TAS VI PL CorePlus

Randall Judd

This document is a description of, and a manua for, an implementation of the VSIPL
specification by the Tactical Advanced Signal Processing Common Operating Environmnet
working group. Thiswork is supported by PEO (USW) PM$411, Clair Guthrie.

DRAFT
January 24, 2001

Space and Naval Warfare Systems Center
San Diego
D857

This document is the work of a U.S. Government employee done as part of his official duties. No Copyright subsists herein.
Randall Judd’swork on VSIPL is released to the public (Distribution A).

For TASP VSIPL Documentation and Code neither the United States Government, the United States Navy, nor any of their
employees, makes any warranty, express or implied, including the warranties of merchantability and fitness for a particular
purpose, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

DRAFT

DRAFT

TASP VSIPL Core Plus

DRAFT

TABLE OF CONTENTS ii
Required Core PUBIIC TYPeS. . .. oot e e e Vii
Core FUNCLION LISt iX

CHAPTER 1 1

Introduction To TASP VSIPL Core Plus Implementation
INErOTUCTION.o e e e e 1
Code HIStOrY . . oo 1
TASPandthe TASPCOEot e e 1
TheVSIP Library Effort andthe VSIPL Forum. 2
The TASPVSIPL DemonstrationLibrary 2
TheCoreProfile. 3
VSIPRUNdamentals 3
VSIPL Initialization and Finalization. 3
VSIPL Objectsand Data TYPeSo v v e e 4
A SimpleFirst EXample 5
Addtwovectorsexample. e 5
LISt Of ACTONYMS . . . oottt e e e e e e e 8
CHAPTER 2 9
Functions
INErOTUCTION. e e 9
Required Core PUbliC TypesS.o 11
Core FUNCLION LIStt e 18
CHAPTER 3 97

Introduction to VSIPL Programming using the Core Lite Profile

INtrOdUCHION. 97
SUPPOIt FUNCLIONS. . . . o et 97

TASPVSIPL Core Plus DRAFT iii

DRAFT

BIOCK Creationt e 97
VECtor Creation.ot 97
Other methods of view creation and view modification. 98
Viewing the Real and Imaginary portions of a Complex Vector 100
VSIPL Inputand Output Methods i 102
Rebinding user datatoauserblock L 103
HOEXamMple 103
Complex User Data.o 106
Scalar FUNCHIONSo e e e 107
VSIPL Elementwise FUNCLIONS. i e 107
Random Number Generationt 107
Signal Processing FUNCLIONS.o 109
TheFourier Transform e e et et e 109
TheFiniteImpulse Response Filter 114
SUMMAIY . . .ot e e e e e e e e e e e 115
CHAPTER 4 121

Introduction to VSIPL Matrices

INErOTUCTION. e e e e 121
Matrix Fundamentals 121
A M X o 121
MaTTX VIBWS et e 122
MatrixX Creation.ot 123
Extracting Vector viewsfromMatrix Viewst 124
Fundamental Matrix Calculation i 124
Simple Matrix Manipulations. i 125
A SIMplePrint FUNCLIONo 125
Genera Elementwise Matrix Operation Using Row or Column View 126
CHAPTER 5 133

Introduction to Vector Index Views, Boolean views, Gather,

Scatter, and Indexbool

INtrOdUCTION. . . . oot 133
VECIOr INAEX VIBWS . ..ot e e e e e e e 133
Vector Boolean Views e 133
A first exampleusing the scalar vector index. 134

Boolean and Vector Index VIiews.o e 136

Gather and Scatter. 138

iv DRAFT TASP VSIPL Core Plus

DRAFT

CHAPTER 6 141
Signal Processing Functionality in the VSIPL Core Profile

INtrOdUCTION.o 141
WINAOW Creationt e e e e e e 141
Convolution, Correlationand FIRFiltering 145
(@04 1= = 1o o 145
ConNVOIULION . . 150
Fourier Transforms. 157
Wavenumber/Frequency plot o 157
Demonstration for i 157
CHAPTER 7 167

Linear Algebra Functionality in the VSIPL Core Profile

INErOTUCTION. e e 167
Simple Matrix-Matrix and Vector-Matrix Operations. 167
SIMPle SOIVEIS . .. 168
Covariance Problem 168
Linear Least SquaresProblem 168
TOEPltZ SYyStem . ..o 168
LU decompositionfunctionset. i 169
Cholesky Decomposition Functionset., 171
QR Decomposition Function set. 171
TheQproduct function. e 173
TheRsolver function. ... e 176
Final Remarksfor Linear Algebra.. ... 177
INDEX 179
Appendix A

VSIPL Fundamentals

TASPVSIPL Core Plus DRAFT

Vi

DRAFT

DRAFT

TASP VSIPL Core Plus

DRAFT

REQUIRED CORE PUBLIC TYPES

aghint 11
bias................. L. 11
chol _attr 11
cmplx_mem ... 12
convid attr 12
corrld attr 12
fir attr 12
fitattr ... 13
fftdir ... 13
fft place 13
fftm attr 13
luattr ... 14
0= 14
Mal_ OpP ..o 14
mat side....................... 14
mattr 14
memory _hint 15
obj state ... 15
grd_attr 15
gd prob L 16
grd gopt 16
Support region 16
symmetry 16
vattr ... 16
NG .ot 17

TASP VSIPL Core Plus DRAFT vii

DRAFT

viii DRAFT TASP VSIPL Core Plus

TASP VSIPL Core Plus

CORE FUNCTION LIST

ACOS. . . 18
add. ... 18
aldestroy. 19
altrue ... 20
and. 20
anytrue. 20
A e 20
ASIN o 21
aan ... 21
aan2 ... 21
bind........................... 21
blackman....................... 23
blockadmit. 23
blockbind. 23
blockcreate 24
blockdestroy 25
blockfind....................... 25
blockrebind..................... 26
blockrelease. 27
cheby........... 28
chold.............. 28
cloneview 29
cmplX. ..o 30
cip. oo 30
(607710 15 o [31
CMaXMQOS . v v vvvee e e eeeeie e 32
cmaxmagsgval. 32
CMINMOST .+« v vveeee e ee e 32
cminmagsgval 33
COPY - v et e 33
COVIEW .. oo 34
(010 o | 34
(00]17/0) A/ 35
corrdlate. 36
COS. it e e 38
COVSOl ..ot 38
Create. 38
cstorage. . ..o 39
destroy. ... 39
diagview 40
div....oo 40
dot....... ..o 41
euler. 42
DRAFT

DRAFT

X e e 42
explo. ... 42
EXPOAVYT. « o vee e 43
. 43
fftm .. 45
fill oo 48
findlize......................... 48
fir . 49
gather........ L 50
OEMP . oot 51
OEMS .o 52
0 52
getattrib. 53
getblock. 54
getcollength. 54
getcolstridel 54
getlength 55
getoffset. L 55
getrowlength.................... 55
getrowstride. 56
getstride. 56
hanning........................ 56
histo..............ciiia. 57
hypot........ 57
] 7= 57
IMagVIieWw.ovvivnnn.... 58
indexbool. 58
NIt .. 58
invelip. ... 58
kaiser..........ocoiiiiii. 59
llsgsolcccoivi 60
log. ..o 60
[0g10.o 60
logical, 60
lud. ... 62
Mag ..ot 63
matindex 64
MAX . et 64
MaXMQG. ..o 65
maxmgval, 65
maxval............. 65
meansgval 65
meanval............c..iiii... 66

CORE FUNCTION LIST

mherm. ..., 66
MIN .. e 66
MINMQJ. .. 66
minmgval 67
minval 67
modulate 67
Mprodcooiii 68
Mrans. 69
mul 70
1< o 72
NOL.o 73
OF . e 73
OULEY .. e 73
polar 74
put. 74
putattrib. 75
putcollength. 76
putcolstride. 76
putoffset 77
putrowlength. 77
putrowstride 78
putstride. 78
putlength....................... 78
ard. ..o 79
FAMP .o 82
rand. ... 83
real. 84
realview. 85
1= o | o 85
Fect. . .o 85
FOWVIEW. . .\ ov e 86
FSOrt. .o 86
scatter 87
SN 87
0 87
SOt 87
sub. ... 88
SUbVIeW 90
sumsgval ... 91
sumval. ... 91
SWaAD « oo 91
tan. 92
Ternary Functions. 92

DRAFT

toepsol. 9
transview. 95
D (0] S 95

DRAFT

TASP VSIPL Core Plus

DRAFT

CHAPTER 1 Introduction To TASP VSIPL Core
Plus Implementation

I ntroduction

This book describes the functionality of the TASP Core Plusimplementation of the Vector/
Signal/Image processing (VSIP) Library (VSIPL) as developed by the TASP (Tactical
Advanced Signal Processing) COE (Common Operating Environment) effort.

The Core Plus implementation contains all the functionality of the VSIPL Core profile plus
other functionality of the VSIPL specification. It is not currently a complete implementation
of VSIPL but the goal isto one day have a complete library.

This book is not a copy of, nor areplacement for, the VSIPL specification.

Code History

The original code basisfor the library was a pre-alpha (incomplete) version of the VSIPL Ref-
erence library produced by Hughes Research Laboratory of Malibu, Californiain December
of 1997. Thislibrary has been greatly reorganized and modified to fit aformat more suitable to
the author’s vision of a VSIP library, and aso the author’s programing ability. The original
December rel ease was template based using m4 as a code generator. The author’s method was
to copy the generated C files and header files and modify them directly, instead of trying to
maintain atemplate method he did not understand. In addition many changes have been made
to the library to add performance, and to keep up with the changing V SIPL specification.

TASP and the TASP COE

The TASP group started out as an effort by NAVSEA PMS 428 (Now PMS 411) to do a pro-
curement of COTS signal processing hardware for DOD use similar to the TAC program. One
of the goals of the TASP group was to foster a Common Operating Environment (COE) for
signal processing. Without a COE for signal processing the software upkeep cost of COTS
signal processing hardware will be prohibitive.

In the last few years the methods used by DOD to procure hardware have changed, and even-
tually the TASP effort for hardware procurement was abandoned. However the COE effort is
still important and has survived. One of the elements of a COE for Signal Processing is acom-
mon signal processing library supported by multiple vendors. The TASP group has decided to
support the VSIP Library Forum effort to produce a de facto signal processing standard, and
eventually an actual standard, for asignal processing library. If successful VSIPL will be used
for the TASP COE signal processing library.

TASPVSIPL Core Plus DRAFT 1

DRAFT

TheVSIP Library Effort and the VSIPL Forum

The VSIP library (VSIPL) effort wasinitially funded by DARPA and headed by Hughes
Research Lab (HRL) (David Schwartz). HRL has changed their name and are now called
HRL Laboratories, LLC. HRL no longer stands for Hughes Research L ab.

