configuration variable to further constrain the c
382 capability inheritance rules. The value of this variable could be used to act as an
383 additional gating function to permit a single global value to be manipulated by a
384 system security officer to help stop or slow a security breach in progress by
385 preventing any permitted capabilities from being automatically included in every
386 process effective capability set. Additional file capability attributes and file capa-
387 bility flags can also be defined by an implementation. It must be emphasized that
388 such extensions are compliant only if they further constrain (prevent from becom-
389 ing effective) capability.

390 B.25.2.9 Process Capability Manipulation

391 When a process image is instantiated from a program file, its capability flags
392 describe its capability state. As noted earlier, the effective, permitted, and inherit-
393 able flags respectively denote which capabilities are active, which may be
394 activated, and which the process image will (conditionally) pass on to its succes-
395 sors. A process should not be permitted to arbitrarily modify these flags, but is
396 restricted according to the following set of rules.

397 A process can promote to effective only those capabilities whose permitted flag is
398 set. This lets the process adapt its degree of active capabilities to its current con-
399 text, and so supports the principle of least privilege. On the other hand, the pro-
400 cess can never promote a capability to effective if the permitted flag is turned off,
401 and can never enable a permitted flag that is turned off. Thus the process cannot
402 assume for itself capabilities to which it is not entitled.

403 To prevent it from accumulating capabilities through inheritance, a process can
404 enable an inheritable flag only if the corresponding permitted flag is set.

405 If a process disables a permitted flag, the corresponding effective flag is automati-
406 cally disabled. The corresponding inheritable flag is not affected, so capabilities
407 can be conditionally transmitted along a process chain whose intermediate
408 processes may themselves have no capabilities. In no other case does changing
409 the value of any flag affect the value of any other flag.

410 B.25.3 Function Calls Modified for Capability

411 The standard defines the capabilities required by each of the POSIX.1 functions.
412 However, many implementations included additional functions that should be
413 modified to support the capabilities defined in this standard. While the list
414 presented here is by no means exhaustive, it is included as helpful information for
415 the reader.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

316 B Revisions to Rationale and Notes

416 Table B-3 − Other System Functions Potentially Affected by Capability Policies

417 Function418 iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

419 adjtime
420 bind
421 chroot
422 killpg
423 limit
424 mincore
425 mknod
426 mount
427 ptrace
428 readv
429 reboot
430 sethostname
431 settimeofday
432 shutdown
433 socket
434 socketpair
435 swapon
436 symlink
437 syscall
438 umount
439 vadvise
440 vfork
441 vhangup
442 writev
443 sysattr

444 B.25.4 Capability Header

445 These types were defined to provide opaqueness and avoid specifying detail that
446 should be left to the implementation. The capabilities defined in this section are
447 limited to those specifically called for in the POSIX.1 standard. Included also are
448 those capabilities defined in POSIX.1e.

449 B.25.4.1 Rationale for the Selection of Capabilities Defined in the Stan-
450 dard

451 This section will describe the process that the capability group used to develop the
452 set of capabilities specified in this standard. Enough detail is provided about the
453 process so that an implementor can duplicate it when analyzing an implementa-
454 tion to determine what additional capabilities, if any, are required.

455 We began the process of defining a capability set for the standard by first develop-
456 ing a set of guidelines to be used. These guidelines are contradictory to a degree,
457 and the group made trade offs between them when discussing each individual
458 capability in order to come up with a minimum set of capabilities that were
459 deemed necessary for the support of conforming applications.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 317

460 Principles for Determining a Capability Set

461 Principle #1: A capability should permit the system to exempt a process from a
462 specific security requirement.

463 In most cases, security requirements found in the function descriptions take the
464 form: ‘‘In order for this function to succeed, <requirement>, or the process must
465 possess appropriate privilege.’’ A specific example can be found in the POSIX.1 c
466 description of the chown() function, which states ‘‘In order for this function to
467 succeed, the UID associated with the process must match the owner ID of the file,
468 or the process must possess appropriate privilege.’’ c

469 This principle is meant to support the principle of least privilege, in that a capa-
470 bility should provide only the minimum rights or authority to perform a specific
471 task.

472 Principle #2: There should be a minimal overlap between the effects of capabili-
473 ties.

474 Capabilities should be defined such that they apply to logically distinct opera-
475 tions, and the granting of a set of capabilities should not, as a side effect, grant an
476 additional capability that is not in that set.

477 This principle was developed to address the concerns that capabilities should be
478 distinct and unique—no capability or combinations of capabilities should provide
479 the capabilities afforded by another capability. When a system administrator
480 grants one or more capabilities to a specific user or program, they should have
481 some assurance that the recipient is not gaining any additional capabilities.

482 Principle #3: Insofar as principles #1 and #2 are supported, fewer capabilities are
483 better than more.

484 When it makes sense to do so, and identical or nearly identical security require-
485 ments exist, a single capability should be defined for all those security require-
486 ments instead of a separate capability for each individual security requirement.

487 This principle was defined primarily to support ease of use and ease of adminis-
488 tration. If each individual security requirement in an implementation had a
489 unique capability, several hundred capabilities would be required, a management
490 nightmare that would be prone to misunderstanding, confusion and error. If a
491 specific security requirement is especially critical or sensitive, however, it was
492 generally agreed that it should be assigned a unique capability in order to assure
493 positive control over which processes/programs are exempted from the require-
494 ment.

495 Determining the Capability Set

496 Once the above general principles were agreed to, the group turned to the existing
497 and draft POSIX documents to begin the process of actually developing the set of
498 capabilities included in this standard.

499 The set of capabilities defined in this document is not intended to be all-inclusive.
500 Implementations may (and probably should) define additional capabilities to sup-
501 port the operation and maintenance of their systems. Finally, it should be

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

318 B Revisions to Rationale and Notes

502 emphasized that the development of a capability set is not a cookbook process—
503 implementors must consider their own system security requirements and the
504 design of their own systems when determining what capabilities they will sup-
505 port. Our requirement was to develop a minimum set of capabilities we deter-
506 mined necessary to support conforming POSIX applications.

507 Step one in the process was to develop a list of security requirements from the
508 POSIX.1, and POSIX.2 documents. This involved searching through the descrip-
509 tions of the functions and utilities looking for the phrase ‘‘appropriate privilege’’ c
510 and also looking for text that implied a security requirement that was not directly
511 stated.

512 Once we had developed the list of security requirements, or ‘‘checks’’, we grouped
513 sets of identical or nearly identical requirements together, and developed a
514 descriptive name for each individual or group of requirements that remained.
515 When grouping requirements, each case was discussed to ensure that it really did
516 belong to the group, and it was not uncommon for a decision to be re-made as the
517 list developed and additional considerations were brought up.

518 The last step in the process was to review the entire list. Capabilities were
519 deleted or combined with another capability when it was deemed appropriate to
520 do so with respect to the third principle in B.25.4.1

521 B.25.4.2 Rationale for DAC Capability Specification

522 The DAC group defines the extensions to POSIX.6 for a finer granularity of discre-
523 tionary access control beyond POSIX.1. For systems with {_POSIX_CAP} −
524 configured, it is necessary to define the policy override capabilities.

525 The DAC group initially considered separating DAC overrides into 4 distinct
526 capabilities. These were:

527 g CAP_DAC_READ

528 g CAP_DAC_WRITE

529 g CAP_DAC_SEARCH

530 g CAP_DAC_EXECUTE.

531 The CAP_DAC_READ and CAP_DAC_WRITE separation was considered neces-
532 sary for providing read-only access for a wide range of applications that have no
533 need to write to the objects they are examining. The CAP_DAC_SEARCH and
534 CAP_DAC_EXECUTE capabilities were suggested because it was not necessarily
535 appropriate to group these abilities with the CAP_DAC_READ and
536 CAP_DAC_WRITE capabilities. Also, specification of four separate capabilities
537 maps one-to-one with the existing POSIX.1 features.

538 The group also considered a single CAP_DAC_OVERRIDE capability, but this
539 granularity was considered insufficient for the following reasons:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 319

540 g Demonstrated commercial need on other operating systems to support
541 separate CAP_DAC_READ and CAP_DAC_WRITE overrides based on func-
542 tional requirements. For example, a backup program requires the ability to
543 read all file objects on the system but only requires the ability to write to
544 the backup device. Additionally, this separation provided programmatic
545 support for administrative roles which allow for protection from inadver-
546 tent modification of system critical objects.

547 g Worked examples of trusted systems evaluated at class B2 or higher
548 against the TCSEC on which similar mechanisms were required to meet
549 the System Architecture requirement.

550 Because the specification of four separate capabilities seemed to be unnecessary,
551 and the specification of a single capability is not sufficient to support commercial
552 requirements, we decided to specify three capabilities and permit implementa- c
553 tions to add additional capabilities if appropriate.

554 In fact, an analysis of the requirements determined that these three capabilities c
555 are sufficient to support the principle of least privilege as well as the anticipated
556 commercial demand. Note, however, the specification provides support for imple-
557 mentation defined capabilities where deemed necessary.

558 The consensus was that applications that required CAP_DAC_READ override
559 would also require CAP_DAC_SEARCH override. Therefore these two capabili-
560 ties were combined. −

561 B.25.4.3 Rationale for MAC Capability Specification

562 A MAC policy differs from a DAC policy in that an untrusted process or user does
563 not participate in establishing the access criteria. Rather, the system is responsi-
564 ble for enforcing the policy established by the security officer. As such, the MAC
565 policy can be considered to impose a higher degree of assurance on the protection
566 of an object compared to DAC. Therefore, MAC policy override capabilities must
567 be carefully considered.

568 The MAC group has established a set of policy overrides that are designed to sup-
569 port sufficient granularity of control to meet the needs of current security stan-
570 dards as well as to meet the needs of future trusted applications, such as data-
571 bases, multi-level mailers, etc.

572 CAP_MAC_UPGRADE and CAP_MAC_DOWNGRADE

573 The MAC group originally considered a single MAC override capability to cover
574 both the upgrade and downgrade cases for manipulating object labels. Although
575 this level of granularity meets the needs of the current TCSEC, more recent secu-
576 rity criteria, such as the ’91 Compartmented Mode Workstation Evaluation Cri-
577 teria do require separation of the MAC override capabilities. In addition, the
578 separation of the upgrade and downgrade functions is a common operational c
579 requirement. Supporting distinct capabilities is a logical extension of this opera-
580 tional requirement.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

320 B Revisions to Rationale and Notes

581 CAP_MAC_LOCK

582 At one time during the writing of this standard, the standard required that a pro-
583 cess have MAC write access to a file at the time of a lock operation, or have
584 CAP_MAC_LOCK enabled. These protections were necessary because the set of
585 locks associated with a file are considered to be an object. More specifically,
586 because the data structure which defines the lock on a file can be directly written
587 by processes (by setting locks) and can be directly read by processes (by querying
588 locks), this data structure was deemed a communication channel that must be
589 subject to MAC constraints.

590 The straightforward application of MAC policy to locks requires that a process
591 have MAC write access to the file prior to setting locks. In a system with only
592 CAP_MAC_WRITE, a process must be trusted to use the override capability
593 appropriately. It can be argued that processes that need to use locks should be
594 trusted enough to use the MAC write override capabilities for this purpose. This
595 approach also has the added feature of minimizing the number capabilities neces-
596 sary for the MAC policy.

597 However, the use of CAP_MAC_WRITE to bypass this policy constraint was con-
598 sidered non intuitive and a violation of the principle of least privilege. For exam-
599 ple, a process merely wishing to set a read lock on a lower level file simply to read
600 the file, e.g., a password file, would then need to be granted the MAC write capa-
601 bility, despite having no need to write data to the lower level file. Thus in cases
602 such as these, which in actual implementations are likely to be frequent, not only
603 is a powerful capability being used to cover a relatively innocuous activity, but
604 also the use of a write capability to effectively perform a read is confusing. For
605 this reason CAP_MAC_LOCK was originally adopted.

606 Based on significant ballot objections, this capability was removed and the stan-
607 dard was made mute on the subject of how an implementation handles the chan-
608 nel created by fcntl and reading locks.

609 CAP_MAC_READ and CAP_MAC_WRITE

610 While the TCSEC does not require separation of the MAC override capability into
611 distinct READ and WRITE capabilities, other security specifications do. In addi-
612 tion MAC is a system enforced policy rather than a discretionary policy, requiring
613 that applications which need only to read an object also have the power to write
614 the object was considered an unwarranted risk. Separation of MAC_READ and
615 MAC_WRITE overrides will encourage application developers to be cautious with
616 their use.

617 CAP_MAC_RELABEL_SUBJ

618 The ability of a subject to change its own MAC label is controlled by the
619 CAP_MAC_RELABEL_SUBJ capability. This capability is intended for use by
620 trusted subjects which have the need to modify their label based on some (possi-
621 bly external) criteria. For example, a trusted server which may need to reset its
622 MAC level prior to executing functions on behalf of a client request. Unlike
623 objects, which tend to have a static label, subjects would need a dynamic label

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 321

624 therefore a single capability is more appropriate for subjects.

625 B.25.4.4 Rationale for Information Labeling Capability Specification

626 CAP_INF_NOFLOAT_SUBJ and CAP_INF_NOFLOAT_OBJ

627 These two capabilities are the override capabilities for the Information Label Pol-
628 icy. The INF_NOFLOAT_OBJ capability is necessary to support programs which
629 need to write a shared single file at many information levels. An example of this
630 is the /etc/utmp file which the llooggiinn program writes. Similarly, there are
631 processes which may not wish to allow their information label to float. An exam-
632 ple of this would be a server process which must fork off children to perform work
633 in response to a specific request. The INF_NOFLOAT_SUBJ supports these types
634 of processes.

635 CAP_INF_RELABEL_OBJ and CAP_INF_RELABEL_SUBJ

636 These capabilities allow processes to explicitly set labels on subjects and objects.
637 As information labels are not an access control policy separate overrides for read-
638 ing and writing object labels are unnecessary. Rather a single capability is
639 sufficient for applications which need to manipulate information labels on objects.

640 B.25.5 New Capability Functions

641 B.25.5.1 Function Naming Scheme

642 In order to provide for consistency across the sections of this document, a naming
643 scheme for all named entities was adopted. Functions are named with a subsys-
644 tem identifier—cap_, first, followed by a short name that identifies the type of
645 operation the function performs, then a short name that identifies the data the
646 function operates on. While this scheme generates names that are somewhat
647 longer than are generally customary, it is generally evident from the name of the
648 function what its purpose is and we found it easier to remember them. c

649 B.25.5.2 Allocate, Duplicate, and Release Storage for Capability State c

650 The cap_init() function is necessary to create a new object to hold capability attri-−
651 butes. We did not desire to specify the contents and storage requirements of this
652 object in order to permit as many differing implementations as possible. Having
653 provided an allocation function, we need also to provide a free function, cap_free(), c
654 so that an implementor can release memory and structures associated with a pro-
655 cess capability data object. In order to permit the representation to be copied, we
656 defined a duplication function, cap_dup (). c

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

322 B Revisions to Rationale and Notes

657 B.25.5.3 Initialize a Process Capability Data Object

658 The cap_clear() function permits a program to set the representation of the capa- −
659 bility state to a known secure state. This has the advantage that a conforming
660 program need not know all the capabilities defined in the implementation to set
661 this ‘‘secure’’ state.

662 B.25.5.4 Read and Write the Capability Flags of a Process

663 The cap_set_proc() and cap_get_proc() functions permit a program to obtain and
664 set the capability state of a process atomically. The atomicity of these functions is
665 significant—the state of a process could possibly change between multiple invoca-
666 tions of a function that deals with only one capability flag at a time.

667 The cap_set_proc() function is an especially security-critical function in any sys-
668 tem that implements a capability mechanism, as it is here that the standard
669 requires that the security policy regarding the manipulation of process capability
670 state be applied. The requirement that the capability be permitted to the running
671 program provides the primary means to limit what capabilities any one program
672 can propagate through the system. c

673 B.25.5.5 Get and Set Values of Capability Flags c

674 The cap_get_flag(), and cap_set_flag() functions provide the standard interface forc
675 getting and setting the values of the capability flags. Portable trusted applica- −
676 tions will need to manipulate the process capability state on different implemen-
677 tations so that they can perform "time bounding of capabilities" and set what
678 capabilities they want to pass on to programs that they exec. The cap_get_flag() c
679 function permits a conforming application to determine the state of a capability −
680 without actually attempting to use it. Without a get function, conforming applica-
681 tions could generate numerous unnecessary audit messages attempting to use −
682 capabilities not available to the current invocation of the program. The c
683 cap_set_flag() is the only means by which a conforming application can alter the
684 state of a specific capability. c

685 B.25.5.6 Exporting Capability Data c

686 The cap_to_text() and cap_from_text() functions translate process capability c
687 states between human-readable text and capability data object representations. −
688 These functions are necessary to provide a portable means of transferring capabil-−
689 ity information between systems. Implementations may also use these functions
690 to translate between text and data objects in order to support capability manipu- −
691 lation and display. One possible use is the display of available capabilities using
692 a trusted shell utility, another is the transport of capability information across a
693 network in a form recognizable to all machines.