The main goal of the VSIPL Forum isto produce asignal processing library specification suit-
ablefor awide variety of embedded hardware. The specification will alow vendors to write
an efficient and fast library implementation for their product, and at the same time will allow
V SIPL application programers to write portable code which will run on avariety of VSIPL
compliant hardware without major porting efforts.

Many groups have participated in the VSIPL Forum. For amore complete list of participants
one should refer to the VSIPL specification Acknowledgment section.

The primary external funding for the forum was from DARPA, and from TA SP; however most
companies participated with no external funding.

The TASP VSIPL Demonstration Library

It should be made clear that this document is a product of the TASP effort, and the associated
library isaso a TASP effort. These products are considered to be separate from the VSIPL
effort. We are not trying to do a separate specification, of course, but just as vendors will write
their own VSIPL compliant library for their product as independent agents, without the desire
for, or need of, the VSIPL Forum telling them how to go about their business, so too this effort
isindependent of the VSIPL forum.

Since the author is an active participant of the VSIPL Forum people may get the idea that this
document, or the associated library effort have somehow been blessed as part of the specifica-
tion. Thisis not the case. The author felt the need for a certain amount of independencein
developing thislibrary in order to produce a product for demonstration purposes at the earliest
time. As such he felt it was necessary to make design decisions independent of any other

agent.

For this reason people should be cautious and view thislibrary aswhat it is. The advantage of
being independent is the ability to get alot of work done. The disadvantage is you may screw
up the implementation, and depart from the specification. Thisimplementation is not well
tested. It attempts to be VSIPL compliant, but it may have some problems. Many functions
were completed with an eye toward getting something on the road versus writing areally good
function. Participants who find departures from the V SIPL specification within this document,
or within the library, or who find software or algorithm errors, are encouraged to contact the
author viaemail (judd@spawar.navy.mil).

Astime goes by, if VSIPL is successful, the TASP V SIPL implementation may eventually
become very good; or if another better public domain VSIPL implementation becomes avail -
able, thislibrary may become unused. In any case view the results of every function with a
certain amount of caution. No claims are made that the associated library, or this document,
are good for any purpose.

2 DRAFT TASPVSIPL Core Plus

DRAFT

The Core Profile

The entire function list defined by the VSIPL specification is very large, and it would be pro-
hibitively expensive to produce optimized code on embedded hardware for the entire library.
Several of the signal processing hardware and software vendors proposed a profile of the
library that was very small and was, they felt, usable and relatively inexpensive to produce.
This profile, called Core Lite, has only 126 required functions. A somewhat larger profile
which includes 511 functions was a so defined and has been called Core. Thisbook coversthe
TASP VSIPL implementation of the Core Profile. For readers who have read the Core Lite
Book the first two chapters of this book are very similar, except that chapter two will cover
many more function prototypes.

VSIP Fundamentals

A little background into the V SIP methods used for defining data types and functionsis
needed before the function list and programing methods are introduced. Some of thisinforma-
tion is specific to the method used within the TASP VSIPL implementation, and it is not nec-
essarily true that other implementation would use the same method. The VSIPL specification
tries to abstract the method of achieving the end away from the end itself. Aslong as a vendor
uses the proper API and meets all the rules, the exact method for achieving the correct result is
not of concern to VSIPL. However talking in abstract terms sometimes leads to confusion, so
the author will be alittle more direct in talking about how the TASP V SIPL implementation
achieved the desired result. This should make it easier for the user to understand the imple-
mentation and how to use VSIPL. After one library islearned, any other compliant libraries
used will be the same, no matter what internal (private) methods were used to define the
VSIPL objects.

One should not bring excess programing definitions to this document. VSIPL is an object
based method, but it is not object oriented in the strict sense. The author is not knowledgeable
of object oriented terminology or programing. The author knows how the forum uses certain
terms, and that there are regular discussions (or arguments) about using some terms improp-
erly. For the purpose of this document the author will attempt to explain how he is using the
term, and hopefully the reader will not be to critical.

VSIPL Initialization and Finalization

Late in the specification process it was decided to require that the VSIP library beinitialized
before any VSIPL call is made in an application and that the VSIP library be finalized before
the application exits. The init/finalize is done with function callsvsi p_i ni t and

vsi p_finalize.

Although these two calls are required at the begining and end of the application braketing the
VSIPL code, they may be used at any place in the application. There must be afinalize for
every initialization. This allows the application programer to write library functions using
VSIPL internally, but with no explicit external VSIPL requirement.

Note that the init/finalize requires that all VSIPL objects be destroyed before the finalize is
called. So as a practical matter all VSIPL objects created after a VSIP initialize within a par-
ticular code flow should be destroyed before the function exits. Thisis a new requirement.

TASPVSIPL Core Plus DRAFT 3

DRAFT

Beforeinit/finalize were included in the specification it was only recommended that all VVSIPL
objects be destroyed before the application exited; however, to be compliant with the init/
finalize requirement all VSIPL objects must be destroyed before the final finalize call and the
application exits. Thisis an error in development mode.

For the TASP VSIPL implementation vsi p_i nit andvsi p_fi nal i ze don’t do anything. But
they must be included in aVSIPL compliant application. If a development mode library is
used then the application will break if the functions are not included.

VSIPL Objectsand Data Types
Roughly speaking VSIPL has three basic types.

Thefirst basetypeisaVSIPL scalar. Frequently these are just typedefs of ANSI C typesto a
VSIPL naming convention. For instance vsip_scalar_f isan ANSI C float (float), and
vsip_scalar_i isan ANSI C integer (int). The author feelsit isimportant that people use the
VSIPL typesin their programing. Because every function within VSIPL is strongly typed this
will keep help keep you honest and will reduce errors. In addition if the need arises to port
some code from say afloat library to adouble library it ssmplifies the porting. Thiswill
become more obvious as you learn more about the library. In VSIPL Core there are scalars of
type vector index, matrix index, boolean, float, integer, and complex float.

The next base type isablock. A block is equivalent to amemory storage area of a particular
datatype and some size. The datais stored in sequential element locations, as far as the appli-
cation programer is concerned. In TASP VSIPL ablock object is actually an abstract datatype
(ADT) with variablesto hold the block length, information about the block’s state (more about
thislater) and a pointer to some physical memory. For complex blocks (in TASP VSIPL) there
are actually two pointers to two real blocks, and information concerning the data layout of
those blocks. All you need to know about blocks to program portable code is that from the
point of view of the VSIPL functions that work on blocks they are a chunk of sequential

VSIPL elements of a particular type, the first element location being at 0 (zero) and the last

element being at N —1 where N isthe size of the block. In TASP VSIPL Core there are
blocks of type float, complex float, integer, vector index, matrix index, and boolean.

The next, and final basic type, isaview. In TASP VSIPL Core, there are only views of type
vector and matrix float, vector and matrix complex float, vector integer, vector vector index,
vector matrix index, and vector boolean. The view, similar to the block, is an abstract data
type. The view holds al the information needed to access some particular portion of a blocks
data. For the TASP VSIPL implementation the view has ablock pointer which is set equal to
the block whose data it references. All datais referenced through this block pointer. In addi-
tion the view holds an offset from the beginning of the block (starting at zero), alength or
lengths (of the vector or matrix) and a stride or strides (along the view dimensions) through
the block. The stride indicates the distance between consecutive view elements within the
block for a particular dimension. The stride, along with the offset is used in conjunction with
the vector or matrix indices to map the vector or matrix onto the block. A stride of 1 isevery
element, astride of -1 is also every element, but the view goes through the block in the oppo-
sitedirection. A stride of zero will select a particular element as a constant vector at the offset
location.

4 DRAFT TASPVSIPL Core Plus

DRAFT

In order to produce portable V SIPL application code the application programer must use only
VSIPL function calls to use or modify blocks or views. To enforce this all the abstract data
types used by VSIPL for itsinternal workings are created as incomplete data types. Because
of this, unless the private header files where the blocks and view data types are completed are
available, the user must use VSIPL function calls. The use of abstract data types and incom-
plete type definitions leads one to call views and blocks objects.

For more information on VSIPL design requirements see Appendix A, or obtain the VSIPL
specification .

A Simple First Example

Except for the list of functions in Chapter 2, and Appendices which may cover any topic, the
rest of this document will be done in atutorial fashion. In general the method used will be to
produce a simple example with an exhaustive explanation. Within the explanation many
important principles for successful VSIPL programs will be explained. All examplesin this
document will be limited to code that will compile on VSIPL libraries that conform to the
Core Profile

Add two vectors example.
If this were being done in Matlab this example would look as follows:

>> A=[0:7]
A=

0 1 2 3 4 5 6 7
>> B(A+1)=5
B=

5 5 5 5 5 5 5 5
>> C=A+B
C=

5 6 7 8 9 10 11 12

Now letsdo thisin VSIPL Code:

Example 1

TASPVSIPL Core Plus DRAFT 5

DRAFT

1 #i ncl ude<st di 0. h>

2 #i ncl ude<vsi p. h>

3 #define N8 /* the length of the vector */
4

5 int main()

6 { int init =vsip_init((void*)0);

7 void VU vprint_f(vsip_vviewf*);

8 vsi p_vvi ew f *A = vsip_vcreate f(N, 0),
9 *B = vsip_vcreate_f(N, 0),
10 *C = vsip_vcreate f(N, 0);
1 vsip_vranp _f (0,1, A;

12 printf("A =\n");VU.vprint_f(A);

13

14 vsip_vfill _f(5,B);

15 printf("B =\n"); VU vprint_f(B);

16

17 vsi p_vadd f(A B, O;

18 printf("C=\n");VU.vprint_f(C;

19

20 vsi p_val | destroy f(A);

21 vsi p_val | destroy_f (B);

22 vsi p_val l destroy f(CO);

23 vsip_finalize((void*)0);

24 return 1;

25 }

26

27 void VU vprint_f(vsip_vview f* a){

28 vsip_length i;

29 for(i=0; i<vsip_vgetlength f(a); i++)

30 printf("%.0f",vsip_vget _f(a,i));

31 printf("\n");

32 return;

33 }

The above program produces the following output:

A =

0 1 2 3 4 5 6 7
B =

5 5 5 5 5 5 5 5
C =

5 6 7 8 9 10 11 12
Let’s examine Example 1.

Online 2 weinclude thevsi p. h header file. Thiswill be needed in every program using
VSIPL code, and acompliant library is required to provide a header file called vsip.h.

6 DRAFT TASPVSIPL Core Plus

DRAFT

In lines 8-10 we create three vectors. Note that the VSIPL vector view objects A, B and C are
type defined to a pointer of typevsi p_vvi ew f and then assigned a value by the function
vsi p_vcreate_ f.

Thecr eat e function is a convenience function, subsuming the block create and view bind
jobsinto one function. Thevsi p_vcreat e_f function will create ablock of type real float
(with some state we talk about in chapter 3), create a data space of sufficient sizeto hold N
real float values and then attaches thisto the block, and creates a vector view of type real float
and binds the block to this view. The vector view (or just vector) is created with alength of N
elements, an offset of zero, and a stride of one, so that the vector is of an exact sizeto view the
entire block.