694 There are other valid reasons to want to store process capability data objects—for
695 instance, the process capability state could be an important field in certain audit
696 records. Textual data, while easily readable, is not compact. The internal

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 323

697 representation of capability state is not guaranteed by this standard to be valid
698 outside of the context in which it exists. For instance, it may contain pointers to
699 strings spread throughout the system-managed space. This was intentional to
700 permit implementors the maximum possible freedom. Because of this, the c
701 cap_copy_ext() and cap_copy_int() functions are provided to convert the internal c
702 representation to and from a self-contained binary format that should be more
703 compact than the textual version.

704 B.25.5.7 Manipulating File Capability Flags

705 When we developed the set of functions to manipulate file capability flags, we had
706 several goals in mind. First, we wanted the assignment of capability attributes to
707 files to be atomic—there is a reasonable probability that a program file could be
708 executed by another process in the middle of a sequence of non-atomic file attri-
709 bute operations. Second, we wanted to continue to hide the actual representation
710 of capability attributes in the standard and permit a wide variety of implementa-
711 tions. We feel that the interfaces defined support an implementation where the
712 file capability attributes are stored in the files’ inode AND an implementation
713 where the files’ capability attributes are stored in a central database maintained
714 by a capability server. Finally, the group as a whole decided to specify procedural
715 interfaces wherever possible instead of data-oriented interfaces in order to better
716 support extensibility and flexibility in the future.

717 We did not resolve the atomicity problem to the extent we desired, but felt that
718 the correct solution was really outside of our scope. POSIX has no mandatory file
719 locking mechanism, hence, there exists the possibility that file attributes have
720 been altered by a second process between the time the first process has read them
721 and the time it attempts to set them. This is a general problem not limited to file
722 capability state, but includes all file attributes and data. Instead of solving the
723 general problem, we have specified functions that read and write the entire capa-
724 bility state, rather than permit programs direct access to individual capability
725 flags and attributes. This should minimize, but not eliminate, this problem. −

726 B.25.5.8 Read and Write the Capability State of a File

727 The cap_get_file() and cap_set_file() functions permit a program to obtain and set
728 the capability state of a file atomically. The atomicity of these functions is
729 significant—the state of a file could change between multiple invocations of a
730 function that deals with only one capability flag at a time. In addition, it keeps
731 device I/O required by the capability function set to these two functions—all the
732 rest can (but are not required to) be memory only operations.

733 The cap_set_file() function is a security-critical function in any system that imple-
734 ments a capability mechanism. We therefore imposed a number of restrictions on
735 the ability of programs to use this function. The requirement that the capability
736 be permitted to the running program provides the means to limit what capabili-
737 ties any one program can propagate through the system. The requirement to
738 have the CAP_SETFCAP capability effective provides the means to restrict pro-
739 grams that are permitted a capability for other purposes from granting it to

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

324 B Revisions to Rationale and Notes

740 programs that the system administrator has not specifically approved. The
741 remaining restriction is that the UID associated with the process be equal to the
742 owner of the file or that the process have the CAP_FOWNER capability
743 effective—this is a standard restriction for all operations dealing with file attri-
744 butes. The combination of restrictions above are the minimum necessary to
745 prevent the unauthorized propagation of capabilities. −

746 Many times a file is already opened when it is being assigned attributes. Many
747 programs use file-descriptor based functions in order to avoid the performance
748 penalty incurred to perform repeated pathname resolutions. To accommodate
749 this class of applications, we have provided the cap_set_fd() and cap_get_fd()
750 functions to set and get the capability state of an opened file. +

751 B.25.5.9 Error Return Values +

752 If the symbol {_POSIX_CAP} is defined, then the implementation supports the +
753 capability option and is required to support the capability functions as described +
754 in this standard. If the symbol {_POSIX_CAP} is not defined, then the implemen- +
755 tation does not claim conformance to the capability option and the results of an +
756 application calling any of the capability functions are not specified within this +
757 standard. An alternative is for the capability functions to specify that the error +
758 return code [ENOSYS] be returned by the functions if the capability option is not +
759 supported. However, in order to remain compliant with the policies of POSIX.1, +
760 this standard cannot specify any requirements for implementations that do not +
761 support the option.

762 B.25.6 Examples of Capability Inheritance and Assignment

763 B.25.6.1 A User-based Capability Model

764 The inheritance mechanism provides a method of controlling a process’ capabili-
765 ties based upon the context in which the process is executed. An important part
766 of the context is the identity of the user invoking the process. It is possible to
767 associate capabilities with a user profile which defines a subset of the capabilities
768 available to the trusted programs that a user may execute. Trusted programs
769 may therefore have greater or lesser abilities depending on which user executes
770 them. These user capabilities constitute the inheritable capability set on session
771 initialization. A subset of the user capabilities could be selected by utility options
772 to support user roles. The login shell will probably be an untrusted shell, and in
773 itself be incapable of using capability. −

774 It is not possible for a user to alter the set of inheritable capabilities within an
775 untrusted shell or program. A user can only modify the set of inheritable capabili-
776 ties by executing a program that gains capabilities either by having effective capa- c
777 bilities or by having permitted capabilities that have already been set inheritable. c
778 Programs that have effective capabilities may validate a user’s authorization to c
779 use those capabilities, depending on whether or not the execution of the program
780 could have an adverse impact on the security of the system. This mechanism per-
781 mits the emulation of a fully privileged user by executing a program that has all

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 325

782 capabilities effective. c

783 B.25.6.2 A Program-based Capability Model

784 Instead of forcing every trusted application to perform user authorization checks,
785 it is possible to create a single program that does so, and sets the inheritable flag
786 of all capabilities authorized to a user. Program files in this style of implementa-
787 tion would have the permitted flags of all the capabilities they require for all their c
788 possible functions set. When executed, the program would receive only those
789 capabilities actually authorized to the user, not necessarily the full set that they
790 are capable of using. It is thus possible to provide a trusted shell or user interface
791 program that will assign additional capabilities or disable existing capabilities
792 associated with a user based upon the specific functions to be performed and then
793 invoke one or more programs that are relieved of having to perform a user author-
794 ization check.

795 It is not possible for an executing program to acquire additional capability for
796 itself through the execution of a more trusted program, i.e., through exec’ing a −
797 more trusted executable file, but only to create a new process image that is more
798 trusted than it is. Since the new process image has, by definition, replaced the
799 old process image, attempts to garner additional capability in this manner will
800 fail.

801 B.25.7 Capability Worked Examples

802 This section illustrates the POSIX.1e Capability mechanism by providing both
803 utility and function examples. Included are examples using the POSIX.2 chown
804 utility and POSIX.1 chown() function, examples of capability unaware programs,
805 and an illustration of how the capability mechanism defined in this standard can
806 be used to execute shell scripts.

807 B.25.7.1 CHOWN()

808 To change the user ID of a file, the chown() function imposes the following restric-
809 tions:

810 g A process shall possess an effective user ID equal to the user ID of the file, or its
811 effective capability set shall include the CAP_FOWNER capability.

812 g If the {_POSIX_CHOWN_RESTRICTED} option is in effect for the file, the pro-
813 cess’ effective capability set shall include the CAP_CHOWN capability. Thus, to
814 change the user ID of the file, both the CAP_CHOWN and CAP_FOWNER capa-
815 bilities may be required in the process’ effective capability set. If the system
816 implements the MAC option of this standard, the process may also require the
817 CAP_MAC_WRITE capability in the process’ effective capability set.

818 g If the file is a regular file, the set-user-ID (S_ISUID) and set-group-ID (S_ISGID)
819 bits of the file mode shall be cleared upon successful return from chown(), unless
820 the call is made by a process whose effective capability set includes the
821 CAP_FSETID capability, in which case, it is implementation defined whether

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

326 B Revisions to Rationale and Notes

822 those bits are altered.

823 In examples 1 through 3 below, the chown() executable file is assigned, via the
824 cap_set_file() function, an empty effective set, an inheritable capability set that c
825 includes:

826 g CAP_FOWNER

827 g CAP_CHOWN

828 g CAP_FSETID
829 and a permitted capability set with flags set to potentially allow bypassing of DACc
830 and MAC restrictions imposed by the chown() function (See 25.2 for capability
831 descriptions.)

832 g CAP_DAC_READ_SEARCH

833 g CAP_MAC_READ

834 g CAP_MAC_WRITE

835 EXAMPLE 1

836 If the chown() utility is executed by a process that possesses all the above capabil-
837 ities in its inheritable capability set, then all of these capabilities are included in
838 the resulting process’s permitted capability set. When these capabilities are made
839 effective, via the cap_set_proc() function, the process may change the user ID of
840 the specified file without regard for mandatory and discretionary access restric-
841 tions, file ownership restrictions, or {_POSIX_CHOWN_RESTRICTED} restric-
842 tions. Alteration of the set-user-ID and set-group-ID bits of the file mode is imple-
843 mentation defined upon successful return from chown().

844 EXAMPLE 2

845 If the chown() utility is executed by a process that possesses no capabilities in its
846 inheritable capability set, then the resulting process’s permitted capability set c
847 will not contain the three required capabilities. Therefore, the resulting process
848 shall not possess appropriate capabilities to override any of the chown() restric-
849 tions described above.

850 EXAMPLE 3

851 If the chown() utility is executed by a process that possesses only the
852 CAP_CHOWN and CAP_FOWNER capabilities in its inheritable capability set,
853 then the resulting process will possess the CAP_CHOWN and CAP_FOWNER
854 capabilities in its permitted capability set. When these capabilities are made
855 effective, via the cap_set_proc() function, the process may change the user ID of
856 the file, regardless of the file’s initial user ID, or value of
857 {_POSIX_CHOWN_RESTRICTED}. However, this process must satisfy all man-
858 datory and discretionary access requirements, and the set-user-ID and set-group-
859 ID bits of the file mode shall be cleared upon successful return from chown().

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 327

860 EXAMPLE 4

861 In this example, the file capabilities are initialized as described for examples 1
862 through 3, above, except that the CAP_FSETID capability is removed from the
863 chown executable file’s inheritable capability set, and is assigned to the file’s per- c
864 mitted capability set. The process resulting from execution of the chown utility
865 will possess the CAP_FSETID capability as part of its permitted capability set,
866 regardless of the contents of the exec’ing process’s inheritable capability set.
867 When the CAP_FSETID capability is made effective, via the cap_set_proc() func-
868 tion, alteration of the set-user-ID and set-group-ID bits of the file mode is imple-
869 mentation defined upon successful return from chown().

870 B.25.7.2 Capability Unaware Programs

871 In this section, we examine the behavior of capability unaware programs. This
872 specification provides support for backwards compatibility of binary executables
873 that depend on traditional UNIX set-user-ID behavior for proper operation. This
874 specification also provides a mechanism for overriding capability on a per execut-
875 able basis. Additionally, the permitted flag provides for a finer granularity of con- c
876 trol to enable capabilities based on the inheritable flag of the exec’ing process. For
877 all capability unaware programs that require capability, the program file’s effec- c
878 tive flag must be set. This is the only mechanism for enabling capabilities in the
879 effective capability set upon execution.

880 EXAMPLE 1

881 Suppose an old version of the mmaaiillxx program requires discretionary and manda-
882 tory override capabilities to operate correctly on a particular implementation.
883 These capabilities can be enabled via the effective capability set regardless of the c
884 exec’ing process’ inheritable capability set. This allows mmaaiillxx to operate on a sys-
885 tem supporting {_POSIX_CAP} without modifying the mmaaiillxx source code.

886 If an administrator desires to control which capabilities become effective based on
887 the exec’ing program’s inheritable capabilities, then the permitted flag is used. c
888 The inheritable flag is ANDed with the permitted flag and this result is included c
889 in the new process’ effective flag.

890 EXAMPLE 2

891 The ggrreepp program may have the CAP_DAC_READ_SEARCH capability enabled
892 in the permitted capability set, which would then permit the invoker to access all c
893 files if and only if the CAP_DAC_READ_SEARCH inheritable capability was
894 enabled in the exec’ing process. This would permit a trusted process to exec the
895 ggrreepp program to locate a phrase in a file tree it normally would not have read
896 access to.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

328 B Revisions to Rationale and Notes

897 B.25.7.3 Shell Script Execution

898 A shell script can be executed with capability using the capability mechanism
899 defined in this standard. For example, a program stub can be created that can be
900 invoked from the login shell that sets the inheritable capability attributes for
901 those capabilities needed for shell script execution. The system() function can
902 then be invoked to execute the shell script file. The capabilities set in the inherit-
903 able capability set are then passed through the shell executed by the system()
904 function to the individual utilities constituting the shell script. The capabilities
905 available to each utility are then determined by the exec() function as described in
906 the capability mechanism.

907 B.25.7.4 Textual Representation of Capability States

908 The purpose of this clause is to specify a single, portable format for representing a
909 capability state. This textual representation is intended for use by the
910 cap_to_text() function and the ggeettccaapp command to represent the state of an
911 existing capability state object, and by the cap_from_text() function and the
912 sseettccaapp command to translate a textual representation of a capability state into
913 its internal form.

914 Examples of valid textual capability state specifications include:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.25 Capability 329

915 No flags for any capabilities defined in the implementation are set:

916 "all="

917 "="

918 "CAP_CHOWN=
919 CAP_DAC_OVERRIDE=
920 ...
921 <all remaining POSIX-defined capabilities>
922 <implementation-defined capability>=
923 <implementation-defined capability>=
924 ...
925 <all remaining implementation-defined capabilities>
926 "

927 Only the permitted flags for CAP_KILL, CAP_CHOWN, and CAP_DAC_OVERRIDE
928 are set. The remaining flags for the remaining capabilities are all
929 cleared:

930 "CAP_KILL,CAP_CHOWN,CAP_DAC_OVERRIDE=p"
931
932 "all=
933 CAP_KILL=p CAP_CHOWN=+p-ei
934 CAP_DAC_OVERRIDE=p"

935 The inheritable flag for every capability defined by the implementation
936 is set except for the CAP_MAC_∗ capabilities. The effective flag is set
937 for the CAP_DAC_OVERRIDE capability:

938 "all=i
939 CAP_MAC_READ,CAP_MAC_WRITE,CAP_MAC_DOWNGRADE,CAP_MAC_LOCK
940 CAP_DAC_OVERRIDE+e"
941

942 In order to promote the portability of capability state information between imple-
943 mentations, one representation must be specified in this standard. We chose to
944 standardize the textual representation as this promotes not only application por-
945 tability but user portability as well.

946 We considered an alternative representation that was flag `set´ oriented, i.e.,
947 something that would look like:

948 i=CAP_KILL,CAP_MAC_WRITE
949 p=all
950 ...

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

330 B Revisions to Rationale and Notes

951 however, this was rejected as implying a specific implementation (e.g., implemen-
952 tation of capability data objects as multiple set structures) and potentially being
953 less compact (a privilege having all flags set must be named separately for each
954 flag.) In addition, the requirement in such a representation to name a capability
955 multiple times greatly increases the chances for human error when attempting to
956 specify or interpret the representation.

957 In general, it is felt that this specification provides implementations with a wide
958 degree of flexibility in how they can represent capability states, while ensuring
959 that they can correctly interpret such states created on other interpretations with
960 a minimum of difficulty and implementation complexity. The same state can be
961 represented in a compact manner or a lengthy manner, depending on the purpose
962 for which it is intended.

1 B.26 Mandatory Access Control

2 B.26.1 Goals

3 The primary goal of adding support for a Mandatory Access Control (MAC)
4 mechanism in the POSIX.1 specification is to provide interfaces to mandatory
5 security policies. A mandatory security policy is a system-enforced access control
6 policy that is outside the control of unprivileged users. Additional goals included
7 are to:

8 (1) address mandatory access controls that support appropriate, widely
9 recognized criteria, while providing as much flexibility for

10 implementation-specific MAC policies as is practical;

11 (2) define MAC interfaces for portable, trusted applications and specify MAC
12 restrictions on all other POSIX.1 functions;

13 (3) preserve the provision for POSIX.1 conforming applications to impose

14 (4) preserve 100% compatibility to the base POSIX.1 functionality among
15 subjects and objects operating under ‘‘single label conditions’’, i.e., all
16 subjects and objects have an equivalent MAC label;

17 (5) add no new MAC-specific error messages to existing POSIX.1 and other
18 interface standards, as doing so could interfere with the desire to avoid
19 new covert channels.

20 The mandatory access control (MAC) interfaces are intended to be compatible
21 with the mandatory access requirements of a number of criteria, particularly com-
22 patibility with the U.S. TCSEC levels B1-B3, the European ITSEC functionality
23 levels FB1/FB3, and the U.S. CMW requirements for MAC. It should be noted
24 that compatibility with these criteria extends only to the functionality defined in
25 them, and not to the assurances they may require. Additionally, the interfaces
26 were designed to conform with the requirements for adding ‘‘extended security
27 controls’’ to POSIX-conforming systems, as stated in POSIX.1, section 2.3.1.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 331

28 There is a recognition that the underlying mechanisms involved can be imple-
29 mented in a number of different ways that still fulfill the POSIX_MAC require-
30 ments. Another consideration is the expectation that POSIX.1 conforming sys-
31 tems will wish to extend the functionality defined in this standard to meet partic-
32 ular, specialized needs. For these reasons, flexibility in the POSIX_MAC require-
33 ments while still conforming to the criteria mentioned above, is an important
34 objective.

35 By defining POSIX.1e interfaces for MAC, it is possible to develop trusted applica-
36 tions which are portable across POSIX_MAC-compliant implementations. Identi-
37 fying MAC restrictions for other POSIX.1e functions ensures that application
38 developers are made aware of possible changes required for their applications to
39 function in a POSIX_MAC-compliant environment.

40 MAC is intended to be complete, covering all means of information transmission.
41 Hence for many interfaces (such as stat()) MAC read access is required even
42 where ordinary ACL read access is not required in POSIX. This completeness
43 should even cover areas which are not ordinarily regarded as information
44 transmission channels (that is, ‘‘covert channels.’’) A complete analysis of covert
45 channels available through the POSIX interfaces is beyond the scope of this docu-
46 ment. Instead, only those cases which have policy implications are discussed
47 here, although we have attempted to avoid introduction of any covert channels in
48 the new interfaces defined by this standard. Hence additional controls needed on
49 reading FIFOs are discussed, but means of controlling the covert channel pro-
50 vided by the process ID returned by fork() are not.

51 No new error codes for existing POSIX.1 interfaces are introduced to minimize the
52 confusion for existing applications. While this confusion cannot be entirely elim-
53 inated (in particular because existing error codes can now be returned in situa-
54 tions which would not arise without MAC), avoiding new error values at least
55 ensures existing applications will be able to report errors.

56 B.26.2 Scope

57 Section 26 defines and discusses the overall MAC policy and refinements of this
58 overall restriction for the two major current policy areas: files and processes.

59 It should be noted that the policies in section 26 do not constitute a formal secu-
60 rity policy model with proven assertions. It is, however, the minimal set of man-
61 datory access restrictions that shall be defined, and serves as a basis for both the
62 trusted interface, and the implementation-defined security policy model.

63 B.26.2.1 Downgrade and Upgrade

64 The definitions of downgrade and upgrade are the technically precise ones. They
65 may not be intuitive because downgrade includes incomparable labels. For exam-
66 ple, changing Secret:A to Top_Secret:B is a downgrade.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

332 B Revisions to Rationale and Notes

67 B.26.2.2 Concepts Not Included

68 Several concepts that will commonly be implemented by conforming systems have
69 not been treated by this document, many because they have no basis in the
70 POSIX standards upon which this document is currently based. These include:

71 Process Clearance: There were discussions that each process be given, in addi-
72 tion to its MAC label, a second label called its ‘‘clearance.’’
73 The clearance would serve as an upper bound on certain
74 MAC operations. For example, if the process could request
75 to raise the MAC label of an object, the clearance might
76 limit the label to which it could be raised. However, because
77 there have been no concrete proposals for the process clear-
78 ance (which should include expected circumstances under
79 which it would be used), and since clearance is normally
80 associated with a user, and users are not included in the
81 base POSIX.1 standard, process clearance is not included in
82 the current MAC proposal.

83 Range Restrictions: These include various sorts of system-wide, per-file sys-
84 tem, per-user, and device MAC range restrictions.

85 The label testing function, mac_valid() is intended to help
86 provide an interface to at least some of these restrictions in
87 a more portable manner. For example, the restrictions may
88 not be a simple range but a more complicated restriction.

89 System High/Low: A potential function that was rejected was one to return the
90 current ‘‘system high’’ and ‘‘system low’’ labels. Some imple-
91 mentations may not have a simple high and low, but rather
92 a more complex (flexible) notion of ‘‘system high and low,’’
93 for example, a set of high/low ranges.

94 Devices: Access to devices through device special files is not treated
95 in this document. Often implementations may have special
96 device access rules based on device-specific considerations.
97 Two common examples of such special device access rules
98 are device ‘‘ranges’’ (sets of allowed MAC labels for accessing
99 certain devices), and ‘‘public,’’ generally-accessible devices,

100 such as //ddeevv//nnuullll and //ddeevv//ttttyy. Since such device-
101 specific considerations have no basis in POSIX.1, devices as
102 a whole are not addressed in this document.

103 File Systems: Mounted file systems are not included.

104 Trusted User Commands:
105 Commands for both administrators and trusted or partially
106 trusted users have not been included.

107 Label Translation: POSIX.1 does not address networked systems. Thus, the
108 issue of translating MAC labels into a portable form is not
109 addressed in this standard.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 333

110 Process Label Functions:
111 The functions provided as part of this standard to retrieve or
112 set the MAC label associated with a process are limited to
113 the requesting process. That is, no interface is provided
114 whereby a process may specify another process (for example,
115 using a process id) to be the target of the mac_set_proc() or
116 mac_get_proc() functions. Such mechanisms have been
117 omitted in order to be consistent with the POSIX.1 standard
118 which provides no facilities for processes to manipulate, or
119 be cognizant of, other processes’ state information. Note,
120 however, that conforming implementations may choose to
121 provide such functions.

122 B.26.3 File Object Model

123 An important part of mandatory access control for files is the seemingly simple
124 assumption that the file attributes and data comprise a logically single data con-
125 tainer to which the file MAC label is applied—the ‘‘file object.’’ Virtually all MAC
126 function restrictions arise from applying the following two basic policy rules
127 under this assumption:

128 (FP.1) The MAC label of a file must be dominated by the MAC label of a pro-
129 cess for the process to read the data or attributes of a file, and

130 (FP.2) The MAC label of a file must dominate the MAC label of a process for
131 the process to write the data or attributes of a file. (Allowed restric-
132 tions on this rule are discussed following in Direct Write-up).

133 For example, linking to a file involves altering the link count of that file, and
134 hence MAC write access to the file is required (as well as appropriate restrictions
135 on the directory in which the link is created). This is discussed below in the link()
136 example.

137 MAC restrictions for virtually all file-related functions can be straightforwardly
138 derived from these basic policy assumptions. (See the Policy section for a com-
139 plete list.)

140 Two examples:

141 mkdir()

142 The mkdir() function is used to create a directory, D. Apart from actually
143 creating the directory itself, a link name must be placed in the specified
144 parent directory, PD. Application of the FP.1 and FP.2 yields the MAC res-
145 trictions:

146 (1) The process shall have search access to PD. (Search access is an out-
147 growth of FP.1.)

148 (2) In order to add the link name, the process shall have MAC write access
149 to PD, i.e., the MAC label of the process shall be dominated by that of the
150 directory (from FP.2).

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

334 B Revisions to Rationale and Notes

151 D is created with the MAC label of the process (FP.4), and hence it is correct
152 to leave the file open to the process.

153 Note that the calls creat(), mkfifo(), and open-for-create are other functions
154 that create files and will have these same MAC restrictions.

155 link()

156 The link() function is a little more complicated. A new link is to be created in
157 a directory D to an existing file F. This involves writing the new link name to
158 F into D. Hence the following MAC rules are applied:

159 (1) The process shall have search access to the directory D.

160 (2) The process shall also have search access to the file F, because the func-
161 tion is implicitly testing for the existence of F.

162 (3) The process shall have MAC write access to D, i.e., under FP.2 the MAC
163 label of the process shall be dominated by that of D.

164 In making a new link to F, the link count of F must be increased. Hence,
165 the process is implicitly writing into F, and:

166 (4) The process shall have MAC write access to F, under FP.2.

167 B.26.4 Direct Write-up

168 Originally, FP.2 dictated that a process can only open files for writing whose label
169 equals that of the process (‘‘write-at-label’’), but that, a POSIX.1e conforming
170 implementation could allow write access under relaxed conditions, in particular,
171 when the MAC label of the file properly dominates that of the process. Because
172 POSIX.1 mandates that additional conditions can only be more restrictive, this
173 was changed to write-up, with write-equal allowed as part of a fully conforming
174 implementation.

175 The usefulness of allowing open-for-write of higher-label files (‘‘direct write-up’’)
176 seemed too small given potential implementation difficulties. For this reason,
177 direct write-up was not required by the standard. However, direct write-up may
178 be a useful feature for the vendor willing to address its implementation problems,
179 and for this reason, along with the reason cited above, the change was made.

180 Implementations which implement direct write-up will need to consider the
181 impact on return codes and potential covert channels.

182 Note that the creator of a portable application cannot assume such relaxations are
183 present because they are not required by the standard. Write-at-label must
184 instead be assumed as the rule for MAC write.

185 In the following discussions, it is generally assumed that write-at-label is the
186 case.

187 The option of creating objects with MAC labels dominating that of the creating
188 process is allowed, but interfaces to do so are not provided. This facility would be
189 effected by the same set of concerns expressed with regard to direct write-up,

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 335

190 hence the more conservative approach. Furthermore, providing an interface for
191 creating an object with a MAC label begs the question of why we don’t provide a
192 mechanism for an ACL and a capability set.

193 B.26.5 Protection of Link Names

194 As discussed above, in POSIX.1 there really is no such thing as a ‘‘filename.’’ This
195 is true both logically and physically, i.e., no name is stored in the file itself.
196 Instead there are only link names to files that are both logically and physically
197 data items within the parent directory.

198 This proposal takes the most direct interpretation of the protection of link names
199 within a directory: the link names are simply considered data in the directory.
200 This means that the names are protected by the MAC label of the directory that
201 contains them, even when they indicate files or directories at other MAC labels.

202 A process could determine the link name and hence existence of objects at labels
203 not dominated by the process. However, this cannot be used as a covert channel
204 because the process that defined those names must have had write access to the
205 containing directory, which means that its label equals (or, in some implementa-
206 tions, was dominated by) the label of the directory. More precisely, the covert
207 channel ‘‘sender’’ that creates the link name must be equal to (or, in some imple-
208 mentations, dominated by) the MAC label of the directory, and the ‘‘reader’’ must
209 dominate that label. Hence, because information is at most going to a higher
210 MAC label there is no covert channel.

211 Since link names may be protected at a lower MAC label than the file to which
212 they point, the user must be careful to choose a name that is adequately protected
213 at the MAC label of the parent directory.

214 This interpretation is both natural and common for UNIX file systems and under-
215 scores that link (‘‘file’’) names are not a property of the file, but rather of a parent
216 directory.

217 One of the suggested alternatives is the so-called ‘‘name-hiding’’ model where
218 each link in a directory is considered an object labeled at the label of the file to
219 which it links. This alternative was rejected because it is more complex, and
220 doesn’t offer any real improvement over the alternative that was accepted. Access
221 to the link names in a directory must therefore be controlled on a per-link basis.

222 B.26.6 Pathname Search Access

223 Files are commonly referenced by a pathname, for example A/B/F. If the path-
224 name starts with the ‘‘/’’ character, then the pathname starts at the absolute root
225 of the file system. Otherwise it starts at the current working directory of the pro-
226 cess. Even pathnames that contain only one name, e.g., F, are still pathnames.
227 Each such reference requires an implicit reading of a sequence of directories, and
228 FP.1 must be applied to this process. This is called search access in this docu-
229 ment.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

336 B Revisions to Rationale and Notes

230 A pathname consists of a sequence of link names (A, B, and F in the previous
231 example) i.e., each name in the pathname is a link name contained in some direc-
232 tory. In other words, the name that most users commonly assume is ‘‘attached to’’
233 a file is actually the name of a link in a directory, where the link only points to
234 the actual file. There may be many such links with different names to a single
235 file.

236 In locating a file on behalf of the process, the system is in effect opening the
237 sequence of directories that contain the link names in the pathname, finding
238 (reading) the next link name, and proceeding to the next file or directory named
239 by that link. The following basic constraint is required under FP.1:

240 MAC Search Access

241 In order for the system to perform this implicit reading of the directories in
242 the pathname, the process is required to have MAC read access to each direc-
243 tory that contains a link name of the pathname. Specifically, the MAC label
244 of the process must dominate that of the directory. (Note that ACL execute
245 ‘‘x’’ permission is also required, as in standard POSIX.)

246 For relative pathnames, the current working directory (‘‘.’’) is considered the first,
247 implicit directory in the pathname and is checked first. For absolute pathnames,
248 the absolute root directory is checked first, and, because it is customarily at the
249 lowest MAC label on the system, search access will always proceed from absolute
250 root.

251 Note that the last element in the pathname is the final link name. Once this final
252 link name is read from the directory in which it resides, search access is con-
253 sidered complete. Hence, by definition the final target element (F in the current
254 example) is not itself checked for any MAC access during search access, although
255 it will certainly be checked in the context of specific operations.

256 Basically, MAC search access determines whether a process can detect the
257 existence of a file, specifically, whether the process can read a directory containing
258 a link to the file.

259 As a general rule, MAC search access is applied to all pathnames presented in a
260 function. If this succeeds, then other MAC checks follow.

261 B.26.7 Check-Access-on-Open Only

262 The MAC policies follow the standing POSIX.1 metaphor that access to the data
263 portion of a file object is checked only when access is requested and not for each
264 data read and write. Subsequently, access to the file is not revoked or changed in
265 mode until the process willingly closes the file.

266 With this form of access, it is important that the MAC label of a file object not be
267 altered if the alteration would allow information flow to a subject which would
268 have not occurred at the new label. This requirement was originally stated in a
269 FP.5, but this was removed when it was pointed out that FP.5 is really just say-
270 ing you can not violate FP.1 or FP.2.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 337

271 There are some conditions (which are rejected in this document) where the label
272 could technically be allowed to change:

273 — When the file references were write-only and the label was being raised. How-
274 ever, this seems a relatively rare case.

275 — When the system supported some type of access revocation or recalculation.

276 — Allow changing the label only when the requesting process is currently refer-
277 ring to the file.

278 — If all processes currently referencing the file were appropriately privileged,
279 then the label might be allowed to change. The danger here is that the privileged
280 processes may not be aware of the label change.

281 The application of FP.1 and FP.2 to the mac_set_file() and mac_set_fd() functions
282 takes the simple approach and make the handling implementation-defined as to
283 whether changing of the file label when there are open connections to the file,
284 (other than the calling process in the case of mac_set_fd()), are disallowed, even
285 when the processes are privileged, or whether revocation is performed.

286 B.26.8 Creating Upgraded Directories

287 An upgraded directory is one whose MAC label properly dominates that of its
288 parent directory.

289 While in general the operation of FP.2 and FP.4 do not allow unprivileged
290 processes to create files or directories at other than the process MAC level, some
291 means of creating multi-label file trees is necessary.

292 In particular, the ability to create upgraded directories gives a convenient means
293 for organizing a multi-label file tree appropriately, and need not violate any fun-
294 damental security constraints. Hence it is appropriate to provide unprivileged
295 processes with some means of doing so; though it has been chosen not to do so as
296 part of this standard.

297 B.26.9 Objects without MAC labels

298 This standard specifies that each file will always have a MAC label associated
299 with the file, but does not require each file to have its own unique MAC label.

300 Originally, the provided MAC functions allowed for returning [ENOSYS] if
301 {_POSIX_MAC} was defined and the specified file did not have its own MAC label.
302 This was subsequently changed because of objections to the overloading of
303 [ENOSYS] to return [ENOTSUP] for the cases where a file does not have its own
304 MAC label.

305 A pathconf() variable {_POSIX_MAC_PRESENT} is provided to allow applications
306 to determine if a file has its own MAC label. This standard does not specify the
307 specific situations where a file does not have its own MAC label. Examples of pos-
308 sible situations are: read only file systems; pre-existing file systems with
309 insufficient space to insert MAC labels; and certain devices such as /dev/null. The

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

338 B Revisions to Rationale and Notes

310 mac_get_file() and mac_get_fd() functions will always return a MAC label because
311 each file will always have a MAC label associated with the file. The mac_set_file()
312 and mac_set_fd() functions can return [ENOTSUP] if the specified file does not
313 have its own unique MAC label but shares the MAC label of a file system.

314 B.26.10 Error Return Values

315 The MAC functions specified in this standard may return one of several errors
316 depending on how the implementation has addressed MAC labeling.

317 If the symbol {_POSIX_MAC} is defined, then the implementation supports the +
318 MAC option and is required to support the MAC functions as described in this +
319 standard. If the symbol {_POSIX_MAC} is not defined, then the implementation +
320 does not claim conformance to the MAC option and the results of an application +
321 calling any of the MAC functions are not specified within this standard. An alter- +
322 native is for the MAC functions to specify that the error return code [ENOSYS] be+
323 returned by the functions if the MAC option is not supported. However, in order +
324 to remain compliant with the policies of POSIX.1, this standard cannot specify +
325 any requirements for implementations that do not support the option.

326 The error [ENOTSUP] shall be returned in those cases where the system supports
327 MAC but the particular operation cannot be applied because restrictions imposed
328 by the implementation. For example, if an application attempts to set the MAC
329 label on a file on a system where sysconf() indicates that an MAC is supported by
330 the system, but the value that pathconf() returns for {_POSIX_MAC_PRESENT}
331 for that file indicates that individual MAC labels are not supported on that file,
332 the application shall receive the [ENOTSUP] error. Therefore, if an application
333 attempts to set the MAC label on a file, it is the application’s responsibility to first
334 use pathconf() to determine whether the implementation supports MAC labels on
335 that file.