An important item to note here isthat VSIPL has allocated space in memory for three items.
These are the space for the block object (block ADT), space for the data storage (the data
array) and space for the vector object (vector ADT). All of this memory must be destroyed,
when no longer needed, to prevent memory leaks.

Blocks and associated data arrays created by the VSIPL create functions are always created
and destroyed together. Whenever you do ablock create and a block destroy the actionsto cre-
ate the block, and its associated data, or destroy a block and its associated data happen
together. Generally we will only say we create a block of length N, or destroy a block.

We have also created a vector view. There may be many vector views associated with a block.
There are, of course, functionsto destroy a vector view. These will generally not destroy the
block also. It isimportant that the application programer keep track of what views are attached
to ablock and only destroy the block after all the views binding the block have been
destroyed.

Notethat all VSIPL functionswhich allocate memory return anull pointer if the memory allo-
cation fails. We have not checked for an allocation failure in our example, but the check is rec-
ommended in high quality applications.

In our example above on lines 20-22 we see where the object destruction takes place. We
know, since this program is short and we kept track, that each block is bound by exactly one
view. To destroy our objects we use a convenience function which will destroy the view, the
block, and any VSIPL allocated data array associated with the block.

The other important itemsin our code reside on lines 11, 14, and 17. These are self explana-
tory as to function, but note that no stride, length or offset information are included in the
arguments to these functions. All thisinformation resides in the vector. So, for instance, the
ramp function has a starting value of zero, an increment of one, but no stopping point. The
function just goes until the vector isfull. Since we set the vector length to eight, we get a vec-
tor running from zero to seven.

In order to see our output we wrote a vector print function. For VSIPL user functions the
author uses a prefix of VU_ for VSIPL User. The print function starts at line 27.

We note that internal to the VSIPL library the author uses the prifix VI_for VSIPL Implemen-
tor. No VI _function should be used in any user code; however if your writing your own
library, or modifying the author’s, feel free.

TASPVSIPL Core Plus DRAFT 7

List of Acronyms

N A WDNE

TASP
COE
VSIPL
COTS
TAC
APl
ADT
DOD

DRAFT

Tactical Advanced Signal Processing
Common Operating Environment
Vector/Signal/Image Processing Library
Commercial Of the Shelf

Tactical Advanced Computer
Application Program Interface

Abstract Data Type

Department of Defense

DRAFT

TASP VSIPL Core Plus

DRAFT

CHAPTER 2 Functions

Introduction

The Core Plus VSIPL implementation includes many functions not in the Core Profile. The
author hopes to one day have protype listings for all functionsin the implementation in this
chapter but currently they are not all here. The author recomends using the VSIPL specifica-
tion as needed for function ussage and definitions which is available on the VSIPL internet
site in acrobat reader format.

Asaminimum this section includes an al phabetical listing of al VSIPL functionality included
with aminimal VISIPL Core Library, and alisting of al public type definitions (enumerated
types and structures available in the header file) needed by the core functions. Each functionis
listed with afunctionality statement, the function prototype, and a description of each function
argument. The author recommends only browsing this chapter lightly. Its purposeis as arefer-
ence. In the VSIPL specification many of the functions names have been generalized to
include all precisions. The namesin this document are not generalized and reflect the TASP
VSIPL Core implementation of aminimal VSIPL Core profile encompassing ANSI C float
and int.

The TASP VSIPL core distribution includes additional functionality other than that required
by aminimal core distribution. Proper prototypes for much of the additional functionality may
be derived from the listed functionality by replacing the precision argument with the required
precision, for instance the _f goesto an _d when deriving the double function prototype from
the float function prototype.

In order to have some reasonable ordering of the functions the alphabetical listing is based
upon aroot function name, not the actual vsip function. For instance the second function in
the list isthe “add” function. There are several add functionsin the Core profile. All of them
are placed together under add.

When afunction requires a special object it needs support functions to create the object, and
destroy it, and perhaps query it for its attributes. For instance to do adiscrete fourier transform
one needs a function to create an FFT object, afunction to do the actual FFT using the FFT
object, and afunction to destroy the FFT object when it is no longer needed. The author calls
functions which are designed to work together to do a single job function sets. Function sets
are placed together under a single heading. For instance all the functions involved with doing
an FFT are placed under the FFT heading.

In addition the Ternary functionsincluded in the core profile (functions requiring three inputs)
are listed in aternary functions section. The root names for ternary functions are not very
descriptive.

TASP VSIPL Core Plus DRAFT 9

DRAFT

No attempt is made to be exhaustive in the function descriptions. Those interested in more
detail are directed to the VSIPL specification document available on the internet site.
(www.vsipl.org) In addition various examples included in this document will provide more
detail on the use of some of the more complicated functions.

10 DRAFT TASPVSIPL Core Plus

DRAFT

Required Core Public Types

This section covers the enumerated types and special structures needed by the core functions.
These are defined in the public header filevsi p. h.

al g_hint

typedef enum {
VSIP_ALGTIME = 0
VSI P_ALG_SPACE
VSI P_ALG _NO SE
} vsip_alg_hint;

11
2

Algorithm hint used in create functions to indicate to the implementation how the user
would like the created object to be used. ALG_TIME would indicate a desire for the
fastest result, ALG_SPACE for the least memory usage, and ALG_NOISE for the
most accurate. Not required to be supported and not supported in TASP VSIPL. Any
valid hint may be used.

Function List where used
vsi p_convld create f
vsip_corrld create f
vsip_ccorrld create f
vsip_ccfftop create f
vsip _ccfftip create f
vsip rcfftop create f
vsip crfftop create f
vsip_ccfftrmop_create f
vsip ccfftmp create f
vsip rcfftmop_create f
vsip crfftrmop _create f
vsip fir_create f
vsip cfir _create_f

bi as

typedef enunf
VSI P_BI ASED = 0,
VSI P_UNBI ASED = 1
} vsip_bias;

Flag to indicate whether a biased or unbiased result is desired.
Function List where used

vsi p_correl ateld_f
vsi p_ccorrel ateld_f

chol _attr

typedef struct{
vsi p_mat _upl o upl o;
vsi p_l ength n;

} vsip_chol _attr_f;

TASP VSIPL Core Plus DRAFT 11

DRAFT

typedef struct{
vsi p_mat _upl o upl o;
vsi p_l ength n;

} vsip_cchol _attr_f;

Attributes structure for the Cholesky decomposition object. Used with the Cholesky
get attributes function.

cnpl x_nmem

typedef enum {
VS| P_CMPLX_| NTERLEAVED
VSI P_CMPLX_SPLI T,
VS| P_CMPLX_NONE

} vsip_cnpl x_mem

Used to indicate the type of user complex data array isoptimal for the implementation.
The NONE type indicates either interleaved or split work equally well. Used asa
return value for vsi p_cst or age.

convld attr

t ypedef struct {
vsi p_l ength kernel _|en;
vsi p_symetry synm
vsip_length data_l en;
VSi p_support _region support;
vsip_length out |en;
vsi p_l ength deci mati on;

} vsip_convld attr f;

Attributes structure for the convol ution object. Used with the convolution get attributes
function.

corrld attr

typedef struct {
vsip_length ref _len;
vsip_length data_l en;
VSi p_support _region support;
vsip_length lag |en;

} vsip_corrld attr f;

t ypedef struct {
vsip _length ref _len;
vsip_length data_l en;
VsSi p_support _region support;
vsip_length lag |en;

} vsip_ccorrld attr f;

Public attributes structure for the correlation object. Used with the correlation get
attributes function.

fir_attr

typedef struct {
vsi p_scal ar_vi kernel _|en;

TASPVSIPL Core Plus DRAFT 12

DRAFT

VSi p_symetry synm
vsi p_scalar_vi in_len;
vsi p_scal ar_vi out_I en;
vsi p_l ength deci mati on;
vsi p_obj _state state;

} vsip_fir_attr_f;

typedef struct {
vsi p_scal ar_vi kernel _|en;
vsi p_symetry synm
vsip_scalar_vi in_len;
vsi p_scal ar_vi out_|en;
vsi p_l ength deci mati on;

} vsip_ cfir_attr_f;

Public attributes structure for the FIR object. Used with the FIR get attributes function.

fft _attr

t ypedef struct {
vsi p_scal ar_vi input;
vsi p_scal ar_vi output;
vsip fft_place place;
vsi p_scal ar _f scal e;
vsip fft dir dir;

} vsip fft _attr f;

Public attributes structure for the FFT object. Used with the FFT get attributes func-

tion.
fft dir
t ypedef enum {
VSI P_FFT_FWD = -1,
VSIP_ FFT_INV = 1

} vsip fft dir;

Direction argument for the fft create functions used to indicate the direction of the

FFT.

Function List where used
vsip_ccfftop create_f
vsip_ccfftip create_f
vsip_ccfftrmop_create_ f
vsip_ccfftmp_create f

fft_pl ace

typedef enum {
VSIP_FFT_IP = 0,
VSIP_FFT_OP =1
} vsip_fft_pl ace;

fftmattr

typedef struct {
vsi p_scal ar_vi input;

13 DRAFT

TASP VSIPL Core Plus

DRAFT

vsi p_scal ar _vi out put;
vsi p_fft_place pl ace;
vsi p_scal ar _f scal e;
vsip_fft_dir dir;
VSi p_maj or mgj or;

} vsip_fftmattr_f;

Public attributes structure for the multiple FFT object. Used with the multiple FFT get

attributes function.

lu_ attr

typedef struct {

vsi p_l ength n;
} vsip_lu_ attr_f;
typedef struct {

vsi p_l ength n;
} vsip_clu_ attr_f;

maj or

t ypedef enuni
VSI P_ROW = 0,
VSIP_CO = 1,

}vsi p_maj or;

mat _op

typedef enum {
VSI P_MAT_NTRANS = 0,
VSI P_MAT_TRANS = 1

VS| P_MAT_HERM = 2,
VSI P_MAT_CONJ = 3
}vsi p_mat _op
mat _si de
typedef enuni
VS| P_MAT_LSIDE = 0,
VS| P_MAT_RSI DE =1

} vsip_mat_side;

mattr

typedef struct {
vsi p_offset offset;
vsip_stride row stride;
vsi p_l ength row_| engt h;
vsi p_stride col _stride;
vsi p_l ength col _I engt h;
vsi p_bl ock_f* bl ock;

} vsip_mattr_f;

typedef struct {
vsi p_offset offset;
vsip_stride row stride;
vsi p_l ength row | engt h;

TASPVSIPL Core Plus DRAFT

14

DRAFT

vsi p_stride col _stride;
vsi p_l ength col _I engt h;
vsi p_cbl ock_f* bl ock;

} vsip_cmattr_f;

Public matrix attributes. Used by matrix get attributes to retrieve the attributes of a
matrix view and by put matrix attributes to set the attributes of a matrix. The block
attribute of aview may not be set, except at creation, and isignored on a put.

menory_hi nt

t ypedef enum {
VSI P_VEM NONE =
VSI P_VEM RDONLY = 1,

VSI P_MEM CONST = 2,

VS| P_VEM SHARED = 3,

VS| P_VEM SHARED RDONLY = 4,

VS| P_VEM SHARED CONST = 5
}vsi p_nenory_hint;

Oy

Enumerated typedef indicating what type of memory the user would like allocated by
VSIPL. The TASP VSIPL implementation of core does not use this memory hint for
anything. Note the use of the overloaded depth (d), shape (s), and precision (p) below

in the function list where used.