336 It should be noted that, in general, this standard attempts to avoid adding and
337 defining new errors. However, in the case of [ENOTSUP], the following points
338 were noted: First, the need exists to provide feedback to applications concerning
339 a new error condition. Second, while it is possible to use an existing error code in
340 such cases (for example, ENOSYS), the group felt that this would overload those
341 errors. P1003.1, when consulted, concurred with this view and agreed that the
342 creation of a new error code, in this case, was appropriate. Third, the error
343 [ENOTSUP] is also being used by P1003.4 for roughly the same reasons. There-
344 fore, the consensus of several POSIX working groups is that while adding new
345 errors is generally not recommended, that this case warrants the creation of a
346 new error and that the new error should be [ENOTSUP].

347 The [EINVAL] error is returned by functions when the MAC label specified in the
348 function call is syntactically incorrect or the MAC label is not permitted on the
349 system because implementation-defined restrictions, (e.g., range restrictions).
350 That is, this error is used to indicate the invalidity of the MAC label specified,
351 independent of whether the operation would have succeeded had it been a valid
352 label.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 339

353 Although POSIX.1 does not specify precedence for error return values, careful
354 consideration should be given to this matter in the security standard to ensure
355 that covert channel considerations are adequately addressed. Specifically, if an
356 unprivileged application attempts a function for which privileges are required and
357 the implementation returns the EINVAL error in favor of the EPERM error, it
358 may be possible for the application to determine the system’s MAC label range
359 restrictions based on whether EINVAL is returned (indicating the label is outside
360 the system’s range), or EPERM is returned (indicating the label is valid for the
361 system, but that the application failed the privilege check). Therefore, despite
362 this standard’s silence on the issue, it is recommended that when a function could
363 return multiple errors in a particular instance, that the errors be given the follow-
364 ing precedence (from most favored to least favored): EPERM, EINVAL,
365 ENOTSUP.

366 B.26.11 Valid MAC Labels

367 MAC labels have two forms: internal and external.

368 The basic MAC label structure defined in this standard (mac_t) is a pointer to an
369 opaque data structure. The binary format of that opaque data structure may
370 include such data as a hierarchical classification and non-hierarchical categories.
371 The standard makes no assumptions regarding the underlying representation
372 other than imposing the following constraint: the structure must be an export-
373 able object. That is, the structure is opaque, persistent, and self-contained. The
374 structure can therefore be copied by duplicating the bytes without knowledge of
375 its syntax. Such a copy can be changed without any effect on the original, and the
376 original can be changed without any effect on the copy.

377 The external format of a label is a text string of undetermined format. Any
378 separator character between fields in the textual representation is
379 implementation-defined. As noted in POSIX.1 section B.2.3.5, the character set
380 used for textual representation of MAC labels is not defined by this standard.

381 The meaning of a valid MAC label is implementation-defined, as described in
382 mac_valid(). A MAC label could be invalid for many reasons, such as:

383 A. It is malformed, e.g., the label contains a checksum in the opaque type
384 which does not agree with the checksum calculated from the data.

385 B. It is out of the security level range of the system, e.g., the label refers to a
386 classification or category or combination which is outside the set of valid
387 MAC labels for the system.

388 C. It is out of the security level range of a process, e.g., the label refers to a
389 classification or category or combination which is outside the set of valid
390 MAC labels for a process.

391 D. It is outside the representation range, e.g., a system could allow no more
392 than n categories from a universe of m, even though each of the m categories
393 is valid.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

340 B Revisions to Rationale and Notes

394 Invalid MAC labels may appear for a number of reasons. Examples include: con-
395 structing a MAC label in process memory without regard to semantics of the bits,
396 importing a MAC label from a dissimilar system, reading a MAC label previously
397 stored in a file, etc. Note, however, that none of the MAC interfaces defined in
398 this standard will ever return an invalid MAC label.

399 The mac_valid() function is the means for an implementation to communicate to
400 a portable application that the application should not ‘‘deal with’’ certain MAC
401 labels—that they are undefined, disallowed, or some implementation-restricted
402 state. Note however that an implementation may impose additional restrictions
403 on the MAC labels for a particular object or process beyond the system-wide con-
404 straints that are addressed by mac_valid().

405 B.26.12 Modification of MAC labels

406 Unlike some of the other features in this standard, the basic unit of data for man-
407 datory access control (the MAC label) is not usually manipulated. Interfaces and
408 a memory management model to support manipulation of MAC labels were
409 deemed inappropriate, except for the least upper and greatest lower bounds func-
410 tions discussed below.

411 B.26.13 Least upper bounds and greatest lower bounds

412 The function mac_glb() is useful for applications that wish to limit their activities
413 to those permitted by both labels. For example, if a user wants to know the max-
414 imum classification of data that the user can transmit via a network cleared for
415 MAC label labelA to a machine cleared for MAC label labelB. Likewise, the
416 mac_lub() function allows applications to determine a MAC label which dom-
417 inates two specified labels.

418 It is the intent that conforming applications only use these functions, rather than
419 more primitive manipulation of the label structures themselves.

420 B.26.14 Functions returning MAC labels

421 Functions which return MAC labels should use a common implementation specific
422 allocation mechanism. For example, mac_get_file() allocates space for a MAC
423 label, fills in the MAC label from the requested file system object, and returns a
424 pointer to this space to the caller. The system allocates space because a MAC
425 label could be of variable length in some implementations. Such systems include
426 those which use a sparse matrix representation. If the system did not allocate the
427 space a portable application would have to query the system about the size of a
428 (subject’s or object’s) MAC label, reserve space for the label, and then call another
429 function to obtain the MAC label. The overhead for systems with a fixed length
430 MAC label is excessive. The use of additional level of indirection in the present
431 interfaces accommodates systems with both fixed and variable sized labels with
432 reasonable efficiency.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 341

433 The use of an allocator implies the use of a deallocator. The function mac_free()
434 frees the storage space allocated by any MAC function which allocated a MAC
435 label.

436 A function to allow for the translation of an internal label to an alternative exter-
437 nal label format was considered and rejected. For example, it is anticipated that
438 some trusted applications will wish to display a short form of the MAC label on a
439 display terminal, perhaps as part of an icon, rather than the entire (possibly very
440 lengthy) external text form. An option considered was to alter the mac_to_text()
441 function to include a form argument. Trusted applications could specify the exter-
442 nal form of the label desired, e.g., icon, abbreviated, long. The proposal was
443 rejected because the TCSEC, ITSEC, and CMW requirements criteria do not
444 specify alternative external formats. Thus, most implementations do not provide
445 for alternative text labels.

446 B.26.15 Multi-level directories

447 Interfaces to create, remove, and scan multi-level directories were considered and
448 actually appeared in earlier drafts, but were removed because a lack of consensus
449 and ballot objections. The basic reason for a multi-level directory mechanism is
450 that certain portions of the filesystem namespace are ‘‘well known’’ and need to be
451 publicly available. The most obvious example is //ttmmpp; many applications expect
452 to be able to create files within this directory. However, in a system with MAC,
453 allowing applications at any level to freely create visible files in //ttmmpp would be an
454 unacceptable security hole; it allows a trivial means for a Trojan horse program to
455 make great quantities of data visible at lower levels (by encoding the data in file
456 names).

457 Data at a MAC label higher than that of the multi-level directory may be stored in
458 the multi-level directory by an unprivileged user. However, access to this data
459 will still be governed by the MAC policy.

460 B.26.15.1 Underlying Mechanism

461 To overcome this problem, while still allowing applications free access to well
462 known directories, some means of hiding parts of the file system name space is
463 needed. The most direct method, what has been called a ‘‘true’’ multi-level direc-
464 tory, is to implement a new directory structure which allows entries to be truly
465 hidden. Here, for example, readdir() would only return entries at the requester’s
466 MAC level or lower. While conceptually nice, this is hard to implement properly.
467 For example, compatibility and prevention of a covert channel require lower level
468 processes (at least) to be able to create entries with the same names as pre-
469 existing ones created by higher-level processes. To avoid confusion, the appear-
470 ance of these names then needs to be altered somehow (for example, by appending
471 a representation of the label) for reference by higher-level processes. To avoid
472 other channels, the apparent size of the directory may need to be altered to
473 prevent visibility of creating and deleting files which might cause the size of the
474 directory to change.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

342 B Revisions to Rationale and Notes

475 A simpler implementation uses the separation already provided by subdirectories
476 to achieve the goal. References to pathnames such as //ttmmpp//ffoooo are ‘‘redirected’’
477 during pathname resolution to ‘‘hidden’’ subdirectories of //ttmmpp, usually to some-
478 thing like

479 //ttmmpp//LabelRepresentation/foo

480 Here, LabelRepresentation tends to be a base 64 or hex representation of the
481 binary form of the label. These hidden subdirectories must of course be created
482 somehow, presumably either beforehand by a trusted program or administrator,
483 or as needed by the system.

484 B.26.15.2 Getting Around The Hiding

485 Both mechanisms hide part of the file system namespace from applications.
486 There are times when this is not desirable, e.g. when backing up filesystems, or
487 when a user simply wants to get at a lower level file. This is especially pressing
488 with the subdirectory approach, which conceals lower level files just as well as
489 higher level ones. Hence some means of generating a reference to an otherwise
490 invisible object is needed.

491 Again, two basic approaches have been taken. Either the reference is generated
492 directly by some special pathname:

493 //ttmmpp//DDOONN’’TT∗∗DDOO∗∗RREEDDIIRREECCTTIIOONN!!!!//LabelRepresentation/foo

494 or it is generated indirectly by setting some process mode which allows using the
495 ‘‘real’’ filename

496 //ttmmpp//LabelRepresentation/foo

497 The ‘‘modal’’ methods are less flexible in allowing redirected and real representa-
498 tions to be mixed, although some of this can be ameliorated by having multiple
499 modes such as

500 redirect none
501 redirect ‘‘system’’ directories (/tmp, /usr/tmp) only
502 redirect both system and application (/usr/spool/mail, etc.)
503 directories)

504 Their interaction with things like symbolic links involves difficulties as well.
505 (Allowing a symbolic link to a file in a hidden directory requires some means of
506 specifying the mode in the symbolic link.)

507 The ‘‘non-modal’’ special pathname method has the disadvantage of reserving part
508 of the file name space, something which unfortunately there is no precedent for in
509 historical implementations. If the portion reserved, e.g., the pathname com-
510 ponent

511 DDOONN’’TT∗∗DDOO∗∗RREEDDIIRREECCTTIIOONN!!!!

512 in the (fictitious) implementation above, were not standardized, a portable appli-
513 cation would have to abide by every namespace restriction imposed by every
514 implementation.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 343

515 Finally, there are ways to address these issues without changing the way direc-
516 tories are processed at all. One such mechanism is the "variable symlink", in
517 which a component of the user’s environment is use to replace a specified path-
518 name component in the symlink. Thus, if the symlink /tmp contained c
519 "/orary/MACLABEL", a process with the environment variable MACLABEL set to
520 "secret" would be directed to "/orary/secret". Other mechanisms, such as an exotic
521 file system type, are also possible.

522 B.26.16 The Directory Model

523 The relationships between the MAC label of a directory and its subdirectories and
524 files is often referred to as the ‘‘directory model.’’ One of the more common models
525 for POSIX-like systems is for files to equal and for directories to dominate the
526 label of their parent directories. This is sometimes called the ‘‘non-decreasing
527 directory’’ model because MAC labels at most increase as one transverses from the
528 root of a directory tree to its leaves. Multics, for example, used this model.

529 The following discussion applies only when untrusted processes are allowed to
530 create upgraded directories under one of the schemes above.

531 This proposal does not absolutely impose the non-decreasing directory model.
532 Neither does it prevent conforming implementations from imposing a non-
533 decreasing restriction. However, the application of the basic MAC restrictions on
534 the processes for accessing and creating the files as simple, labeled data con-
535 tainers leads to the restriction that unprivileged processes (users) can only create
536 non-decreasing directory trees. Privileged processes are not bound by these res-
537 trictions and can create files and directories at arbitrary MAC labels.

538 Implicit in the preceding discussion on upgraded directories is the assumption
539 that trees created by unprivileged processes will be non-decreasing.

540 The non-decreasing nature of file trees combined with the minor user difficulties
541 of creating upgraded directories (changing login sessions) will tend to group direc-
542 tories according to MAC label. That is, instead of highly intermixed files and
543 directories at various MAC labels, they will tend to be segregated according to
544 MAC label. This is generally a good practice anyway, because the close intermin-
545 gling of file system elements at different labels tends to be a breeding ground for
546 covert channels and confusion.

547 Basically, this proposal takes the position that non-decreasing hierarchies are
548 appropriate for unprivileged processes, but that POSIX.1e should not so restrict
549 appropriately privileged processes.

550 B.26.17 File Tranquillity

551 The original FP.5 dealt with file object tranquillity. (Note, this rule was removed
552 as an explicit rule when it was pointed out that it is just a restatement of FP.1
553 and FP.2.)

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

344 B Revisions to Rationale and Notes

554 FP.5: The MAC label of an object cannot be changed to a new MAC label if the
555 change would allow information flow between a process and an open file
556 object which could not have occurred at the new MAC label.

557 There are two general ways that a conforming implementation could enforce the
558 file change-level constraint:

559 Tranquillity

560 The change request could be denied if there were any open connections to the
561 file (other than the requesting process in the case of the mac_set_fd() func-
562 tion).

563 Readjustment

564 The change request could be fulfilled if it could be determined that all open
565 connections could have been made in the mode requested after the label was
566 changed. The implementation could either preemptively close the newly-
567 disallowed connections, or attempt to readjust the current access modes of the
568 open connections.

569 Readjustment can be difficult to implement and is not required by the standard,
570 but is also not precluded by the standard. Since readjustment is not required,
571 this leaves strict tranquillity as the lowest common denominator of conforming
572 implementations. For this reason, portable applications must assume no more
573 than strict tranquillity for maximum portability under the standard.

574 B.26.18 Process Tranquillity

575 Requirements for ‘‘process tranquillity’’ do not exist because any process
576 privileged to change its own label is presumed to ensure it does not subsequently
577 cause undesired information flows.

578 B.26.19 Unnamed Pipes

579 Unnamed pipes are considered labeled objects. However, because they are not
580 addressable, i.e., cannot be opened, and because MAC is enforced only when
581 objects are opened for access, there are never any actual MAC checks against the
582 label of the pipe. The label will however need to be retrieved in the mac_get_fd()
583 function.

584 The primary rationale for labeling unnamed pipes is so that processes using
585 mac_get_fd() (who may not know whether the file descriptor is a pipe) will not see
586 anomalous behavior for pipes.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 345

587 B.26.20 FIFOs

588 First-in-first-out (FIFO) data objects have an inherent covert channel in that
589 higher-label readers can affect the state of the object in a manner that can be
590 detected by other (lower-label) readers/writers. For example, a reader/writer at
591 L1 can write sequences to the FIFO and then determine how much data has been
592 read by a reader at L2 by reading the FIFO (where L2 is not dominated by L1).
593 This constitutes information flow in that is contrary to the basic MAC policy
594 FP.3.

595 FIFOs in POSIX.1 include only FIFO-special files. In order to control the covert
596 channels for these FIFO-special files, the following rule is imposed:

597 Unprivileged processes may open FIFO-special files for reading only if the
598 process also has MAC write access to the FIFO, i.e., the process is at the
599 same MAC label as the FIFO-special file.

600 Hence, unprivileged processes at different MAC labels may not obtain a FIFO
601 between them even if opened such that information may only flow in accordance
602 with P.

603 B.26.21 Inclusion of mac_set_fd()

604 Originally, this function was not included. It was felt that there was too little
605 demonstrated need for the function against potential implementation difficulties.
606 The only mentioned use was by llooggiinn.

607 One notable implementation difficulty is that it is difficult to find the parent
608 directory (or directories) of a file given only a file descriptor. This makes it
609 difficult for implementations that wish to absolutely enforce the relationship
610 between a file and its parent directory. (Note that the issue of unique parent
611 directory is side-stepped when a pathname is given in that the directory given in
612 the pathname is the one to which various mandatory access controls are applied.)

613 However, in the interest of consistency with the other POSIX.1e options, it was
614 decided to include the mac_set_fd() function.

615 B.26.22 Inclusion of mac_size()

616 The mac_size() function has been provided to allow applications to obtain the size
617 of a MAC label. Applications need to know the size of MAC labels only if they are
618 going to store the MAC label. There is no reason to know the size to use the pro-
619 vided MAC functions. An example of using the mac_size() function is a data base
620 system which needs to store a MAC label for each record. It would use the
621 mac_size() function to find out the size of the space to allocate and then could byte
622 copy the MAC label to the data base record.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

346 B Revisions to Rationale and Notes

623 B.26.23 Restrictions on Signals

624 The following, minimal MAC restriction governs the sending of signals:

625 An unprivileged process cannot send signals to another unprivileged process
626 when the signals would result in actions other than an upgrading of informa-
627 tion, i.e., the signal is only allowed when the label of the receiver dominates
628 that of the sender.

629 The general philosophy is to prohibit only those signals that can be repeatedly
630 sent thus causing high-bandwidth covert channels. This affects mainly the kill()
631 function.

632 No additional restrictions are imposed between two processes at the same label or
633 when at least one of the processes is privileged.

634 B.26.24 Alteration of atime

635 Many functions require that the file atime be marked for update. However, the
636 case where the actions of a process could affect the atime of a file whose label does
637 not dominate that of the process presents a potential covert channel. Some imple-
638 mentations can adjust when the atime is actually set and thus adequately confine
639 such covert channels, but this is not required by the standard. Instead, the effect
640 on atime in such cases is implementation-defined.

641 B.26.25 Multi-Label Untrusted Process Hierarchies

642 There are situations where untrusted processes at different MAC labels can have
643 an ancestral relationship. Processes with an ancestral relationship have special
644 opportunities for communicating information, e.g., wait, waitpid of POSIX.1 sec-
645 tion 3.2.1, and when both processes are untrusted and at different MAC labels
646 these opportunities present potential covert channels. There are no MAC restric-
647 tions for at least some of the following reasons:

648 — These situations can only be set up by trusted processes who change their MAC
649 label. It is assumed that a trusted process who changes its label and creates (by
650 fork() or exec()) untrusted processes will take actions to confine potential covert
651 channels.

652 — The channels are typically low-bandwidth.

653 — Restricting all such operations seems like too much imposition for too little
654 gain.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.26 Mandatory Access Control 347

655 B.26.26 File Status Queries

656 Following the precedence of IEEE Std 1003.1-1990, no DAC access is required to
657 determine the various status attributes of a file (DAC information, labels, owner,
658 etc.) including all new attributes, such as the MAC label. However, MAC read
659 access is required to prevent potential covert channels.

1 B.27 Information Labeling

2 B.27.1 Goals

3 The primary goal of adding support for an information labeling mechanism in the
4 POSIX.1 specification is to provide interfaces to non-access control related data
5 labeling policies. An information labeling policy, unlike access control related pol-
6 icies (such as mandatory or discretionary access control), provides a means for
7 associating security-relevant information with the data maintained by the sys-
8 tem. More specifically, the information labeling mechanism’s goals are to:

9 (1) Address the need for non-access control related mechanisms to imple-
10 ment data labeling policies as specified in existing standards and criteria
11 while providing as much flexibility for implementation-specific informa-
12 tion labeling policies as is practical. Specifically, to allow for the vari-
13 ances between existing standards, the interfaces are intended to provide
14 the latitude for implementations to support multiple information label
15 uses. For example: to allow information labels to be applied to subjects
16 and objects by the system, and altered by the system, to record the flow of
17 data between subjects and objects, or to allow information labels to be
18 applied to objects by users, and altered by them on a discretionary basis,
19 to record handling restrictions on the object contents.

20 (2) The information label interfaces are intended to be compatible with the
21 information label requirements of a number of standards and criteria. In
22 particular, goals include compatibility with the U.S. Compartmented
23 Mode Workstation Information Label requirements, and the European
24 vendor and customer demands, along with DIA document DDS-2600-
25 5502-87 and DIA document DDS-2600-6243-91. Finally, the interfaces
26 were designed to conform with the requirements for adding ‘‘extended
27 security controls’’ to POSIX-conforming systems, as stated in section
28 2.3.1 of POSIX.1.

29 There is a recognition that the underlying mechanisms involved can be
30 implemented in a number of different ways that still fulfill the
31 POSIX_INF requirements. Another consideration is the expectation that
32 POSIX.1 conforming systems will wish to extend the functionality
33 defined in this standard to meet particular, specialized needs. For these
34 reasons, flexibility in the POSIX_INF requirements while still conform-
35 ing to the criteria mentioned above, is an important objective.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

348 B Revisions to Rationale and Notes

36 (3) Define information labeling interfaces for conforming applications. By so
37 doing, it becomes possible to develop trusted applications which are port-
38 able across POSIX_INF-compliant implementations.

39 (4) Specify information labeling enhancements on other POSIX.1 functions
40 as necessary. Identifying information labeling modifications to other
41 POSIX.1 functions ensures that application developers are made aware
42 of possible changes required for their applications to function in a
43 POSIX_INF-compliant environment.

44 (5) Address information labeling-related aspects of all forms of data access
45 and transmission visible through the POSIX.1 interfaces. (Please note
46 the distinction made between data and control information, clarified later
47 in this section.) The interface, however, is designed for flexibility: the
48 standard defines the minimum functionality that must be provided.
49 Naturally, conforming implementations may choose to perform informa-
50 tion labeling on objects, or at times, not required by this standard.

51 (6) Preserve 100% compatibility with the base POSIX.1 functionality. That
52 is, it is undesirable to require new restrictions on the operation of exist-
53 ing POSIX.1 interfaces, or to require changes to the syntax of existing
54 POSIX interfaces.

55 (7) Add no new information labeling-specific error messages to existing
56 POSIX.1 interfaces and thus minimize the potential for confusing exist-
57 ing applications. While this potential for confusion cannot be entirely
58 eliminated (in particular because existing error codes can now be
59 returned in situations which would not arise without information label-
60 ing present), avoiding new error values at least ensures existing applica-
61 tions will be able to report errors.

62 B.27.2 Scope

63 This section examines the information labeling interfaces provided by this stan-
64 dard and explains the overall motivation for including the information labeling
65 interfaces. Rationale and design tradeoffs are presented for the key information
66 label interfaces.

67 This standard supports a security policy of nondisclosure, primarily through the
68 interfaces defined for discretionary and mandatory access control. In particular,
69 mandatory access control mechanisms implemented using the defined interfaces
70 are expected to conform with the overall intent established in the security stan-
71 dards to which they are targeted. These security standards, (e.g., the TCSEC),
72 normally require policies and mechanisms that protect objects at the level of the
73 most sensitive data that they can contain. Often, however, the data contained in
74 objects is actually much less sensitive than indicated by the mandatory access
75 control label associated with that object. In addition, many security policies
76 require that certain non-mandatory access control related information be associ-
77 ated with subjects and objects. Thus, in addition to mandatory access control
78 labeling, this standard provides optional interfaces for data labeling. Use of these

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 349

79 interfaces by conforming implementations permit support for a variety of data
80 labeling policies.

81 B.27.3 Concepts Not Included

82 Several concepts that will commonly be implemented by conforming systems have
83 not been treated by this document, many because they have no basis in the
84 POSIX standards upon which this document is currently based. These include:

85 Label Translation: POSIX.1 does not address networked systems. Thus, the
86 translation of information labels into an exportable form is
87 not addressed in this standard.

88 Process Label Functions: The functions provided as part of this standard to
89 retrieve or set the information label associated with a pro-
90 cess are limited to the requesting process. That is, no inter-
91 face is provided whereby a process may specify another pro-
92 cess (for example, using a process id) to be the target of the
93 inf_get_proc() or inf_set_proc() functions. Such mechanisms
94 have been omitted in order to be consistent with the
95 POSIX.1 standard which provides no facilities for processes
96 to manipulate, or be cognizant of, other processes’ state
97 information. Note, however, that conforming implementa-
98 tions may choose to provide such functions.

99 B.27.4 Data Labeling Policies

100 There are many instances when security-related information should be associated
101 with subjects and objects even though that information may not, in general, be
102 used for mandatory access control. Such information may include markings that
103 indicate the source of some data, what the data is about, the ‘‘trustworthiness’’ of
104 the data, or anything else about the data other than how it should be protected.
105 This non-mandatory access control related information is represented in an infor-
106 mation label that should be associated with data when it is printed or otherwise
107 exported. This specification provides functions to assign initial information
108 labels, combine two information labels, and manipulate information labels.

109 A sample non-mandatory access control data labeling policy might be one targeted
110 at virus detection. For example, under this policy, programs downloaded from a
111 public bulletin board might be labeled with the marking ‘‘suspect-file.’’ If the pro-
112 gram contained a virus, and if the inf_float() function (discussed below) imple-
113 mented the Compartmented Mode Workstation (also discussed below) style of
114 floating labels, then it would be easy to track the spread of any infection
115 throughout the system because every file infected by the virus would automati-
116 cally be stamped with the ‘‘suspect-file’’ marking.

117 Other examples of non-mandatory access control information that should be asso-
118 ciated with data include handling caveats, warning notices, discretionary access
119 control advisories, and release markings. The ability to implement standards-

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

350 B Revisions to Rationale and Notes

120 based systems that support these and other non-mandatory access control mark-
121 ings is of great interest to many vendors and users.

122 One example of existing non-mandatory access control policies this interface is
123 intended to support are those proposed by the European trusted system vendor
124 community. The functionality necessary is that users must be allowed to apply
125 data labels to subjects and objects, and alter them on a discretionary basis, in
126 order to record handling restrictions on the objects’ contents.

127 To provide a data labeling interface that can easily support the existing multiple
128 data labeling policies, the information label interfaces have been carefully gen-
129 eralized to provide a mechanism to support these policies, without attempting to
130 enforce the specifics of any particular policy. The burden of implementing specific
131 policies is left to conforming implementations.

132 B.27.4.1 General Information Label Policy

133 Section 27.1.2 of this standard defines a general information labeling policy capa-
134 ble of supporting multiple particular data labeling policies. The information label
135 policy statement consists of:

136 (1) A broad policy statement

137 (2) Refinements of this policy for the two major current policy areas: files
138 and processes.

139 It should be noted that the policies in this section do not constitute a formal secu-
140 rity policy model with proven assertions. It is, however, the most fundamental set
141 of information label policies that should be defined. The general information label
142 policy is as follows.

143 Information Label Policy: Each subject (process) and each object that con-
144 tains data (as opposed to control information) shall have as an attribute an
145 information label at all times.

146 Information labels are said to ‘‘float’’ as data from one object is introduced to
147 another object. The general information label floating policy is intentionally flexi-
148 ble and can be stated as follows:

149 Information Label Floating Policy: The implementation-defined policy that
150 determines to what degree information labels associated with data are
151 automatically adjusted as data flows through the system.

152 The information label float policy is embodied by the inf_float() function. This
153 function computes a new information label that is the combination of two informa-
154 tion labels passed as arguments. As noted above, the new information label is
155 calculated according to implementation-defined policies.

156 Note that the information label policy as applied to process functions specifies (in
157 PI.2) that when a process with an information label inf_p1 executes a file with
158 information label inf_p2, the information label of the process shall be set to the
159 value returned by inf_float(inf_p1, inf_p2). However, in implementations where

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 351

160 the new file executed completely overlays the process’ address space, i.e., there is
161 no data transfer from the originally executing process to the newly executing pro-
162 cess, the information label of the process after executing the file may be set to
163 inf_p2. The central factor in determining whether such an implementation con-
164 forms to the information label policy is whether data is transferred: the transfer
165 of control information (such as process id, and various user ids) is inevitable and
166 permissible; the transfer of data is unacceptable.

167 B.27.4.2 Error Return Values

168 The information labeling functions specified in this standard may return one of
169 several errors depending on how the implementation has addressed information
170 labeling.

171 If the symbol {_POSIX_INF} is defined, then the implementation supports the +
172 information label option and is required to support the information label functions+
173 as described in this standard. If the symbol {_POSIX_INF} is not defined, then the+
174 implementation does not claim conformance to the information label option and +
175 the results of an application calling any of the information label functions are not +
176 specified within this standard. An alternative is for the information label func- +
177 tions to specify that the error return code [ENOSYS] be returned by the functions +
178 if the information label option is not supported. However, in order to remain com- +
179 pliant with the policies of POSIX.1, this standard cannot specify any require- +
180 ments for implementations that do not support the option.

181 The error [ENOTSUP] shall be returned in those cases where the system supports
182 the information label facility but the particular information label operation can-
183 not be applied because restrictions imposed by the implementation. For example,
184 if an application attempts to set the information label on a file on a system where
185 sysconf() indicates that an information label facility is supported by the system,
186 but the value that pathconf() returns for {_POSIX_INF_PRESENT} for that file
187 indicates that information labels are not supported on that file, the application
188 shall receive the [ENOTSUP] error. Therefore, if an application attempts to set
189 the information label on a file, it is the application’s responsibility to first use
190 pathconf() to determine whether the implementation supports information labels
191 on that file.

192 It should be noted that, in general, this standard attempts to avoid adding and
193 defining new errors. However, in the case of [ENOTSUP], the following points
194 were noted: First, the need exists to provide feedback to applications concerning
195 a new error condition. Second, while it is possible to use an existing error code in
196 such cases (for example, ENOSYS), the group felt that this would overload those
197 errors. P1003.1, when consulted, concurred with this view and agreed that the
198 creation of a new error code, in this case, was appropriate. Third, the error
199 [ENOTSUP] is also being used by P1003.4 for roughly the same reasons. There-
200 fore, the consensus of several POSIX working groups is that while adding new
201 errors is generally not recommended, that this case warrants the creation of a
202 new error and that the new error should be [ENOTSUP].

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

352 B Revisions to Rationale and Notes

203 The [EINVAL] error is returned by functions when the information label specified
204 in the function call is syntactically incorrect or the information label is not per-
205 mitted on the system because implementation-defined restrictions, (e.g., range
206 restrictions). That is, this error is used to indicate the invalidity of the informa-
207 tion label specified, independent of whether the operation would have succeeded
208 had it been a valid label.

209 Although POSIX.1 does not specify precedence for error return values, careful
210 consideration should be given to this matter in the security standard to ensure
211 that covert channel considerations are adequately addressed. While information
212 labeling is not usually subject to covert channels, in certain cases they may arise.
213 Specifically, if an application that does not possess appropriate privilege attempts
214 a function for which appropriate privilege is required and the implementation
215 returns the EINVAL error in favor of the EPERM error, it may be possible for the
216 application to determine the system’s information label range restrictions based
217 on whether EINVAL is returned (indicating the label is outside the system’s
218 range), or EPERM is returned (indicating the label is valid for the system, but
219 that the application did not possess appropriate privilege). Therefore, despite this
220 standard’s silence on the issue, it is recommended that when a function could
221 return multiple errors in a particular instance, that the errors be given the follow-
222 ing precedence (from most favored to least favored): ENOSYS, EPERM, EINVAL,
223 ENOTSUP.

224 B.27.4.3 Rationale for Pointer Arguments

225 The functions provided to support information labeling use an opaque data type.
226 Nevertheless, in order to accommodate systems in which the size of an informa-
227 tion label may vary (e.g., depending on the actual label encoded or depending on
228 the total set of labels supported), the information label functions operate on
229 pointers. For this reason, the basic information label structure defined in this
230 standard (inf_t) is defined to be a pointer to an opaque data structure. In this
231 way, conforming applications need not determine the size of a label prior to
232 requesting an operation that will produce or modify that label. (In some cases,
233 such as inf_float(), this would be particularly difficult inasmuch as the resultant
234 information label is not known prior to making the request.) Instead, the system
235 functions themselves are responsible for allocating the space necessary to contain
236 a new label, and a function is provided to applications to free that space when the
237 label is no longer needed.

238 The tradeoffs between the approach adopted by the information label functions
239 specified in this standard and alternative approaches are many and varied. The
240 structure of the information label function interfaces have been designed to be
241 consistent with those provided by the interfaces supplied in support of the other
242 features included in this standard, and the mandatory access control interfaces in
243 particular. Thus, a more detailed and complete rationale for the adoption of these
244 types of interfaces can be found in the mandatory access control rationale.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 353

245 B.27.4.4 Rationale for POSIX.1e Functions

246 The inf_float() function is not specified in detail to allow for a range of
247 implementation-defined floating policies. The range of policies would determine
248 the degree to which information labels associated with data are automatically
249 adjusted as data flows through the system. Two explicit floating policies that
250 have been articulated are intended to be supportable in POSIX through the
251 definition of inf_float().

252 The first policy is that articulated as part of the Compartmented Mode Worksta-
253 tion project (see IEEE Transactions on Software Engineering, Vol. 16, No. 6, June
254 1990, pp 608-618). Under this policy, every data read or write is intended to
255 (potentially) modify the information label of the object being modified through the
256 read or write. In the case of a subject reading an object, the subject’s information
257 label would be modified (‘‘floated’’) to a combination of the information label of the
258 subject before the read, and the information label associated with the object.
259 When a subject writes to an object, the object’s information label would be floated
260 to represent the combination of the information label of the object before the
261 write, and the information label associated with the subject. This policy makes a
262 great deal of sense in the case where there are a large number of different infor-
263 mation label values, and it is desired to track the flow of data through the system
264 by having the data’s information label follow the data. To accommodate this pol-
265 icy, inf_float() would always combine its two arguments and return the result.
266 The details of the combination would depend on the semantics of the particular
267 information labels involved.

268 The second policy makes more sense when there are a relatively small, more
269 static number of information label values. In this policy, the intention is that
270 objects, when created, inherit their creator’s information label, but that the infor-
271 mation label does not automatically change thereafter. To accommodate this pol-
272 icy, inf_float() would be defined such that it floated an information label only one
273 time. In other words, inf_float() would return a result other than its second argu-
274 ment only when its second argument is equal to inf_default() and its first argu-
275 ment is not inf_default().