Function List where used
vsi p_vcreate_ bl ackman_f
vsi p_vcreate_ kaiser f
vsi p_vcreate_hanning f
vsi p_vcreate_cheyby f
vsi p_dbl ockcreate p
vsi p_dsviewcreate p
vsi p_dsbl ockbi nd_p

obj _state

Enumerated type indicating if an object which saves state information between calls
should save the state, or act asif it were freshly created at each call. Currently only

used for the FIR function set.

t ypedef enum {
VSI P_STATE NO SAVE = 1
VS| P_STATE_SAVE = 2
} vsip_obj_state;

grd_attr
Public QRD attribute object.

typedef struct {
vsip_length m
vsi p_l ength n;
vsi p_qrd_opt Qopt;
} vsip_grd_attr_f;

15 DRAFT

TASP VSIPL Core Plus

DRAFT

typedef struct {
vsip_length m
vsi p_l ength n;

vsi p_qrd_opt Qopt;
} vsip_cqrd_attr_f;

grd_prob

t ypedef enuni
VSI P_QRD_COV
VSI P_QRD LLSQ

} vsip_grd_prob

grd_qopt
Enumerated typedef indicating what type of QRD information is saved in the QRD
object. For an m by n wherematrix A = QR then for option NOSAVEQonly the R
information is saved, for option SAVEQthe entire Q Is saved, and for option SAVEQL
only the skinny Q_1 which encompasses the range of 4 is saved. Note although the

author has said that the O is saved what is actually saved in the QRD object is vendor
dependent. Only the information necessary to do the calculations defined on the QRD
object need be saved. How thisis doneis vendor dependent.

t ypedef enuni
VSI P_QRD_NGCSAVEQ = 0,
VSI P_QRD_SAVEQ = 1,
VSI P_QRD_SAVEQL = 2
} vsip_grd_qopt

support _regi on

typedef enum {
VS| P_SUPPORT_FULL
VS| P_SUPPORT_SAME
VSI P_SUPPORT_M N = 2
} vsip_support_region;

Ol
11

symmetry

t ypedef enum {
VSI P_NONSYM = 0,
VSI P_SYM EVEN_LEN ODD = 1,
VSI P_SYM EVEN_LEN EVEN = 2
} vsip_symmetry;

vattr

typedef struct {
vsi p_offset offset;
vsip_stride stride;
vsi p_l ength | ength;
vsi p_bl ock_f* bl ock;
} vsip_vattr_f;

TASPVSIPL Core Plus DRAFT 16

DRAFT

typedef struct {
vsi p_offset offset;
vsi p_stride stride;
vsi p_l ength | ength;
vsi p_cbl ock_f* bl ock;
} vsip_cvattr_f;

typedef struct {
vsi p_offset offset;
vsi p_stride stride;
vsi p_l ength | ength;
vsi p_bl ock_i* bl ock;
} vsip_vattr i;

t ypedef struct {
vsi p_offset offset;
vsip_stride stride;
vsi p_l ength | ength;
vsi p_bl ock_vi* bl ock;
} vsip_vattr _vi;
t ypedef struct {
vsi p_offset offset;
vsi p_stride stride;
vsi p_l ength | ength;
vsi p_bl ock_mi * bl ock;
} vsip_vattr_m;
typedef struct {
vsi p_offset offset;
vsi p_stride stride;
vsi p_l ength | ength;
vsi p_bl ock_bl * bl ock;
} vsip_vattr_bl

Public vector attributes. Used by vector get attributes to retrieve the attributes of a vec-
tor and by put vector attributes to set the attributes of a vector. The block attribute may
not be set in aview, except on view create, and isignored on a put.

rng

t ypedef enum {
VSI P_PRNG = 0,
VSI P_NPRNG = 1
} vsip_rng;

Indicates to the random create function whether an implementation dependent non-
portable random number generator (NPRNG), or the portable random number genera-
tor defined by the VSIPL specification (PRNG) is desired.

17 DRAFT TASPVSIPL Core Plus

DRAFT

CoreFunction List

acos

Inverse Cosine function.

voi d vsip_acos_f(
vsip_vview f* al,
vsi p_vview f* a2);

Argunent al Input vector.
Argunent a2 Output vector.

add
Add two scalars.

voi d vsi p_CADD f(
vsi p_cscal ar _f al,
vsi p_cscal ar _f a2,
vsi p_cscal ar_f* a3);

vsi p_cscal ar_f vsip_cadd f(
vsi p_cscal ar_f al,

vsi p_cscal ar _f a2);

d vsi p_RCADD f(

vsi p_scalar_f al,
vsi p_cscal ar_f a2,
vsi p_cscal ar_f* a3);

VO

vsi p_cscal ar _f vsip_rcadd_f(
vsi p_scalar_f ail,

vsi p_cscal ar _f a2);
Ret ur ns Sum of input scalarsif not void.

Argunment al Input scalar.

Argunment a2 Input scalar.
Argunent a3 Output scalar (pointer) for void functions.

Scalar vector add

voi d vsi p_svadd_f (
vsi p_scal ar_f a1l,
vsi p_vview f* a2,
vsi p_vview f* a3);

voi d vsi p_csvadd_f(
vsi p_cscal ar _f al,
vsi p_cvview f* a2,
vsi p_cvview f* a3);

void vsip_rscvadd f(
vsi p_scalar_f al,
vsi p_cvview f* a2,
vsi p_cvview f* a3);

TASPVSIPL Core Plus DRAFT

voi d vsi p_svadd_i (
vsi p_scalar_i al
Vsi p_vview_i* a2,
vsi p_vview_ i* a3);

Argunent al Inputscalar.
Argunent a2 Input vector.

Argunent a3 Sum of scalar and vector elementwise.

Add two vectors element by element.

void vsi p_vadd f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3);

voi d vsip_cvadd_f(
const vsip_cvview f* al,
const vsip_cvview f* a2,

const vsip_cvview f* a3);

voi d vsip_rcvadd_f (
const vsip_vview f* al,
const vsip_cvview f* a2,

const vsip_cvview f* a3);

void vsip_vadd_i (

const vsip_vview.i* al,

const vsip_vview.i* a2,

const vsip_vview.i* a3);
Argunent al Input vector

Argunent a2 Input vector
Argunent a3 Sum of input vectors

al | destr oy

19

DRAFT

Function to destroy aview and its associated block. If the block isbound to auser data

array then the user data array is not destroyed.

void vsip_val |l destroy_f(
vsip_vview f* al);

void vsip_cval |l destroy_ f(
vsip_cvview f* al);
void vsip valldestroy i (
vsip_vview.i* al);
voi d vsip_val I destroy_vi (
vsi p_vview vi* al);
voi d vsip_val l destroy_mi (
vsi p_vview m* al);
voi d vsi p_val | destroy_bl (
vsi p_vview bl * al);

void vsip_mal |l destroy_f(
vsip_nview f* al);

DRAFT

TASP VSIPL Core Plus

DRAFT

void vsip_cmal | destroy_f(
vsip_crmview f* al);

Argunent al Theview to be destroyed.

alltrue

A boolean function returning true if all the elementsin a boolean input view are true.

vsi p_scalar_bl vsip_valltrue_ bl (
const vsip_vview bl* al);

Ret ur ns False (0) if any of the elementsin the input view are not false. Returns true (non-
zero) if all the elements of the input view are true.

Argunment al Inputview.

and
Performs a bitwise “AND” operation between two integer views, or alogical “AND”
between two boolean views.
voi d vsip_vand_i (
const vsip_vview.i* al,
const vsip_vview.i* a2,
const vsip_vview.i* a3);
voi d vsi p_vand_bl (
const vsip_vview bl* ai,
const vsip_vview bl* a2,
const vsip_vview bl* a3);
Argunent al Inputview.
Argunment a2 Input view.
Argunent a3 Output view.
anytrue
A boolean function returning true if any of the elements in a boolean input view are
true.
vsi p_scal ar_bl vsip_vanytrue_bl (
const vsip_vview bl* al);
Ret ur ns False (0) if all the elementsin the input view are false. Returns true (non-zero) if
any of the elements of the input view are true.
Argunent al Inputview.
arg

Scalar function to return the argument value (in radians) of a complex scalar.

vsi p_scal ar_f vsip_arg_f(
vsi p_cscal ar _f al);

Ret ur ns The argument of the complex scalar.
Argunment al Input complex scalar

TASPVSIPL Core Plus DRAFT 20

DRAFT

asin
Inverse Sine function.
void vsip_asin_f(
vsip_vview f* al,
vsip_vview f* a2);
Argunment al Input vector.
Argunent a2 Output vector.
at an
Elementwise arctangent of avector. This performs elementwise the atan function. For
TASP thisisjust the ANSI C math functions, cast to the proper precision.
void vsip_vatan_f(
const vsip_vview f* al,
const vsip_vview f* a2);
Argunent al Input vector of tangent values.
Argunent a2 Output vector of arctangent values.
at an2
Elementwise arctangent of two vectors. For TASP VSIPL thisisthe same asthe ANS
C math function atan2 cast to the proper precision.
voi d vsip_vatan2_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3);
Argunment al Input vector denominator
Argunent a2 Input vector numerator
Argunent a3 Output vector of arctangent values of the quotient in radians.
bi nd

Used to create a (vector or matrix) view object and bind it to a block.

vsip_vview f* vsip_vbind f(
const vsip_block f *al,
vsi p_offset a2,
vsi p_stride a3,
vsi p_l ength a4);

p_cvview f* vsip_cvbind f(
const vsip_cblock f *al,
vsi p_offset a2,

vsi p_stride a3,
vsip_length a4);

VS

vsip_vview_ i* vsip_vbind_i(
const vsip_block i *al,

vsi p_offset a2,

21 DRAFT TASPVSIPL Core Plus

22

DRAFT

vsi p_stride a3,
vsi p_l ength a4);

VSi

p_vview vi* vsip_vbind vi(

const vsip_block vi *al,
vsi p_offset a2,
vsi p_stride a3,
vsi p_l ength a4);

VSi

p_vview m* vsip _vbind nm(

const vsip_block m *al,
vsi p_offset a2,
vsi p_stride a3,
vsip_l ength a4);

VS

p_vview bl * vsip_vbi nd_bl (

const vsip_block bl *ai,
vsi p_offset a2,
vsi p_stride a3,
vsi p_l ength a4);

VS

p_nview f* vsip_nbind_f(

const vsip_block f *ail,
vsi p_offset a2,

vsi p_stride a3,

vsi p_l ength a4,

vsi p_stride ab5,

vsi p_l ength a6);

VSi

p_cmview f* vsip_cnbind_f(

const vsip_cblock_f *ail,
vsi p_offset a2,

vsi p_stride a3,

vsi p_l ength a4,

vsi p_stride a5,

vsi p_l ength a6);

Ret ur ns

Argunment al
Argunent a2

Argunent a3

Argument a4

Argunent a5

Argunment a6

A pointer to the view object created. Returns null on creation failure.
The block bound.