276 B.27.4.5 System Floating

277 Because the inf_float() routine takes two labels and returns the result of a float
278 operation, it is not an entirely general function. That is, it cannot base the result
279 of the float operation on any factor other than the two input labels. However, it is
280 possible to imagine other data labeling policies that require different floating
281 rules based on any number of factors (e.g., files involved, or time of day). Support
282 for these peculiar types of policies is not explicitly required in this standard. The
283 main reason for this exclusion is that, of the multiple data labeling polices
284 intended to be supported by this standard, none require such extensions to the
285 inf_float() function. Indeed, to the group’s knowledge, no known data labeling
286 policy currently used in commercially available systems that would require such
287 extensions presently exists.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

354 B Revisions to Rationale and Notes

288 The second major reason for the lack of true generality in the floating function
289 was due to technical obstacles. To make the inf_float() function more general,
290 additional arguments would be required. The addition of more information used
291 to characterize the two labels involved in floating was discussed. Particular con-
292 sideration was given to adding type information so that the type of the object with
293 which the information label is associated could be determined. This was to allow
294 the implementation-defined algorithm to act differently based on the types of the
295 objects involved. This addition was rejected because the working group could see
296 no use for it in an external (application level) interface for conforming applica-
297 tions. The group also considered including arguments to identify the specific
298 object being floated. Again, due to lack of motivation, and an inability to devise a
299 useful interface that could be used to identify all POSIX objects that could sup-
300 port ILs, and still be extensible to non-POSIX objects (in a curt acknowledgement
301 of the needs of the real world), this option, too, was dropped.

302 Note that the inf_float() function nevertheless remains a valuable and necessary
303 interface: it allows conforming applications to call a routine which the system
304 provides that is guaranteed to provide a label float operation consistent with the
305 system’s data labeling policies. Using the function, trusted applications can per-
306 form fine-grained labeling of their own resources.

307 B.27.4.6 Object Labeling

308 The objects to which this standard requires information labels be applied include
309 the expected POSIX.1 objects: files. Not included among the objects are
310 processes. As observed in the mandatory access control section, processes may act
311 as objects under certain conditions. For example, when one process sends a signal
312 to another, the former is effectively writing to the latter, and therefore the latter
313 could be considered an object, from the perspective of this function. However,
314 because many data labeling policies consider signals of this type to be a transmis-
315 sion of control information, and therefore not necessarily subject to the informa-
316 tion label policies, many data labeling policies do not consider the process to be an
317 object (from the information label perspective) with respect to these functions.
318 Because POSIX.1 does not provide any other functions in which processes act as
319 objects, the information labeling standard does not include processes as objects.

320 Note that information labels are not required to be applied to directories. Argu-
321 ments for why they should be are as follows. Directories, like any other type of
322 file, contain arbitrary length strings of process-specified data. This data is, by
323 intent, designed to be communicative to users; that is, it is meaningful informa-
324 tion (from the human perspective). Since this is the type of information data
325 labeling policies are intended to label, it would make sense to require that direc-
326 tories be subject to the information label policies.

327 Alternatively, opposing opinions have been expressed that information labels
328 should not be required to be applied to directories. These arguments are as fol-
329 lows. Directories are not containers of data, but rather are organizers of data con-
330 tainers (such as regular files). As such, the notion that information labels are
331 applied to ‘‘data’’ as opposed to ‘‘control information’’ suggests that information
332 labels may not necessarily be needed on directories. In addition, as with

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 355

333 mandatory access control, existing mechanisms and techniques for applying infor-
334 mation labels to directories vary widely (directory labeling, directory entry label-
335 ing, etc.). Worse yet, directory information labeling must necessarily be closely
336 tied to the multi-level directory implementations used for mandatory access con-
337 trol. As witnessed by the absence of a multi-level directory specification in the
338 mandatory access control section, directory labeling is not an area amenable to
339 standardization at this time.

340 For the reasons set forth above, information labeling on directories is not required
341 by this standard. Note, however, that conforming implementations may certainly
342 provide that capability.

343 B.27.5 Initial Information Labels

344 This standard provides an interface that returns a valid information label that, if
345 applied to a newly created file, will adequately label that file in a manner con-
346 sistent with the system’s information labeling policy. One intended use of this
347 function is by trusted applications that wish to create, maintain, and properly
348 label objects other than system-labeled objects. Examples of process-maintained
349 independently-labeled objects could include: database records, individual mail
350 messages, and so forth. When a process creates an instance of such an object, in
351 order to perform floating as data is written to the object, the object must start
352 with a correct initial information label. However, because these objects reside
353 purely within the process space of the application, or are subcomponents of a
354 larger single system-labeled object, the trusted application must assume responsi-
355 bility for maintaining the labels on the object, including the initial label. For
356 trusted applications, this initial label may well differ from the process label (espe-
357 cially if the process had floated prior to creating the object). For this reason the
358 inf_default() function is provided. (In systems targeted for the CMW require-
359 ments, this label is often referred to as ‘‘system-low’’.)

360 The inf_default() function has deliberately been specified in very general terms in
361 order to allow the widest range of implementations to conform to the standard. In
362 particular, the function does not require that each call return the same value; the
363 initial label may vary based on implementation-defined factors (for example, time
364 of day, process id of the calling process, etc.). In addition, it is not guaranteed
365 that the label returned by inf_default() will be the same as other system-
366 generated labels at the same time. For example, a process that performs a call to
367 inf_default() and immediately creates a new file may well find that the informa-
368 tion label applied to the file differs from the information label returned by the call
369 to inf_default(). This fact promotes flexibility in meeting this standard without
370 hindering application portability: that the labels returned by inf_default() are
371 consistent with the system’s information labeling policy when applied to newly-
372 created objects is sufficient for conforming applications to function properly.

373 Uses to which this flexibility may be put include: systems on which files created
374 at particular times during the day may be more sensitive than files created at
375 other times, systems on which files on particular file systems are labeled dif-
376 ferently from those on other file systems, and so forth.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

356 B Revisions to Rationale and Notes

377 The addition of more information used to characterize the object to receive an ini-
378 tial information label was discussed. Particular consideration was given to
379 adding type information so that the type of the object with which the initial infor-
380 mation label is to be associated could be determined. This was to allow the
381 implementation-defined algorithm to act differently based on the type of object to
382 be labeled. This addition was rejected because the working group could see no
383 use for it in an external (user level) interface for conforming applications. Inter-
384 nal (system-specific) initial information labels are not required to use
385 inf_default() and therefore can be different based on the object being labeled.

386 B.27.6 Information Label Validity

387 Information labels have two forms: internal and external.

388 The basic information label structure defined in this standard (inf_t) is a pointer
389 to an opaque data structure. The binary format of that opaque data structure
390 may include such data as a hierarchical classification, non-hierarchical categories,
391 or non-access control related markings. The standard makes no assumptions
392 regarding the underlying representation or contents of the structure other than
393 imposing the following constraint: the structure must be an exportable object.
394 That is, the structure is opaque, persistent, and self-contained. The structure can
395 therefore be copied by duplicating the bytes without knowledge of its syntax.
396 Such a copy can be changed without any effect on the original, and the original
397 can be changed without any effect on the copy.

398 The external format of a label is a text string of unspecified format. Any separa-
399 tor characters appearing between the components of an information label are
400 implementation-defined. Note that this standard does not specify the set of legal
401 characters that may be used in the text representation of an information label.
402 Further rationale for this decision can be found in POSIX.1, section B.2.3.5.

403 The meaning of a valid information label is implementation-defined, as described
404 in inf_valid(). An information label could be invalid for a variety of reasons.
405 Some reasons why a label may be invalid on some systems include:

406 It is malformed (e.g., the label contains a checksum in the opaque type
407 that does not agree with the checksum calculated from the data).

408 It is out of the cleared range of the system (e.g., the label refers to a
409 classification that is outside the set of valid classifications for the system).

410 It is outside the representation range (e.g., a system could allow no more
411 than n categories from a universe of m, even though each of the m
412 categories is valid).

413 If {_POSIX_MAC} is defined, and the mandatory access control label of a
414 process does not dominate the mandatory access control label associated
415 with all components of an information label, then that information label
416 may be invalid for the process, even though it is valid for other processes

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 357

417 executing on the same system.

418 Invalid information labels may appear for a great number of reasons. Examples
419 include: constructing an information label in process memory without regard to
420 semantics of the bits, importing an information label from a dissimilar system,
421 etc. Note, however, that combining two information labels (e.g., using inf_float()),
422 will calculate an information label that is valid. This is because information
423 labeling, as noted elsewhere in this section, is used for data labeling, not access
424 control. Therefore, if the other security policies implemented in a conforming sys-
425 tem permit data to be combined, the information labeling mechanism is obligated
426 to calculate an accurate and valid information label for the combined data.

427 B.27.7 Control Information

428 The policy discussion contained in section 27.1.2 specifically notes that the infor-
429 mation label of a file applies only to the data portion of the file. That is, manipu-
430 lation of control information need not result in an information label float opera-
431 tion. This ‘‘special’’ treatment for control information results from a tradeoff
432 between functionality and security. If information labels floated when control
433 information was manipulated (e.g., at file open time, instead of at data transfer
434 time), the information labels associated with subjects and objects would have a
435 tendency to float too often and would lose some of their utility as a mechanism to
436 track the flow of data throughout a system. It can be argued that floating when
437 control information is manipulated would result in more ‘‘trustworthy’’ informa-
438 tion labels, however, several groups have expressed interest in favoring func-
439 tionality over security in this case. It is understood that a conforming implemen-
440 tation may cause the float operation to occur at times in addition to those covered
441 by the specified information labeling policy; such implementations may choose
442 enhanced trustworthiness over security.

443 B.27.8 Relationship between ILs and Mandatory Access Control Labels

444 In some systems, such as compartmented mode workstations, there exist certain
445 invariants that hold between ILs and mandatory access control labels. In the
446 case of CMWs, this invariant states that for any specific subject’s or object’s
447 labels, the access related portion of the information label (e.g., the classification
448 and categories) must be dominated by the mandatory access control label. While
449 this notion is useful for CMWs, it is not generally applicable to all systems that
450 might support the information label interfaces specified in this document. Most
451 notably, some companies that support the fundamental concept of information
452 labels, employ them in a manner such that mandating a relationship between
453 mandatory access control labels and ILs has no meaning. Indeed, there is no
454 requirement in this standard that the mandatory access control option be sup-
455 ported in order to support the IL section.

456 Note that conforming implementations are always at liberty to enforce additional
457 constraints. Thus a conforming implementation may certainly enforce a relation-
458 ship between mandatory access control labels and ILs (such as dominance). The

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

358 B Revisions to Rationale and Notes

459 silence of this standard on the topic of specific relationships between mandatory
460 access control labels and ILs should not dramatically impact portable applica-
461 tions.

462 B.27.9 Additional Uses of Information Labeling

463 The Compartmented Mode Workstation (CMW) security requirements are well
464 known in many parts of the computer security community and have attracted con-
465 siderable vendor interest. The CMW requirements are documented formally in
466 ‘‘Security Requirements for System High and Compartmented Mode Worksta-
467 tions’’, Defense Intelligence Agency document DDS-2600-5502-87 and are dis-
468 cussed less formally in the June 1990 issue of IEEE Transactions on Software
469 Engineering. Information labeling is a key component of the CMW requirements
470 both for meeting certain data labeling policies that concern non-mandatory access
471 control related information, and to avoid a potential data overclassification prob-
472 lem that may result from use of mandatory access control label-only systems.
473 This section of the rationale will further examine the data overclassification prob-
474 lem as an additional example of the utility of information labels.

475 According to mandatory access control policy FP.4, a newly created file object
476 shall be assigned the mandatory access control label of the creating subject (pro-
477 cess). Such a policy is necessary to prevent any subjects with mandatory access
478 control labels dominated by the creator’s label from discovering the ‘‘fact of
479 existence’’ of the object, thereby closing a covert channel.

480 Although the mandatory access control label of a newly created object correctly
481 represents the sensitivity of the object from the standpoint of mandatory access
482 control, it most likely incorrectly represents the actual sensitivity of the data con-
483 tained in the object. Since the newly-created object contains no data, the sensi-
484 tivity of the (null) data itself should be considered some system low value.

485 Another example of the overclassification problem is as follows. Consider a shell
486 process (subject) executing with a mandatory access control label of mac_p2. Dur-
487 ing the lifetime of this shell the user decides to make a copy of another user’s file
488 containing data with a sensitivity of mac_p1 and therefore a mandatory access
489 control label of mac_p1. mac_p2 dominates mac_p1, so the copy operation would
490 be permitted by mandatory access control policy FP.1. The copy process will be
491 created with a mandatory access control label of mac_p2 (in accordance with man-
492 datory access control policy PP.2), will read the data from the original file and
493 store a copy of the data in a newly created file. In accordance with FP.4, the
494 newly created file will have a mandatory access control label of mac_p2, even
495 though the original data was only sensitive enough to require protection at the
496 mac_p1 level.

497 These overclassification problems can be mitigated with the use of information
498 labels. In particular, an implementation could define inf_default() to return an
499 information label of ‘‘system low’’ and inf_float() to combine information labels as
500 per the CMW requirements. In such a system the information label of a newly
501 created (empty) object would be system low—an accurate representation of the
502 actual sensitivity of the (null) data contained within the object. Note that this

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 359

503 newly created object (and the fact that this object existed) would still be correctly
504 protected by the object’s mandatory access control label. When a process reads
505 from a file, the process information label floats with the file information label.
506 When a process writes to a file, the file information label floats with the process
507 information label.

508 Returning to the copy example, say the information label of the source file is
509 inf_p1. The copy process will start with an information label of inf_p2, which we
510 assume is system low as defined by inf_default() (as will generally be the case).
511 In the model of information label floating described in the paragraph above, when
512 the copy process reads the data from the file to be copied, the copy process’ infor-
513 mation label will float to the value returned by inf_float(inf_p1, inf_p2), which,
514 because inf_p2 is system low, will equal inf_p1. When the copy process creates
515 and writes the target file, that file will float to inf_p1 (the copy process’ label).
516 Thus the information label of the data in the source file will follow the data as it
517 moves through the system. So, even though the target file has a mandatory
518 access control label that is higher than the mandatory access control label of the
519 source file, the target file’s information label is the same as the source file’s infor-
520 mation label and remains an accurate representation of the actual sensitivity of
521 the data in the file.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

360 B Revisions to Rationale and Notes

Annex F
(informative)

Ballot Instructions

This annex will not appear in the final standard. It is included in the draft to pro-
vide instructions for balloting that cannot be separated easily from the main docu-
ment, as a cover letter might.

It is important that you read this annex, whether you are an official
member of the PSSG Balloting Group or not; comments on this draft are
welcomed from all interested technical experts.

Summary of Draft 17 Instructions

This is a recirculation on the P1003.1e ballot. The procedure for a recirculation is
described in this annex. Because this is a recirculation comments may only be
provided concerning sections that have changed, sections affected by those
changes, or on rejected comments from the previous ballot.

Send your ballot and/or comments to:

IEEE Standards Office
Computer Society Secretariat
ATTN: PSSG Ballot (Carol Buonfiglio)
P.O. Box 1331
445 Hoes Lane
Piscataway, NJ 08855-1331

It would also be very helpful if you sent us your ballot in machine-readable form.
Your official ballot must be returned via mail to the IEEE office; if we receive only
the e-mail or diskette version, that version will not count as an official document.
However, the online version would be a great help to ballot resolution. Please
send your e-mail copies to the following address:

casey@sgi.com

or you may send your files in ASCII format on DOS 3.5 inch formatted diskettes
(720Kb or 1.4Mb), or Sun-style QIC-24 cartridge tapes to:

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 361

Casey Schaufler
Silicon Graphics
2011 North Shoreline Blvd.
P.O. Box 7311
Mountain View, CA 94039-7311

Background on Balloting Procedures

The Balloting Group consists of approximately eighty technical experts who are
members of the IEEE or the IEEE Computer Society; enrollment of individuals in
this group has already been closed. There are also a few ‘‘parties of interest’’ who
are not members of the IEEE or the Computer Society. Members of the Balloting
Group are required to return ballots within the balloting period. Other individu-
als who may happen to read this draft are also encouraged to submit comments
concerning this draft. The only real difference between members of the Balloting
Group and other individuals submitting ballots is that affirmative ballots are only
counted from Balloting Group members who are also IEEE or Computer Society
members. (There are minimum requirements for the percentages of ballots
returned and for affirmative ballots out of that group.) However, objections and
nonbinding comments must be resolved if received from any individual, as fol-
lows:

(1) Some objections or comments will result in changes to the standard. This
will occur either by the republication of the entire draft or by the publica-
tion of a list of changes. The objections/comments are reviewed by a
team from the POSIX Security working group, consisting of the Chair,
Vice Chair, Technical Editor, and a group of Technical Reviewers. The
Chair will act as the Ballot Coordinator. The Technical Reviewers each
have subject matter expertise in a particular area and are responsible for
objection resolution in one or more sections.

(2) Other objections/comments will not result in changes.

(a) Some are misunderstandings or cover portions of the document
(front matter, informative annexes, rationale, editorial matters,
etc.) that are not subject to balloting.

(b) Others are so vaguely worded that it is impossible to determine
what changes would satisfy the objector. These are referred to as
Unresponsive . (The Technical Reviewers will make a reasonable
effort to contact the objector to resolve this and get a newly worded
objection.) Further examples of unresponsive submittals are those
not marked as either Objection , Comment, or Editorial; those that
do not identify the portion of the document that is being objected to
(each objection must be separately labeled); those that object to
material in a recirculation that has not changed and do not cite an
unresolved objection; those that do not provide specific or general
guidance on what changes would be required to resolve the objec-
tion.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

362 F Ballot Instructions

(c) Finally, others are valid technical points, but they would result in
decreasing the consensus of the Balloting Group. (This judgment is
made based on other ballots and on the experiences of the working
group through over seven years of work and fifteen drafts preceding
this one.) These are referred to as Unresolved Objections . Sum-
maries of unresolved objections and their reasons for rejection are
maintained throughout the balloting process and are presented to
the IEEE Standards Board when the final draft is offered for appro-
val. Summaries of all unresolved objections and their reason for
rejection will also be sent to members of the Balloting Group for
their consideration upon a recirculation ballot. (Unresolved objec-
tions are not circulated to the ballot group for a re-ballot.)
Unresolved objections are only circulated to the balloting group
when they are presented by members of the balloting group or by
parties of interest. Unsolicited correspondence from outside these
two groups may result in draft changes, but are not recirculated to
the balloting group members.

Please ensure that you correctly characterize your ballot by providing one
of the following:

(1) Your IEEE member number

(2) Your IEEE Computer Society affiliate number

(3) If (1) or (2) don’t apply, a statement that you are a ‘‘Party of
Interest’’

Ballot Resolution

The general procedure for resolving ballots is:

(1) The ballots are put online and distributed to the Technical Reviewers.

(2) If a ballot contains an objection, the balloter may be contacted individu-
ally by telephone, letter, or e-mail and the corrective action to be taken
described (or negotiated). The personal contact will most likely not occur
if the objection is very simple and obvious to fix or the balloter cannot be
reached after a few reasonable attempts. Repeated failed attempts to eli-
cit a response from a balloter may result in an objection being considered
unresponsive, based on the judgment of the Ballot Coordinator. Once all
objections in a ballot have been resolved, it becomes an affirmative ballot.

(3) If any objection cannot be resolved, the entire ballot remains negative.

(4) After the ballot resolution period the technical reviewers may chose to
either re-ballot or recirculate the ballot, based on the status of the stan-
dard and the number and nature of outstanding (i.e., rejected or
unresolved) objections. The ballot group may or may not be reformed at
this time. If a reballot is chosen, the entire process of balloting begins
anew. If a recirculation is chosen, only those portions affected by the pre-
vious ballot will be under consideration. This ballot falls into this latter
category

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 363

(5) On a recirculation ballot, the list of unresolved objections, along with the
ballot resolution group’s reasons for rejecting them will be circulated to
the existing ballot group along with a copy of the document that clearly
indicates all changes that were made during the last ballot period. You
have a minimum of ten days (after an appropriate time to ensure the
mail got through) to review these two documents and take one of the fol-
lowing actions:

(a) Do nothing; your ballots will continue to be counted as we have
classified them, based on items (3) and (4).

(b) Explicitly change your negative ballot to affirmative by agreeing to
remove all of your unresolved objections.

(c) Explicitly change your affirmative ballot to negative based on your
disapproval of either of the two documents you reviewed. If an
issue is not contained in an unresolved objection or is not the result
of a change to the document during the last ballot resolution period,
it is not allowed. Negative ballots that come in on recirculations
cannot be cumulative. They shall repeat any objections that the
balloter considers unresolved from the previous recirculation. Bal-
lots that simply say ‘‘and all the unresolved objections from last
time’’ will be declared unresponsive. Ballots that are silent will be
presumed to fully replace the previous ballot, and all objections not
mentioned on the most current ballot will be considered as success-
fully resolved.

(6) Rather than reissue the entire document, a small number of changes may
result in the issuance of a change list rather than the entire document
during recirculation.

(7) A copy of all your objections and our resolutions will be mailed to you.

(8) If at the end of a recirculation period there remain greater than seventy-
five percent affirmative ballots, and no new objections have been
received, a new draft is prepared that incorporates all the changes. This
draft and the unresolved objections list go to the IEEE Standards Board
for approval. If the changes cause too many ballots to slip back into
negative status, another resolution and recirculation cycle begins.

Balloting Guidelines

This section consists of guidelines on how to write and submit the most effective
ballot possible. The activity of resolving balloting comments is difficult and time
consuming. Poorly constructed comments can make that even worse.

We have found several things that can be done to a ballot that make our job more
difficult than it needs to be, and likely will result in a less than optimal response
to ballots that do not follow the form below. Thus it is to your advantage, as well
as ours, for you to follow these recommendations and requirements.

If a ballot that significantly violates the guidelines described in this section comes
to us, we may determine that the ballot is unresponsive.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

364 F Ballot Instructions

If we recognize a ballot as ‘‘unresponsive,’’ we will try to inform the balloter as
soon as possible so he/she can correct it, but it is ultimately the balloter’s respon-
sibility to assure the ballot is responsive. Ballots deemed to be ‘‘unresponsive’’
may be ignored in their entirety.

Some general guidelines to follow before you object to something:

(1) Read the Rationale section that applies to the troublesome area. In gen-
eral there is a matching informative section in the Rationale Annex for
each normative section of the standard. This rationale often explains
why choices were made and why other alternatives were not chosen.

(2) Read the Scope, section 1, to see what subset of functionality we are try-
ing to achieve. This standard does not attempt to be everything you ever
wanted for accomplishing secure software systems. If you feel that an
additional area of system interface requires standardization, you are
invited to participate in the security working group which is actively
involved in determining future work.

(3) Be cognizant of definitions in section 2. We often rely in the document on
a precise definition from section 2 which may be slightly different than
your expectation.

Typesetting is not particularly useful to us. Also please do not send handwritten
ballots. Typewritten (or equivalent) is fine, and if some font information is lost it
will be restored by the Technical Editor in any case. You may use any word pro-
cessor to generate your objections but do not send [[nntt]]rrooffff (or any other word
processor) input text. Also avoid backslashes, leading periods and apostrophes in
your text as they will confuse our word processor during collation and printing of
your comments. The ideal ballot is formatted as a ‘‘flat ASCII file,’’ without any
attempt at reproducing the typography of the draft and without embedded control
characters or overstrikes; it is then printed in Courier (or some other typewriter-
like) font for paper-mailing to the IEEE Standards Office and simultaneously e-
mailed to the Working Group Ballot Coordinator at the following email address.

casey@sgi.com

Don’t quote others’ ballots. Cite them if you want to refer to another’s ballot. If
more than one person wants to endorse the same ballot, send just the cover sheets
and one copy of the comments and objections. [Note to Institutional Representa-
tives of groups like X/Open, OSF, UI, etc.: this applies to you, too. Please don’t
duplicate objection text with your members.] Multiple identical copies are easy to
deal with, but just increase the paper volume. Multiple almost-identical ballots
are a disaster, because we can’t tell if they are identical or not, and are likely to
miss the subtle differences. Responses of the forms:

— ‘‘I agree with the item in <someone>’s ballot, but I’d like to see this done
instead’’

— ‘‘I am familiar with the changes to ffoooo in <someone>’s ballot and I would
object if this change is [or is not] included’’

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 365

are very useful information to us. If we resolve the objection with the original
balloter (the one whose ballot you are referencing), we will also consider yours to
be closed, unless you specifically include some text in your objection indicating
that should not be done.

Be very careful of ‘‘Oh, by the way, this applies <here> too’’ items, particularly if
they are in different sections of the document that are likely to be seen by dif-
ferent reviewers. They are probably going to be missed! Note the problem in the
appropriate section, and cite the detailed description if it’s too much trouble to
copy it. The reviewers don’t read the whole ballot. They only read the parts that
appear in the sections that they have responsibility for reviewing. Particularly
where definitions are involved, if the change really belongs in one section but the
relevant content is in another, please include two separate comments/objections.

Please consider this a new ballot that should stand on its own. Please do not
make backward references to your ballots for the previous draft. Include all the
text you want considered here, because the Technical Reviewer will not have your
old ballot. (The old section and line numbers won’t match up anyway.) If one of
your objections was not accepted exactly as you wanted, it may not be useful to
send in the exact text you sent before; read our response to your objection (you
will receive these in a separate mailing) and the associated Rationale section and
come up with a more compelling (or clearly-stated) justification for the change.

Please be very wary about global statements, such as ‘‘all of the arithmetic func-
tions need to be defined more clearly.’’ Unless you are prepared to cite specific
instances of where you want changes made, with reasonably precise replacement
language, your ballot will be considered unresponsive.

Ballot Form

The following form is strongly recommended. We would greatly appreciate it if
you sent the ballot in electronic form in addition to the required paper copy. Our
policy is to handle all ballots online, so if you don’t send it to us that way, we have
to type it in manually. See the first page of this Annex for the addresses and
media. As you’ll see from the following, formatting a ballot that’s sent to us
online is much simpler than a paper-only ballot.

The paper ballot should be page-numbered, and each page should contain the
name, e-mail address, and phone number(s) of the objector(s). The electronic copy
of the ballot should only have it once, in the beginning. Please leave adequate (at
least one inch) margins on both sides.

Don’t format the ballot as a letter or document with its own section numbers.
These are simply confusing. As shown below, it is best if you cause each objection
and comment to have a sequential number that we can refer to amongst ourselves
and to you over the phone. Number sequentially from 1 and count objections,
comments, and editorial comments the same; don’t number each in its own range.

We recognize three types of responses:

Objection A problem that must be resolved to your satisfaction prior to your
casting an "affirmative" vote for the document.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

366 F Ballot Instructions

Comment A problem that you might want to be resolved by the reviewer, but
which does not in any way affect whether your ballot is negative or
positive. Any response concerning the pages preceding page 1 (the
Front matter), Rationale text with shaded margins, Annexes,
NOTES in the text, footnotes, or examples will be treated as a non-
binding comment whether you label it that way or not. (It would
help us if you’d label it correctly.)

Editorial A problem that is strictly an editorial oversight and is not of a techn-
ical nature. Examples are: typos; misspellings; English syntax or
usage errors; appearances of lists or tables; arrangement of sections,
clauses, and subclauses (except where the location of information
changes the optionality of a feature).

To help us in our processing of your objections and comments, we are requiring
that all comments, objections and editorial comments meet the following specific
format. (We know that the format defined below contains redundant information
but it has become a de facto standard used by many different POSIX standard
ballots. It is felt that it is better to continue to use this format with the redun-
dancies rather than to create a new format just for 1003.1e and P1003.2c)

Separate each objection/comment with a line of dashes ("-"), e.g.,

Precede each objection/comment with two lines of identifying information:

The first line should contain:

@ <section>..<clause> <code> <seqno>

where:

@ At-sign in column 1 (which means no @’s in any other column 1’s).

<section> The major section (chapter or annex) number or letter in column
3. Use zero for Global or for something, like the frontmatter, that
has no section or annex number.

<clause> The clause number (second-level header). Please do not go deeper
than these two levels. In the text of your objection or comment,
go as deep as you can in describing the location, but this code line
uses two levels only.

<code> One of the following lowercase letters, preceded and followed by
spaces:

oo Objection.

cc Comment.

ee Editorial Comment.

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 367

<seqno> A sequence number, counting all objections and comments in a
single range.

The second line should contain:

<seqno>.. SSeecctt <sectno> <type>.. ppaaggee <pageno>,, lliinnee <lineno>::

where:

<seqno> The sequence number from the preceding line

<sectno> The full section number. (Go as deep as you can in describing the
location.)

<type> One of the following key words/phrases, preceded and followed by
spaces:

OOBBJJEECCTTIIOONN

CCOOMMMMEENNTT

EEDDIITTOORRIIAALL CCOOMMMMEENNTT

<pageno> The page number from the document.

<lineno> The line number or range of line numbers that the
object/comment relates to.

For each objection, comment, or editorial comment, you should provide a clear
statement of the problem followed by the action required to solve that problem.

PPrroobblleemm::

A clear statement of the problem that is observed, sufficient for others to under-
stand the nature of the problem. (Note that you should identify problems by sec-
tion, page, and line numbers. This may seem redundant, but if you transpose a
digit pair, we may get totally lost without a cross-check like this. Use the line
number where the problem starts, not just where the section itself starts; we
sometimes attempt to sort objections by line numbers to make editing more accu-
rate. If you are referring to a range of lines, please don’t say ‘‘lines 10xx;’’ use a
real range so we can tell where to stop looking. Please try to include enough con-
text information in the problem statement (such as the name of the function or
command) so we can understand it without having the draft in our laps at the
time. (It also helps you when we e-mail it back to you.)

AAccttiioonn::

A precise statement of the actions to be taken on the document to resolve the
objection above, which if taken verbatim will completely remove the objection.

If there is an acceptable range of actions, any of which will resolve the problem for
you if taken exactly, please indicate all of them. If we accept any of these, your
objection will be considered as resolved.

If the Action section is omitted or is vague in its solution, the objection may be
reclassified as a nonbinding comment. The Technical Reviewers, being human,
will give more attention to Actions that are well-described than ones that are

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

368 F Ballot Instructions

vague or imprecise. The best ballots of all have very explicit directions to substi-
tute, delete, or add text in a style consistent with the rest of the document, such
as:

DDeelleettee tthhee sseenntteennccee oonn lliinneess 110011--110022::

""TThhee iimmpplleemmeennttaattiioonn sshhaallll nnoott oorr ssttaannddaarrdd eerrrroorr..""

OOnn lliinnee 224455,, cchhaannggee ""sshhaallll nnoott"" ttoo ""sshhoouulldd nnoott""..

AAfftteerr lliinnee 771111,, aadddd::

--cc CCaallccuullaattee tthhee mmaasskk ppeerrmmiissssiioonnss aanndd uuppddaattee tthhee mmaasskk..

Some examples of poorly-constructed actions:

RReemmoovvee aallll ffeeaattuurreess ooff tthhiiss ccoommmmaanndd tthhaatt aarree nnoott ssuuppppoorrtteedd bbyy BBSSDD..

AAdddd --ii..

MMaakkee tthhiiss ccoommmmaanndd mmoorree eeffffiicciieenntt aanndd rreelliiaabbllee..

UUssee ssoommee ootthheerr ffllaagg tthhaatt iissnn’’tt ssoo ccoonnffuussiinngg..

II ddoonn’’tt uunnddeerrssttaanndd tthhiiss sseeccttiioonn..

SSppeecciiffyy aa vvaalluuee----II ddoonn’’tt ccaarree wwhhaatt..

Sample Response:

JJoosseepphh BBaallllootteerr ((999999))112233--44556677 ppaaggee 44 ooff 1177..
EEMMAAIILL:: jjmmbb@mmyyccoommpp..ccoomm FFAAXX:: ((999999))889900--11223344

--

@ 11..11 oo 2233
2233.. SSeecctt 11..11 OOBBJJEECCTTIIOONN.. ppaaggee 77,, lliinnee 99::

PPrroobblleemm::

TThhee ccuurrrreenntt ddrraafftt ddeessccrriibbeess oonnee tthhee mmeecchhaanniissmmss ssppeecciiffiieedd iinn iitt aass
""LLeeaasstt PPrriivviilleeggee"" wwhhiicchh iiss iinnccoorrrreecctt.. ""LLeeaasstt PPrriivviilleeggee"" iiss aa
ggeenneerraall pprriinncciippllee rreellaatteedd ttoo aacccceessss ccoonnttrrooll rraatthheerr tthhaann aa mmeecchhaanniissmm..
IInn ffaacctt,, tthhee ddeeffiinniittiioonn ggiivveenn iinn tthhee ssttaannddaarrdd ((pp.. 9911,, ll.. 227744))
ccaallllss iitt aa pprriinncciippllee rraatthheerr tthhaann aa mmeecchhaanniissmm..

AAccttiioonn::

RReeppllaaccee lliinnee 99 wwiitthh:: ""((33)) EEnnffoorrcceemmeenntt ooff LLeeaasstt PPrriivviilleeggee""

--

@ 33..11 oo 2244
2244.. SSeecctt 33..11 OOBBJJEECCTTIIOONN.. ppaaggee 2277,, lliinnee 1133::

PPrroobblleemm::

""dduurriinngg pprroocceessss ooff cchhaannggiinngg AACCLL"" iiss vvaagguuee..
CCoouulldd bbee rreeaadd aass tthhee dduurraattiioonn ffrroomm aaccll__rreeaadd tthhrroouugghh aaccll__wwrriittee..

AAccttiioonn::

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 369

SShhoouulldd ssttaattee ""wwhhiillee AACCLL iiss bbeeiinngg wwrriitttteenn ((aaccll__wwrriittee))""..

--

@ 33..33 ee 2255
2255.. SSeecctt 33..33..11 EEDDIITTOORRIIAALL CCOOMMMMEENNTT.. ppaaggee 2299,, lliinnee 6688::

PPrroobblleemm::

TThhee ttwwoo pprreevviioouuss sseenntteenncceess ddeessccrriibbee tthhee ""AACCLL__UUSSEERR__OOBBJJ eennttrryy"" aanndd
tthhee ""AACCLL__GGRROOUUPP__OOBBJJ eennttrryy"".. LLiinnee 6688 ddeessccrriibbeess ""AACCLL__OOTTHHEERR__OOBBJJ"",,
tthhee wwoorrdd ""eennttrryy"" sshhoouulldd bbee aaddddeedd ffoorr ccoonnssiisstteennccyy..