The offset from the beginning of the block where the view starts. Offsets are zero
based and positive so that an offset of zero is the first element of the block.

A stride through the block. This indicates the number of elementsin the block
between vector view elements, or between matrix view elementsin acolumn. A
stride of zero will access only the element indicated by the offset, and a stride of
one will access consecutive elements. A stride of N will access every Nth ele-
ment. Strides may be negative indicating a direction of movement through the
block opposite to that of a positive stride.

The length of the vector view in terms of elements or the length of a column
(number of rows) in amatrix. The length is not zero based and alength of 1 indi-
cates 1 element, and alength of N indicates N elements. The length is always
greater than zero.

A stride through the block representing the row stride of amatrix. The row stride
is the distance between consecutive elementsin arow.

The row length (number of columns) of the matrix.

DRAFT TASPVSIPL Core Plus

DRAFT

bl ackman

Create a unit stride zero offset floating point vector and fill it with a Blackman window
of chosen length.

vsi p_vview f* vsip_vcreate_bl ackman_f (
visp_length ai,
vsi p_nenory_hint hint);

Ret ur ns The created vector view filled with the window coefficients.
Argunent al Thenumber of window coefficients.
Argunent a2 Memory hint. Not supported in TASP VSIPL. recommend placing a zero here.

bl ockadm t

Admit a block connected to user data for use by VSIPL functions. Thisfunction is
used to change the state of a VSIPL user block from released to admitted.

nt vsip_bl ockadm t_f(
vsi p_bl ock f* ail,
vsi p_scal ar_bl a2);

nt vsip_cblockadmt f(
vsi p_cblock _f* al,
vsi p_scal ar_bl a2);

nt vsip_bl ockadm t _i (
vsi p_bl ock_i* ail,
vsi p_scal ar_bl a2);

nt vsi p_bl ockadmit_vi (
vsi p_bl ock_vi* al,
vsi p_scal ar_bl a2);

nt vsi p_bl ockadmit_mi (
vsi p_bl ock_m * al,
vsi p_scal ar_bl a2);

nt vsi p_bl ockadm t _bl (
vsi p_bl ock_bl * al,
vsi p_scal ar_bl a2);

Ret ur ns If the block admission succeeds O (zero) is returned. A nonzero value indicates a
failure.

Argunment al A block pointer for an instantiated (valid) block. The admission will fail if the
block is bound to anull data pointer.

Argunent a2 A boolean flag. True indicates the value of the data must be maintained during
the state change.

bl ockbi nd

This function creates a block and binds it to a pointer to user allocated memory. The
pointer defines the beginning of some user defined data array. It isthe responsibility of
the user to ensure the memory pointer has enough data allocated with it for the desired
number of block elements.

23 DRAFT TASPVSIPL Core Plus

DRAFT

vsi p_bl ock_f* vsi p_bl ockbi nd_f (
const vsip_scalar_f* ail,
vsi p_l ength a3,
vsi p_nenory_hint a4);

VS

p_cbl ock

f* vsip_cbl ockbi nd f(

const vsip_scalar_f* al,
const vsip_scalar_f* a2,
vsi p_l ength a3,

vsi p_nenory_hint a4);

VS

p_bl ock f* vsip_bl ockbind_ i (

const vsip_scalar_i* al,
vsi p_l ength a3,
vsip_nenory_hint a4,);

VS

p_bl ock_vi* vsip_bl ockbi nd_vi (

const vsip_scalar_vi* al,
vsi p_l ength a3,
vsi p_nenory_hint a4);

VS

p_bl ock_m * vsip_bl ockbi nd_mi (

const vsip_scalar_vi* al,
vsi p_l ength a3,
vsi p_nenory_hint a4);

VS

p_bl ock_bl * vsi p_bl ockbi nd_bl (

const vsip_scalar_bl* al,
vsi p_l ength a3,
vsi p_nenory_hint a4);

Ret ur ns
Argunment al

Argunent a2

Argunent a3
Argunent a4

bl ockcreat e

Pointer to created block.

Pointer to user defined data array. For complex blocks this pointer will point
either to asingle interleaved data array, or to the data array defined for real split
data. For blocks of type matrix index the user data array is of type vector index.
The matrix index is stored in an interleaved fashion, so the user data array has
twice the number of vector index elements asthe matrix index block created. Itis
permitted to bind to aNULL data pointer, but the block admission will fail until
the block is rebound to a data pointer which isnot NULL.

Pointer to user defined data array for imaginary complex data, if the split format
is used, or to the null data pointer if interleaved complex is used.

Number of elements of the block type associated with the user data array(s).

Thisisignored in TASP VSIPL implementation. Place a 0 (zero) here or use any
enumerated memory hint defined in VSIPL.

This function creates a block object. The block creation includes allocating memory
for the data associated with the block

vsi p_bl ock_f* vsip_bl ockcreate_ f(
vsi p_l ength al,
vsi p_nenory_hint a2);

TASP VSIPL Core Plus

DRAFT 24

DRAFT

vsi p_cbl ock_f* vsip_cbl ockcreate_f
vsip_l ength al,
vsi p_nenory_hint a2);

vsi p_bl ock _f* vsip_bl ockcreate_ i (
vsip_length al,
vsi p_nenory_hint a2);

vsi p_block _vi* vsip_blockcreate vi(
vsip_length al,
vsi p_nenory_hint a2);

vsi p_block_nmi* vsip_blockcreate ni(
vsi p_l ength al,
vsi p_nenory_hint a2);

vsi p_bl ock_bl * vsip_bl ockcreate_ bl (
vsi p_l ength al,
vsi p_nenory_hint a2);

Ret ur ns Pointer to created block.

Argunent al Number of elements of the block type to be created and attached to the block.
Thisisthe block size, or the length of the block.

Argunent a2 Thisisignoredin TASP VSIPL implementation. Place a0 (zero) here or use any
enumerated memory hint defined in VSIPL.

bl ockdestr oy

Destroy ablock and any data bound to the block which was allocated by VSIPL. User
data bound to the block is not destroyed.

voi d vsi p_bl ockdestroy_f(
vsi p_bl ock_f* al);

voi d vsi p_cbl ockdestroy_ f(
vsi p_cblock f* al);

voi d vsi p_bl ockdestroy i (
vsi p_block i* al);

voi d vsi p_bl ockdestroy_vi (
vsi p_bl ock_vi* al);

voi d vsi p_bl ockdestroy_m (
vsi p_bl ock_nmi* al);

voi d vsi p_bl ockdestroy_bl (
vsi p_bl ock_bl * al);

Argunent al Block to be destroyed,
bl ockfi nd
Find the pointer to the user data bound to aVSIPL released block.

vsi p_scalar_f* vsip_blockfind f(
const vsip_block f* al);

voi d vsi p_cbl ockfind f(
const vsip_cblock f* ail,

25 DRAFT TASPVSIPL Core Plus

DRAFT

vsi p_scal ar_f* *a2,
vsi p_scal ar_f* *a3);

vsip_scalar_i* vsip_blockfind_i(
const vsip_block i* al);

vsi p_scal ar_vi* vsip_bl ockfind_vi (
const vsip_block vi* al);

vsi p_scal ar_m * vsi p_bl ockfind_mi (
const vsip_block_m* al);

vsi p_scal ar_bl * vsi p_bl ockfi nd_bl (
const vsip_block bl* al);

Ret ur ns Pointer to the user data array bound to the block, or void for complex blocks. For
V SIPL blocks (blocks not bound to user data) NULL is returned.

Argunent al User released block

Argunent a2 For complex, the data pointer to the user real dataif split, or to the complex data
if interleaved. For VSIPL complex blocks (blocks not bound to user data) NULL
isreturned

Argunent a3 For complex, NULL if the user complex datais interleaved, and a pointer to the
user imaginary dataif split. For VSIPL complex blocks NULL is returned.

bl ockr ebi nd
Bind an existing VSIPL user block to anew data array.

vsi p_scal ar_f* vsip_bl ockrebind_f(
vsi p_bl ock_f* ai,
const vsip_scalar_f* a2);

voi d vsi p_cbl ockrebi nd_f (
vsi p_cbl ock_f* al,

const vsip_scalar_f* a2,
const vsip_scalar_f* a3,
vsi p_scal ar_f* *a4,

vsi p_scal ar_f* *ab);

vsi p_scal ar_i* vsip_bl ockrebind_i (
vsi p_bl ock_f* a1i,

const vsip_scalar_f* a2);

vsi p_scal ar_vi* vsi p_bl ockrebind_vi (
vsi p_bl ock_vi* al,

const vsip_scalar_vi* a2);

vsi p_scal ar_vi* vsip_bl ockrebind_m (
vsi p_block _m* al,

const vsip_scalar_vi* a2)

vsi p_scal ar_bl * vsi p_bl ockrebi nd_bl (
vsi p_bl ock_bl * al,

const vsip_scal ar_bl* a2);

Ret ur ns Except for complex, returns a pointer to the user data array bound to the block
before the rebind. Returns void if the block is complex. If the block is not bound
to auser data array, NULL isreturned.

TASPVSIPL Core Plus DRAFT 26

DRAFT

Argunent al Pointer to block to be rebound.

Argunent a2 Pointer to new data array to be bound to the user block. If the block is complex
this dataarray isthe real part of the complex number if the layout to be bound is
split. Note that for blocks of type matrix index the data array is aways inter-
leaved.

Argunent a3 A null pointer if the user complex datalayout isinterleaved, or a pointer to adata
array encompassing the imaginary portion of the complex number if the data lay-
out is split

Argunent a4 A pointer to the previous real complex data array if the previous user complex

data was split, or a pointer to the previous user interleaved complex data array. If
the complex block is not bound to a user data array, NULL is returned.

Argunent a5 A null pointer if the previous user data array was interleaved, or a pointer to the
imaginary portion of the previous split complex user data array. If the complex
block is not bound to a user data array, NULL is returned.

bl ockr el ease

Release a user block. Thisfunction is used to change the state of aVSIPL user block
from admitted to released.

vsi p_scal ar_f* vsip_bl ockrel ease_f(
vsi p_bl ock_f* ail,
vsi p_scal ar_bl a2);

d vsi p_cbl ockrel ease_f(
vsi p_cblock_f * ail,

vsi p_scal ar _bl a2,

vsi p_scal ar_f* *a3

vsi p_scal ar_f* *a4);

VO

vsi p_scal ar_i* vsip_bl ockrel ease_i (
vsi p_bl ock_i* a1l,

vsi p_scal ar_bl a2);

vsi p_scal ar_vi * vsi p_bl ockrel ease_vi (
vsi p_bl ock_vi* al,

vsi p_scal ar_bl a2);

vsi p_scal ar_vi* vsi p_bl ockrel ease_mi (
vsi p_bl ock_m* al,

vsi p_scal ar_bl a2);

vsi p_scal ar_bl* vsi p_bl ockrel ease_bl (
vsi p_bl ock_bl* al,

vsi p_scal ar_bl a2);

Ret ur ns Pointer to public data array, or void for complex. If the block is not bound to a
user data array then NULL is returned.

Argunent al Pointer to block to be released.

Argunent a2 A boolean flag. True indicates the value of the data must be maintained during
the state change.

Argunent a3 For complex user data a pointer to the interleaved user data, or to the real part of
the complex user data for split representation. If the block is not bound to a user
data array then NULL isreturned.

27 DRAFT TASPVSIPL Core Plus

DRAFT

Argunent a4 For complex anull data pointer for the interleaved representation, and a pointer
to the imaginary data array for split representation. If the block is not bound to a
user data array then NULL is returned.

cheby

Create aunit stride zero offset floating point vector and fill it with a Dol ph-Chebyshev
window of chosen length.

vsi p_vview f* vsip_vcreate_cheby f(
visp_length ai,
vsi p_scal ar_f a2,
vsi p_nenory_hint a3);

Ret ur ns The created vector view filled with the window coefficients.

Argunent al Thenumber of window coefficients.

Argunent a2 Thedesired window ripple in decibels below the main lobe.

Argunent a3 Memory hint. Not supported in TASP VSIPL. recommend placing a zero here.

chol d
Cholesky decomposition and solver for symmetric positive definite (SPD) linear sys-

= - —
tem of theform 4x, = b, where 4 is SPD and the set of vectors

— - = - — - = -
X = [xq,xy,...,x,] and B = [b, by, ..., b,] aresolved.

Create a CHOLD object.

vsi p_chol _f* vsip_chold create f(
vsi p_mat_uplo al,
vsi p_l ength a2);

vsi p_cchol _f* vsip_cchol d_create_f(
vsi p_mat _upl o al,
vsi p_l ength a2);

Ret ur ns A CHOLD object for use by the Cholesky decomposition function set.

Argunment al Sincethe matrix is symmetric only the upper or lower half need be referenced to
compute the decomposition. This flag defines which half must be used.

Argunment a2 Specifiesthe size of theinput N XN matrix for which the object is created.

Compute a Cholesky decomposition and initialize the CHOLD object. The input
matrix A isoverwritten by the decomposition and associated with the CHOLD

object. The matrix must not be modified or destroyed until after the CHOL D object
is destroyed, or initialized with a different matrix.

int vsip_chol d_f(

vsi p_chol f* al,

const vsip_nview f* a2);
int vsip_cchol d_f(

vsi p_cchol _f* ail,
const vsip_cnview f* a2);

TASPVSIPL Core Plus DRAFT 28

DRAFT

Ret ur ns A zero (0) if successful.

Argunent al The CHOLD object to beinitialized for matrix A.

Argunent a2 Theinput matrix A.The argument a2 is overwritten and bound to the CHOLD
object. It must not be modified until the decomposition is no longer needed.

Solve the SPD problem.

i nt vsip_cholsol f(
const vsip_chol f* al,
const vsip_miew f* a2);

int vsip_ccholsol f(
const vsip_cchol f* ail,
const vsip_cnview f* a2);

Ret ur ns Zero (0) on success.
Argunent al Initialized (for matrix Z) CHOLD object.

Argunent a2 Inputview of matrix B, and output view of solution matrix X.
Destroy the CHOLD object.

int vsip_chold destroy f(
vsip_chold f* al);

int vsip_cchold _destroy f(
vsi p_cchold f* al);

Ret ur ns Zero (0) on success.

Argunment al CHOLD object to be destroyed.
Get public attributes of a CHOLD object.

void vsip _chold getattr f(
const vsip_chol _f* chol d,
vsi p_chol _f* attr);

void vsip_cchold getattr f(
const vsip_cchol _f* chold,
vsi p_cchol _attr _f* attr);

Argunment al Input CHOLD object.
Argunment a2 Output CHOLD public attribute object.

cl onevi ew

29

Creates a new view object with al the attributes of the parent object.

vsi p_vview f* vsip_vcloneview f(
const vsip_vview f* al);

vsi p_cvview f* vsip_cvcl oneview f(
const vsip_cvview f* al);

vsip_vview i* vsip_vcloneview.i(
const vsip_vview.i* al);

DRAFT TASP VSIPL Core Plus

DRAFT

vsi p_vview vi* vsip_vcl onevi ew vi (
const vsip_vviewyvi* al);

vsi p_vview_m * vsip_vcl onevi ew_mi (
const vsip vview m?* al);

vsi p_vview bl * vsip_vcl onevi ew bl (
const vsip_vview bl* al);

vsi p_nvi ew f* vsip_ntlonevi ew f(
const vsip_nview f* al);

vsi p_cnview f* vsip_cntl onevi ew f(
const vsip_cnmview f* al);

Ret ur ns A pointer to the new view.
Argunent al Theview to be cloned.

cnpl x
Create a complex number or view from two real numbers or views.

Scalar complex.

vsi p_cscal ar _f vsip_cnpl x_f(
vsi p_scal ar_f a1,
vsi p_scal ar_f a2);

void vsip CWMPLX f(
vsi p_scalar_f al,
vsi p_scalar_f a2,
vsi p_scalar_f* a3);

Ret ur ns For non-void scalar the complex output scalar.
Argunment al Aninput scalar representing the real part.
Argunment a2 Aninput scalar representing the imaginary part.
Argunment a3 For void scalar the complex output scalar.

Vector complex.

voi d vsip_vempl x_f(

vsip_vview f* al,

vsip_vview f* a2,

vsi p_cvview f* a3);
Argunent al Input vector representing the real part
Argunment a2 Input vector representing the imaginary part.

Argunment a3 The complex output vector.
clip

Given upper and lower comparison threshold values, compare against a view element-
wise. If the view elements are not less than the upper threshold or greater than the
lower threshold output the view element. For view elements not greater than the lower
comparison threshold replace the output element with alower threshold replacement
value, and if the view elements are greater than the upper comparison threshold

TASPVSIPL Core Plus DRAFT 30

DRAFT

replace the view element with the upper replacement value. The order of comparison
isthe value less than or equal to the lower comparison threshold, then isthe value less
than the upper comparison value. If neither condition is met then the value is greater
than or equal to the upper comparison threshold value. Once a condition is met, the
ruleisfollowed and no other comparisons are done. There is no requirement that the
upper values be greater than the lower values. The terms upper and lower only imply
the argument order and the comparison and replacement done.

al <a2 [a6 a4

else

al <a3 [a6
else

a6 = a5

al

void vsip_vclip_f(
const vsip_vview f *al,
vsi p_scal ar_f a2,
vsi p_scal ar _f a3,
vsi p_scal ar _f a4,
vsi p_scal ar _f a5,
const vsip_vview f *a6);

d vsip_ velip_i(

const vsip_vview.i *al,
vsi p_scalar_i a2,

vsi p_scalar_i a3,

vsi p_scalar_i a4,

vsi p_scalar_i a5,

const vsip_vview.i *a6);

Argunment al Input vector.
Argunent a2 Lower comparison threshold.

VO

Argunment a3 Upper comparison threshold.
Argunent a4 Lower threshold replacement value.
Argunent a5 Upper threshold replacement value.

Argunment a6 Output vector.

cmagsq
Find the complex magnitude squared.
Scalar complex magnitude squared.
vsi p_scal ar _f vsip_crmagsqg_f(
vsi p_cscal ar _f al);
Ret ur ns Magnitude squared value of complex scalar.
Argunent al Input complex scalar.

Vector complex magnitude squared. For a complex vector find the magnitude
sgquared value of each element.

31 DRAFT TASPVSIPL Core Plus

DRAFT

voi d vsi p_vcrmagsqg_f (
const vsip_cvview f* ail,
const vsip_vview f* a2);

Argument al Input vector.
Argunent a2 Output vector.

cmaxngsq
Complex maximum magnitude squared comparison. Compare the magnitude squared
values of two complex vectors elementwise and output the maximum magnitude
squared of each element comparison into an output vector.

voi d vsi p_vcmaxmgsq_f (
const vsip_cvview f* ail,
const vsip_cvview f* a2,
const vsip_vview f* a3);

Argunent al Input vector.
Argunent a2 Input vector.
Argunent a3 Output vector.

cmaxmagsqval
Maximum magnitude squared value of a complex vector. Find the maximum magni-
tude squared value among all the elements of a complex view.

vsi p_scal ar _f vsip_vcnaxnmagsqval (
vsi p_cvview f* al,
vsi p_i ndex a2);

Ret ur ns The maximum magnitude squared value.

Argunent al Theinput vector.
Argunent a2 Theindex (into theinput vector) of the selected value with the maximum magni-
tude squared.

cm nngsq
Complex minimum magnitude squared comparison. Compare the magnitude squared
values of two complex vectors elementwise and output the minimum magnitude
squared of each element comparison into an output vector.

void vsip_vcm nnmgsq_f(
const vsip_cvview f* al,
const vsip_cvview f* a2,
const vsip_vview f* a3);

Argunment al Input vector.
Argunent a2 Input vector.
Argunent a3 Output vector.

TASPVSIPL Core Plus DRAFT 32

DRAFT

cm nmagsqval

copy

33

Minimum magnitude squared value of a complex vector. Find the minimum magni-

tude squared value among all the elements of a complex view.

vsi p_scal ar _f vsi p_vem nmagsqval (

Ret ur ns

vsi p_cvview f* al,
vsi p_i ndex a2);

Argunent al Theinput vector.

The minimum magnitude sguared value.

Argunent a2 Theindex (into the input vector) of the selected value with the minimum magni-

tude squared.