AAccttiioonn::

cchhaannggee ""AACCLL__OOTTHHEERR__OOBBJJ"" ttoo ""AACCLL__OOTTHHEERR__OOBBJJ eennttrryy""

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

370 F Ballot Instructions

Sample Response (continued):

JJoosseepphh BBaallllootteerr ((999999))112233--44556677 ppaaggee 55 ooff 1177..
EEMMAAIILL:: jjmmbb@mmyyccoommpp..ccoomm FFAAXX:: ((999999))889900--11223344

--

@ 44..55 cc 2266
2266.. SSeecctt 44..55..11..11 CCOOMMMMEENNTT.. ppaaggee 9922,, lliinnee 883366::

PPrroobblleemm::

TThheerree iiss nnoo iinnttrroodduuccttiioonn ttoo ttaabbllee 44--11..

AAccttiioonn::

AAdddd bbeeffoorree lliinnee 883366 ""TThhee aauudd__eevv__iinnffoo__tt ssttrruuccttuurree sshhaallll ccoonnttaaiinn aatt
lleeaasstt tthhee ffoolllloowwiinngg ffiieellddss::""

--

@ 66..55 oo 2277
2277.. SSeecctt 66..55..77..22 OOBBJJEECCTTIIOONN.. ppaaggee 118811,, lliinnee 444499--445500::

PPrroobblleemm::

CCaann tthhiiss ""mmuusstt"" bbee tteesstteedd ??
IIss tthhiiss rreeaallllyy nneeeeddeedd ssiinnccee tthhee ffoorrmmaatt ooff tthhee llaabbeell iiss uunnddeeffiinneedd
aanndd nnoo ffuunnccttiioonnss aarree pprroovviiddeedd ttoo aacccceessss tthhee iinnddiivviidduuaall ccoommppoonneennttss
((ssoo tthhaatt aa ccoommppaarriissoonn ccoouulldd bbee mmaaddee)).. TThhiiss sseeeemmss ttoo bbee aa ccoommmmeenntt
tthhaatt ccoouulldd jjuusstt aass eeaassiillyy bbee aapppplliieedd ttoo mmoosstt ootthheerr mmaacc ffuunnccttiioonnss,,
ssaayy mmaacc__ffrreeeellaabbeell ffoorr eexxaammppllee..

AAccttiioonn::

SSuuggggeesstt eeiitthheerr mmoovviinngg tthhiiss iinnttoo tthhee MMAACC iinnttrroodduuccttoorryy sseeccttiioonn,,
ssttrriikkiinngg oorr cchhaannggiinngg ""mmuusstt"" ttoo ""sshhoouulldd"" oorr ""aarree aaddvviisseedd""..

--

Thank you for your cooperation and assistance in this important balloting pro-
cess.

Lynne M. Ambuel
Chair, POSIX Security Working Group

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

B.27 Information Labeling 371

Identifier Index

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

G Identifier Index 373

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

374 G Identifier Index

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

G Identifier Index 375

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

376 G Identifier Index

Topical Index

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

378 Topical Index

Contents

SECTION PAGE

Section 1: Revisions to the General Section 1

Section 2: Revisions to Terminology and General
Requirements . 3

Section 3: Revisions to Process Primitives 17

Section 4: Revisions to Process Environment 21

Section 5: Revisions to Files and Directories 23

Section 6: Revisions to Input and Output Primitives 35

Section 8: Revisions to C Programming Language Specific
Services . 37

Section 23: Access Control Lists 39
23.1 General Overview 39

23.1.1 ACL Entry Composition 40
23.1.2 Relationship with File Permission Bits 41
23.1.3 Default ACLs 42
23.1.4 Associating an ACL with an Object at Object Creation

Time 42
23.1.5 ACL Access Check Algorithm 43
23.1.6 ACL Functions 44
23.1.7 POSIX.1 Functions Covered by ACLs 46

23.2 Header . 47
23.2.1 acl_entry_t 47
23.2.2 acl_perm_t 48
23.2.3 acl_permset_t 48
23.2.4 acl_t 48
23.2.5 acl_tag_t 48
23.2.6 acl_type_t 49
23.2.7 ACL Qualifier 49
23.2.8 ACL Entry 50

23.3 Text Form Representation 50
23.3.1 Long Text Form for ACLs 50
23.3.2 Short Text Form for ACLs 52

23.4 Functions . 52
23.4.1 Add a Permission to an ACL Permission Set 53
23.4.2 Calculate the File Group Class Mask 53
23.4.3 Clear All Permissions from an ACL Permission

Set 55
23.4.4 Copy an ACL Entry 55
23.4.5 Copy an ACL From System to User Space 56

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

ii

SECTION PAGE

23.4.6 Copy an ACL From User to System Space 57
23.4.7 Create a New ACL Entry 58
23.4.8 Delete a Default ACL by Filename 59
23.4.9 Delete an ACL Entry 61
23.4.10 Delete Permissions from an ACL Permission

Set 61
23.4.11 Duplicate an ACL 62
23.4.12 Release Memory Allocated to an ACL Data

Object 63
23.4.13 Create an ACL from Text 64
23.4.14 Get an ACL Entry 65
23.4.15 Get an ACL by File Descriptor 66
23.4.16 Get an ACL by Filename 67
23.4.17 Retrieve the Permission Set from an ACL

Entry 69
23.4.18 Get ACL Entry Qualifier 70
23.4.19 Get ACL Entry Tag Type 71
23.4.20 Initialize ACL Working Storage 72
23.4.21 Set an ACL by File Descriptor 73
23.4.22 Set an ACL by Filename 74
23.4.23 Set the Permissions in an ACL Entry 76
23.4.24 Set ACL Entry Tag Qualifier 77
23.4.25 Set ACL Entry Tag Type 78
23.4.26 Get the Size of an ACL 79
23.4.27 Convert an ACL to Text 80
23.4.28 Validate an ACL 81

Section 24: Audit . 83
24.1 General Overview 83

24.1.1 Audit Logs 83
24.1.2 Audit Records 84
24.1.3 Audit Interfaces 85
24.1.4 Summary of POSIX.1 System Interface

Impact 89
24.2 Audit Record Content 89

24.2.1 Auditable Interfaces and Event Types 90
24.2.2 Audit Event Types and Record Content 92

24.3 Header . 106
24.3.1 aud_evinfo_t 108
24.3.2 aud_hdr_t 108
24.3.3 aud_id_t 108
24.3.4 aud_info_t 108
24.3.5 aud_obj_t 109
24.3.6 aud_obj_type_t 110
24.3.7 aud_rec_t 110
24.3.8 aud_state_t 110
24.3.9 aud_status_t 110
24.3.10 aud_subj_t 111

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

iii

SECTION PAGE

24.3.11 aud_time_t 111
24.4 Functions . 112

24.4.1 Copy an Audit Record From System to User
Space 112

24.4.2 Copy an Audit Record From User to System
Space 113

24.4.3 Delete Set of Event-specific Data from a
Record 114

24.4.4 Delete Item from Set of Event-specific Data 115
24.4.5 Delete Header from an Audit Record 116
24.4.6 Delete Item from Audit Record Header 117
24.4.7 Delete Set of Object Attributes from a Record 118
24.4.8 Delete Item from Set of Object Attributes 118
24.4.9 Delete Set of Subject Attributes from a

Record 119
24.4.10 Delete Item from Set of Subject Attributes 120
24.4.11 Duplicate an Audit Record 121
24.4.12 Map Text to Event Type 122
24.4.13 Map Event Type to Text 123
24.4.14 Release Memory Allocated to an Audit Data

Object 124
24.4.15 Get All Audit Event Types 125
24.4.16 Get Audit Record Event-specific Data

Descriptor 126
24.4.17 Examine Audit Record Event-specific Data 127
24.4.18 Get an Audit Record Header Descriptor 129
24.4.19 Examine an Audit Record Header 130
24.4.20 Get a Process Audit ID 132
24.4.21 Get an Audit Record Object Descriptor 133
24.4.22 Examine Audit Record Object Data 134
24.4.23 Get an Audit Record Subject Descriptor 137
24.4.24 Examine Audit Record Subject Data 138
24.4.25 Map Text to Audit ID 141
24.4.26 Map Audit ID to Text 141
24.4.27 Create a New Audit Record 142
24.4.28 Add Set of Event-specific Data to Audit

Record 143
24.4.29 Add Item to Set of Event-specific Data 144
24.4.30 Add Header to Audit Record 146
24.4.31 Add Item to Audit Record Header 147
24.4.32 Add Set of Object Attributes to Audit Record 149
24.4.33 Add Item to Set of Object Attributes 150
24.4.34 Add Set of Subject Attributes to Audit Record 151
24.4.35 Add Item to Set of Subject Attributes 153
24.4.36 Read an Audit Record 154
24.4.37 Convert an Audit Record to Text 156
24.4.38 Get the Size of an Audit Record 157

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

iv

SECTION PAGE

24.4.39 Control the Generation of Audit Records 158
24.4.40 Validate an Audit Record 159
24.4.41 Write an Audit Record 160

Section 25: Capabilities 163
25.1 General Overview 163

25.1.1 Major Features 164
25.1.2 Capability Functions 167

25.2 Header . 169
25.3 Text Form Representation 175

25.3.1 Grammar 176
25.4 Functions . 177

25.4.1 Initialize a Capability State in Working
Storage 178

25.4.2 Copy a Capability State From System to User
Space 178

25.4.3 Copy a Capability State From User to System
Space 179

25.4.4 Duplicate a Capability State in Working
Storage 180

25.4.5 Release Memory Allocated to a Capability State in Work-
ing Storage 181

25.4.6 Convert Text to a Capability State in Working
Storage 182

25.4.7 Get the Capability State of an Open File 183
25.4.8 Get the Capability State of a File 184
25.4.9 Get the Value of a Capability Flag 185
25.4.10 Obtain the Current Process Capability State 186
25.4.11 Allocate and Initialize a Capability State in Working

Storage 187
25.4.12 Set the Capability State of an Open File 188
25.4.13 Set the Capability State of a File 189
25.4.14 Set the Value of a Capability Flag 190
25.4.15 Set the Process Capability State 191
25.4.16 Get the Size of a Capability Data Record 192
25.4.17 Convert a Capability State in Working Storage to

Text 193

Section 26: Mandatory Access Control 195
26.1 General Overview 195

26.1.1 MAC Concepts 195
26.1.2 MAC Policy 196

26.2 Header . 200
26.2.1 mac_t 201

26.3 Functions . 201
26.3.1 Test MAC Labels for Dominance 201
26.3.2 Test MAC Labels for Equivalence 202
26.3.3 Free MAC Label Storage Space 203

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

v

SECTION PAGE

26.3.4 Convert Text MAC Label to Internal
Representation 203

26.3.5 Get the Label of a File Designated by a File
Descriptor 204

26.3.6 Get the Label of a File Designated by a
Pathname 205

26.3.7 Get the Process Label 207
26.3.8 Compute the Greatest Lower Bound 207
26.3.9 Compute the Least Upper Bound 208
26.3.10 Set the Label of a File Identified by File

Descriptor 209
26.3.11 Set the Label of a File Designated by

Pathname 211
26.3.12 Set the Process Label 212
26.3.13 Get the Size of a MAC Label 213
26.3.14 Convert Internal MAC Label to Textual

Representation 214
26.3.15 Label Validity 215

Section 27: Information Labeling 217
27.1 General Overview 217

27.1.1 Information Label Concepts 217
27.1.2 Information Label Policy 218

27.2 Header . 221
27.2.1 inf_t 221

27.3 Functions . 221
27.3.1 Initial Information Label 222
27.3.2 Test Information Labels For Dominance 223
27.3.3 Test Information Labels For Equivalence 223
27.3.4 Floating Information Labels 224
27.3.5 Free Allocated Information Label Memory 225
27.3.6 Convert Text Label to Internal

Representation 226
27.3.7 Get the Information Label of a File Identified by File

Descriptor 227
27.3.8 Get the Information Label of a File Identified by

Pathname 228
27.3.9 Get the Process Information Label 229
27.3.10 Set the Information Label of a File Identified by File

Descriptor 230
27.3.11 Set the Information Label of a File Identified by

Pathname 231
27.3.12 Set the Process Information Label 232
27.3.13 Get the Size of an Information Label 233
27.3.14 Convert Internal Label Representation to

Text 234
27.3.15 Information Label Validity 235

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

vi

SECTION PAGE

Annex B (informative) Revisions to Rationale and Notes 237
B.1 Revisions to Scope and Normative References 237
B.2 Revisions to Definitions and General Requirements 242

B.2.10 Security Interface 243
B.3 Revisions to Process Primitives 243
B.23 Access Control Lists 249

B.23.1 General Overview 251
B.23.2 ACL Entry Composition 252
B.23.3 Relationship with File Permission Bits 255
B.23.4 Default ACLs 264
B.23.5 Associating an ACL with an Object at Object Creation

Time 268
B.23.6 ACL Access Check Algorithm 271
B.23.7 ACL Functions 273
B.23.8 Header 279
B.23.9 Misc Rationale 279

B.24 Audit . 280
B.24.1 Goals 280
B.24.2 Scope 285
B.24.3 General Overview 286
B.24.4 Audit Logs and Records 288
B.24.5 Audit Event Types and Event Classes 296
B.24.6 Selection Criteria 296
B.24.7 Audit Interfaces 297

B.25 Capability . 306
B.25.1 General Overview 306
B.25.2 Major Features 312
B.25.3 Function Calls Modified for Capability 316
B.25.4 Capability Header 317
B.25.5 New Capability Functions 322
B.25.6 Examples of Capability Inheritance and

Assignment 325
B.25.7 Capability Worked Examples 326

B.26 Mandatory Access Control 331
B.26.1 Goals 331
B.26.2 Scope 332
B.26.3 File Object Model 334
B.26.4 Direct Write-up 335
B.26.5 Protection of Link Names 336
B.26.6 Pathname Search Access 336
B.26.7 Check-Access-on-Open Only 337
B.26.8 Creating Upgraded Directories 338
B.26.9 Objects without MAC labels 338
B.26.10 Error Return Values 339
B.26.11 Valid MAC Labels 340
B.26.12 Modification of MAC labels 341

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

vii

SECTION PAGE

B.26.13 Least upper bounds and greatest lower
bounds 341

B.26.14 Functions returning MAC labels 341
B.26.15 Multi-level directories 342
B.26.16 The Directory Model 344
B.26.17 File Tranquillity 344
B.26.18 Process Tranquillity 345
B.26.19 Unnamed Pipes 345
B.26.20 FIFOs 346
B.26.21 Inclusion of mac_set_fd() 346
B.26.22 Inclusion of mac_size() 346
B.26.23 Restrictions on Signals 347
B.26.24 Alteration of atime 347
B.26.25 Multi-Label Untrusted Process Hierarchies 347
B.26.26 File Status Queries 348

B.27 Information Labeling 348
B.27.1 Goals 348
B.27.2 Scope 349
B.27.3 Concepts Not Included 350
B.27.4 Data Labeling Policies 350
B.27.5 Initial Information Labels 356
B.27.6 Information Label Validity 357
B.27.7 Control Information 358
B.27.8 Relationship between ILs and Mandatory Access Control

Labels 358
B.27.9 Additional Uses of Information Labeling 359

Annex F (informative) Ballot Instructions 361

Identifier Index . 373

Topical Index . 378

TABLES

Table 23-1 − ACL Data Types 47

Table 23-2 − acl_perm_t Values 48

Table 23-3 − acl_tag_t Values 49

Table 23-4 − acl_type_t Values 49

Table 23-5 − ACL Qualifier Constants 49

Table 23-6 − ACL Entry Constants 50

Table 24-1 − Interfaces and Corresponding Audit Events 91

Table 24-2 − Audit Data Types 107

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

viii

Table 24-3 − Other Constants 107

Table 24-4 − aud_info_t members 108

Table 24-5 − Values for aud_info_type Member 109

Table 24-6 − aud_obj_type_t Values 110

Table 24-7 − aud_state_t Values 110

Table 24-8 − aud_status_t Values 111

Table 24-9 − aud_time_t Members 111

Table 24-10 − aud_hdr_info_p Values 131

Table 24-11 − aud_obj_info_p Values 135

Table 24-12 − aud_subj_info_p Values 139

Table 25-1 − POSIX.1 Functions Covered by Capability
Policies . 166

Table 25-2 − Capability Data Types 169

Table 25-3 − cap_flag_t Values 169

Table 25-4 − cap_flag_value_t Values 169

Table 25-5 − cap_value_t Values 170

Table 25-6 − cap_value_t Values for Mandatory Access
Controls . 173

Table 25-7 − cap_value_t Values for Information Labels 174

Table 25-8 − cap_value_t Values for Audit 174

Table 26-1 − POSIX.1 Functions Covered by MAC File Policies 199

Table 26-2 − POSIX.1 Functions Covered by MAC Process
Policies . 200

Table 27-1 − POSIX.1 Functions Covered by Information Label File
Policies . 220

Table 27-2 − POSIX.1 Functions Covered by Information Label Process
Policies . 221

Table B-3 − Other System Functions Potentially Affected by Capability
Policies . 317

WITHDRAWN DRAFT. All Rights Reserved by IEEE.
Preliminary—Subject to Revision.

ix