The copy function copies datafrom one view to another view. This function is also

used to convert data types, for instance from integer to float.

void vsip_vcopy_ f f(

VO

VO

VO

VO

VO

VO

VO

VO

VO

const vsip_vview f* al,
const vsip_vview f* a2);

d vsip_vcopy f _i(
const vsip_vview f* al,
const vsip_vview.i* a2);

d vsip_vcopy_i_f(
const vsip_vview.i* al,
const vsip_vview f* a2);

d vsip_cvcopy_f_f(
const vsip_cvview f* ail,
const vsip_cvview f* a2);

d vsip_vcopy_i _i(
const vsip_vview.i* al,
const vsip_vview.i* a2);

d vsip_vcopy_vi _i(
const vsip_vview.yvi* al,
const vsip_vview.i* a2);

d vsip_vcopy_vi _vi(
const vsip_vview.vi* al,
const vsip_vviewyvi* a2);

d vsip_vcopy i _vi(
const vsip_vview.i* al,
const vsip_vviewyvi* a2);

d vsip_vcopy_m _m(
const vsip_vview m?* al,
const vsip_vview m* a2);

d vsip_vcopy_bl _bl(
const vsip_vview bl* ai,
const vsip_vview bl* a2);

DRAFT

TASP VSIPL Core Plus

DRAFT

voi d vsi p_vcopy_bl _f(
const vsip_vview bl* ai,
const vsip_vview f* a2);

void vsip_vcopy_f bl (
const vsip_vview f* al,

const vsip_vview bl* a2);

void vsip_ntopy_f _f(
const vsip_mview f* al,

const vsip_mview f* a2);

voi d vsip_cncopy_f _f(
const vsip_cnview f* al,

const vsip_cnview f* a2);

Argunment al Input to be copied.

Argunment a2 Output, acopy of the input with possibly a data type conversion. Note that when
copying boolean to float false values are copied as zero, and true values are cop-
ied as one.

col vi ew

conj

Create avector view of a selected column of a matrix

vsi p_vview f* vsip _ntol view f(
const vsip_miew f* al,
vsi p_i ndex a2);

vsi p_cvview f* vsip_cntol view f(
const vsip_cnview f* al,
vsi p_i ndex a2);

Ret ur ns A vector view of the selected column, or aNULL if the memory allocation for
the view object fails.

Argunment al Inputview.

Argunent a2 Index of desired view. Indices are zero based so that the first (left most) column
of the matrix hasindex zero.

Conjugate a complex scalar.

vsi p_cscal ar _f vsip_conj _f(
vsi p_cscal ar _f al);

voi d vsi p_CONJ_f (
vsi p_cscal ar_f al,
vsi p_cscal ar_f* a2);

Conjugate a complex vector.
voi d vsip_cvconj _f(

const vsip_cvview f* ail,
const vsip_cvview f* a2);

Argunent al Input.

DRAFT TASP VSIPL Core Plus

Argunment a2

convol ve

35

DRAFT

Output.

Calculate a convolution of afilter kernel and a view.

Create a convolution object.

vsi p_convld_

f* vsip_convld _create f(

const vsip_vview f* al,
vsi p_symetry a2,

vsi p_l ength a3,

vsi p_l ength a4,

VSi p_support _regi on a5,
vsi p_l ength a6,

vsip_alg_

Ret ur ns
Argunment al

Argunent a2

Argunent a3
Argunment a4

Argunment ab

Argunent a6

Argunment a7

hint a7);
A convolution object.

A view containing the kernel information. The view will either contain all the
kernel information, in which case the symmetry argument below is nonsym, or
only the non-redundant part of the kernel, in which case the symmetry argument
will determine the length of the kernel.

The symmetry argument. NONSY M impliesthat all the kernel coefficientsarein
the kernel argument. SYM_EVEN_LEN_ODD impliesthe kernel is of odd

length and symmetric in which case thefirst half (N —1)/2 + 1 kernel coeffi-

cients are included in the kernel argument. If the symmetry argument is
SYM_EVEN_LEN_EVEN then the kernel is of even length and symmetric, and

only thefirst N/ 2 coefficients are included in the kernel argument.
The length of the input vector expected when convolving with the kernel.
A decimation factor.

The region of support of the output. For FULL support with decimation D the
length of the output will be the floor((N + M —2)/ D) + 1 where M isthe
length of the kernel and NV isthe length of the input vector. For SAME support
the length will be floor((N — 1)/ D) + 1, and for MIN support the length
will be (floor((N — 1)/ D) —floor((M —1)/ D)) + 1.

Number of times the function will be called. Thisis not supported in TASP

V SIPL. Recommend placing a zero here, although any number will do.

VSIPL agorit.him hint. Not supported in TASP VSIPL. Recommend placing a
zero here, athough any valid hint will do.

Calculate the convolution.

voi d vsi p_convol veld_f(
const vsip_convld_f* ai,
const vsip_vview f* a2,
const vsip_vview f* a3);

Argunment al

Convolution argument.

DRAFT TASP VSIPL Core Plus

DRAFT

Argunent a2 Input view. The size of the input view must agree with the size given in the con-
volution object.

Argunent a3 Output view. The size of the output view must agree with the required size given
the decimation factor, and the size of the kernel and the input vector. See argu-
ment &5 for the convolution creation function.

Destroy the convolution object.

int vsip_convld_destroy_f(
vsi p_convld _f* convld);

Ret ur ns A zero on success, non-zero on failure.
Argunent al Convolution object to be destroyed.

Get the attributes of the convolution object.

void vsip_convld getattr f(
const vsip_convld f* ai,
vsi p_convld_attr_f* a2);

Argunment al Input convolution object.

Argunent a2 The pointer to the attributes. The kernel_lenisthe total number of coefficientsin
the input filter, the data len isthe length of the input vector, the out_len isthe
length of the output vector.

correl ate

Correlate two views.
Create correlation object.

vsip_corrld_f* vsip_corrld_create_f(
vsip_l ength al,
vsi p_l ength a2,
VSi p_support _regi on a3,
vsi p_l ength a4,
vsi p_al g_hint ab);

vsip_ccorrld f* vsip_ccorrld create f(

vsip_length al,
vsip_length a2,

VsSi p_support _region a3,
vsi p_l ength a4,

vsi p_al g_hint ab);

Ret ur ns Correlation object.
Argunent al Length of input reference view.

Argunent a2 Length of input data view. Must be greater than or equal to the reference view
length.

Argunment a3 Region of support. Thisworks the same as the convolution except that thereis no
decimation, so D isone. Thelength of the reference view replaces the length of

the kernel. So for FULL thelengthis N + M — 1, for SAME the lengthis N
and for MIN thelengthis N — M + 1.

36 DRAFT TASPVSIPL Core Plus

37

DRAFT

Argunment a4 Number of times the object is expected to be used. Not supported in TASP
VSIPL. Recommend placing a zero (0) here, although any number will work.

Argunent a5 Algorithm hint. Not supported in TASP VSIPL. Recommend placing azero here,
although any valid hint will work.

Correlate two views.

void vsip_correlateld f(
const vsip_corrld f* ai,
vsi p_bi as a2,
const vsip_vview f* a3,
const vsip_vview f* a4,
const vsip_vview f* ab);

void vsip_ccorrelateld f(
const vsip_ccorrld_f* al,
vsi p_bi as a2,

const vsip_cvview f* a3,
const vsip_cvview f* a4,

const vsip_cvview f* ab);
Argunent al Correlation object.

Argunent a2 Typeof correlation, biased or unbiased. Biased implies the correlation is done
with no normalization factor. This meansthat the tailswill be biased with respect
to the middle portion where the entire reference view is overlapped with the data
view. Unbiased impliesthat the length of the overlap of the calculated correlation
value for a particular lag will be used to normalize the value.

Argunent a3 Input reference view.

Argunent a4 Input dataview.
Argunent a5 Output view of correlation values.

Destroy correlation object

int vsip_corrld _destroy f(
vsi p_corrld_f* al);

int vsip_ccorrild _destroy_f(
vsip_ccorrld f* al);

Ret ur ns Zero (0) on success, hon-zero on failure.

Argunent al Correlation object to be destroyed.
Get public attributes from a correlation object.

voi d vsip_corrld_getattr_f(
vsip_corrld_f* al,
vsip_corrld_attr_f* a2);

void vsip_ccorrld _getattr f(
vsi p_ccorrld_f* al,
vvsi p_ccorrld_attr_f* a2);

Argunent al Input correlation object.

Argunent a2 Output attribute object. Theref_len, and the data _|en are the reference view and
data view lengths respectively. The lag_len isthe length of the output view.

DRAFT TASP VSIPL Core Plus

DRAFT

cos

Elementwise Cosine of avector.

void vsip_vcos_f(
const vsip_vview f* al,
const vsip_vview f* a2);

Argunent al Inputvector of anglesin radian format.
Argunent a2 Output vector of Cosine values.

covsol
Covariance Solver. Solve a set of equations

e — >
ATA%; = b

for the input vector set B and output vector set X

> 2 2>
= [xmxh ---yxm]

SO

> 5 >
= [bo,bl, ,bm]

int vsip_covsol f(
const vsip_mview f* al,
const vsip_mview f* a2);

int vsip_ccovsol _f(
const vsip_cnview f* al,
const vsip_cnview f* a2);

Ret ur ns Zero (0) on success, minus one (-1) on failure due to amemory allocation prob-
lem. Positive return indicates failure for some other reason.

Argunment al Input matrix A
Argunent a2 Input matrix B, output matrix X.

Create

Convenience function to create aview, the block and the data associated with the block
all at the sametime. The created view accesses the entire block. For avector view this
means an offset of zero, a stride of one, and alength equal to the block size. For a
matrix view the block sizeisthe product of the row length and the column length. The
stride in the selected major direction will be one, and the stride in the other direction
will be equal to the length of the major direction axis. For instance arow major matrix
will have arow stride of one, and a column stride equal to the row length.

38 DRAFT TASPVSIPL Core Plus

DRAFT

vsi p_vview f* vsip_vcreate_ f(
vsip_l ength al,
vsi p_nenory_hint a3);

VSi

p_cvview f* vsip _cvcreate f(
vsip_length al,
vsi p_nenory_hint a3);

VSi

p_vview.i* vsip_vcreate_ i(
vsip_length al,
vsi p_nenory_hint a4);

VSi

p_vview vi* vsip_vcreate_vi(
vsi p_l ength al,
vsi p_nenory_hint a4);

VSi

p_vview m* vsip_vcreate_m (
vsi p_l ength al,
vsi p_nenory_hint a4);

vsi p_vview bl * vsip_vcreate_bl (
vsip_length al,

vsi p_nenory_hint a4);

vsi p_nview f* vsip_ncreate_ f(
vsip_l ength ail,

vsi p_l ength a2,

vsi p_maj or a3,

vsi p_nenory_hint a4);

vsip_cnview f* vsip_cntreate f(

vsip_length al,
vsip_length a2,

vsi p_maj or a3,

vsi p_nenory_hint a4);

Ret ur ns Pointer to vector view requested.

Argunent al Length of the vector or matrix major direction.
Argunment a2 Length of the matrix minor direction.
Argunent a3 Enumerated type indicating major direction.

Argunment a4 Thisisignoredin TASP VSIPL implementation. Place a0 (zero) here or use any
enumerated memory hint defined in VSIPL.

cstorage

Indicates the preferred method of complex storage for user datain a particular VSIPL
implementation.

vsi p_cnpl x_nmem vsi p_cst or age(
voi d) ;

Ret ur ns A value based on the enumerated typedef

destroy

Function to destroy aview.

vsi p_block f* vsip vdestroy f(
vsip_vview f* al);

39 DRAFT TASPVSIPL Core Plus

DRAFT

vsi p_cbl ock_f* vsip_cvdestroy_f(
vsi p_cvview f* al);

vsi p_block i* vsip _vdestroy i (
vsip_vview.i* al);

vsi p_bl ock_vi* vsip_vdestroy_vi(
vsip_vview vi* al);

vsi p_bl ock_mi * vsip_vdestroy_m (
vsi p_vview m* al);

vsi p_bl ock_bl* vsip_vdestroy_bl (
vsi p_vview bl * al);

vsi p_bl ock_f* vsip_ndestroy_f(
vsip_nview f* al);

vsi p_cbl ock_f* vsip_cndestroy_f(
vsi p_cnview f* al);

Ret ur ns A pointer to the block the view was bound to.

Argunent al The pointer to the view to be destroyed.

di agvi ew
Create aview of a selected diagonal of a matrix.

vsi p_vvi ew f* vsip_ndi agvi ew_f (
const vsip_mview f* al,
vsi p_stride a2);

vsi p_cvvi ew f* vsip_cndi agvi ew f(
const vsip_cnview f* ail,
vsi p_stride a2);

Ret ur ns A pointer to the view of the selected diagonal.

Argunment al Input matrix view.

Argunent a2 Theindex of the selected view. An index of zero isthe main diagonal with the
first element of the created view being the first element in the input matrix. A
negative value selects, in order, the diagonals below the main diagonal, and a
positive value selects, in order, the diagonals above the main diagonal.The index
argument has a type of stride because the standard VSIPL index is some type of
unsigned int. VSIPL indices are zero based, so thisis not an index in the standard
VSIPL sense, and is defined with a stride type to meet the requirements of a neg-
ative index.

div
Divide two scalars.

vsip_cscalar _f vsip_cdiv_f(
vsi p_cscal ar_f al,
vsi p_cscal ar_f a2);

vsi p_cscal ar_f vsip_crdiv_f(
vsi p_csclar_f ail,
vsi p_scal ar _f a2);

voi d vsi p_CDI V_f(
vsi p_cscal ar _f al,

40 DRAFT TASPVSIPL Core Plus

DRAFT

vsi p_cscal ar _f a2,
vsi p_cscal ar_f *a3);

void vsip CDV f(
vsi p_cscal ar_f al,
vsi p_scalar_f a2,
vsi p_cscal ar_f *a3);

Divide two vectors element by element.

void vsip_vdiv_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3);

void vsip_cvdiv_f(
const vsip_cvview f* ail,
const vsip_cvview f* a2,
const vsip_cvview f* a3);

Scalar vector divide.

voi d vsip_svdi v_f (
vsi p_scalar_f ail,
vsi p_vview f* a2,
vsi p_vview f* a3);

Ret ur ns For non void scalar function the quotient.

Argunent al Thenumerator input.
Argunent a2 The denominator output.
Argunent a3 The quotient output.

dot

Dot products. A dot product is an elementwise multiply of two vectors with a sum of

the resulting vector.
Real Dot Product

vsi p_scal ar _f vsip_vdot_f(
const vsip_vview f* al,
const vsip_vview f* a2);

Ret ur ns Dot Product value.
Argunent al Real input vector.
Argunent a2 Real input vector.

Complex Dot Product

vsi p_cscal ar _f vsip_cvdot _f(
const vsip_cvview f* ail,
const vsip_cvview f* a2);

Ret ur ns Dot Product value.
Argunent al Complex input vector.
Argunment a2 Complex input vector.

41 DRAFT

TASP VSIPL Core Plus

DRAFT

Complex Conjugate Dot Product. The dot product here is done between the first input

vector and the complex conjugate of the second input vector.

vsip_cscal ar_f vsip_cvjdot_ f(
const vsip_cvview f* al,
const vsip_cvview f* a2);

Ret ur ns Dot Product value.
Argunent al Complex input vector.
Argunment a2 Complex input vector.

eul er

Euler function. Elementwise compute the Sine value and the Cosine value of an input
vector. Place the Cosine value in thereal part of acomplex output vector, and place the

Sine value in the imaginary part of acomplex output vector

void vsip_veuler f(
vsip_vview f *al,
vsi p_cvview f *a2);

Argunment al Input vector.
Argunent a2 Output vector.

exp

Natural (base e¢) exponential functions

Scalar natural (base e¢) exponential.

vsi p_cscal ar _f vsip_cexp_f(
vsi p_cscal ar _f al);

voi d vsi p_CEXP_f(
vsi p_cscal ar _f al,
vsi p_cscal ar_f* a2);

Elementwise natural (base e) exponential of a vector.

void vsip_vexp_f(
const vsip_vview f* al,
const vsip_vview f* a2);

voi d vsip_cvexp_v(
const vsip_cvview f* ail,
const vsip_cvview f* a2);

Ret ur ns For non void scalar the exponential of the argument.

Argunment al Input
Argunent a2 Output

explo
Base 10 exponentia functions.

42 DRAFT

TASP VSIPL Core Plus

DRAFT

voi d vsi p_vexplO_f(
vsi p_vview f* ail,
vsi p_vview f* a2);
Argument al Input vector.
Argunent a2 Output vector of base 10 exponentials.

expoavg

Exponential average function. Compute a weighted average elementwise of two vec-

- - -
tors. a3 = ala2 + (1 —al)a3

voi d vsi p_vexpoavg_f (
vsi p_scal ar_f al,
const vsip_vview f* a2,
const vsip_vview f* a3);

voi d vsi p_cvexpoavg_f (
vsi p_scal ar_f ail,
const vsip_cvview f* a2,
const vsip_cvview f* a3);

Argunent al Real input scalar weighting factor.

Argunent a2 Input view.
Argunent a3 Input and output view.

Compute a Discrete Fourier Transform using FFT methods for radices of 2 and at |east
one factor of 3 asaminimum. The current TASP VSIPL FFT uses building block fac-
torsof 2,4, 8, 3,5,and 7.

Create an FFT object. Thereisonly onetype of FFT object for one dimensional FFTs.
The FFT object maintains state information to determine which type FFT it is created
for. It isthe responsibility of the user to keep track of type FFT the object was created
for.

Create an FFT object for doing a complex to complex out of place FFT.

vsip fft_f* vsip_ccfftop_create f(
vsip_length ai,
vsi p_scal ar_f a2,
vsip_fft_dir a3,
unsi gned int a4,
vsi p_al g_hint ab);

Create an FFT object for doing a complex to complex in place FFT.
vsip_fft_f* vsip_ccfftip_create_f(
vsi p_l ength al,

vsi p_scal ar_f a2,
vsip_fft_dir a3,

TASP VSIPL Core Plus DRAFT

43

DRAFT

unsi gned int a4,
vsi p_al g_hi nt a5);

Create an FFT object for doing areal to complex out of place FFT. All real to com-
plex FFT objects are created to go in the forward direction.

vsip fft f* vsip rcfftop create f(
vsip_length al,
vsi p_scal ar_f a2,
unsi gned int a4,
vsi p_al g_hint a5);

Create an FFT object for doing a complex to real out of place FFT. All complex to
real FFT objects are created to go in the inverse direction.

vsip fft f* vsip_crfftop_create f(
vsi p_l ength al,
vsi p_scal ar_f a2,
unsi gned int a4,
vsi p_al g_hint a5);

Ret ur ns FFT object useful for creating a (user selected direction) forward or inverse FFT,
or null on creation failure.

Argunent al Lengthof FFT. Except for the complex to real FFT object thiswill be the length
of the input vector to the FFT. For the complex to real FFT object thisisthe
length of the output vector. For the real to complex and complex to real FFTsthe
FFT length must be even.

Argunent a2 A scalefactor. If ascalefactor of 1isused for aforward FFT then a scale factor
of 1/(al) intheinverse FFT will get back the original vector.

Argunent a3 Anenumerated type defining the direction of the FFT. You may use
VSIP_FFT_FWD (-1) for the forward FFT and VSIP_FFT_INV (+1) for the

inverse FFT. The direction of the complex to real and real to complex FFT ishard
coded in the algorithm, and this argument is not included.

Argunent a4 Estimated number of times the object will be used in an FFT call. Thisoptionis
not supported in TASP V SIPL. Recommend placing zero here, although any
number will work.

Argunment a5 Thisoptionisnot supported in TASP VSIPL. Recommend placing a zero here,
athough any valid algorithm hint will work.

Do the FFT. The FFT object must be created with the proper creation function to
match the FFT function.

Complex to complex out of place FFT.

void vsip_ccfftop_f(
const vsip_fft_f* ai,
const vsip_cvview f* a2,
const vsip_cvview f* a3);

Complex to complex in place FFT.

DRAFT TASP VSIPL Core Plus

DRAFT

void vsip_ccfftip_f(
const vsip_fft_f* ai,
const vsip_cvview f* a2);
Real to complex out of place FFT. Theinput vector of length N must be even. The

complex output vector isof length N/2 + 1.

void vsip rcfftop f(
const vsip fft f* ai,
const vsip_vview f* a2,
const vsip_cvview f* a3);
Complex to real out of place FFT. The output vector of length N must be even.

The complex input vector isof length N/2 + 1.

voi d vsip_crfftop_f(
const vsip fft_f* ai,
const vsip_cvview f* a2,
const vsip_vview f* a3);

Argunent al FFT object.
Argunent a2 Input data, and output data for in place FFT.
Argunent a3 Output data

Destroy an FFT object.

int vsip_fft_destroy_f(
vsip_fft_f* al);

Ret ur ns ZEero on SuCcCess.
Argunent al FFT object to be destroyed.
Get the attributes of an FFT object. The attribute object contains the input data size,

the output data size, whether the object was created for in place or out of place use, the
scale factor, and the direction of the FFT object.

void vsip fft _getattr f(
const vsip_fft_f* al,
vsip_fft_attr_f* a2);

Argunent al FFT object.

Argunent a2 FFT attribute object.

fftm

Compute a Discrete Fourier Transform Multiple times using FFT methods for radices
of 2 and at least one factor of 3 asaminimum. The current TASP VSIPL Multiple FFT
uses building block factorsof 2, 4, 8, 3, 5,and 7.

Create a Multiple FFT object. Thereis only one type of Multiple FFT object for one
dimensional FFTs. The Multiple FFT object maintains state information to determine
which type Multiple FFT it is created for. It is the responsibility of the user to keep
track of the Multiple FFT function the object was created for.

45 DRAFT TASPVSIPL Core Plus

46

DRAFT

Create a Multiple FFT object for doing a complex to complex out of place FFT.

vsip fftmf* vsip ccfftrmop_create f(
vsi p_l ength al,
vsi p_l ength a2,
vsi p_scal ar_f a3,
vsip fft_dir a4,
vsi p_maj or a5
unsi gned int a6,
vsi p_al g_hint a7);

Create aMultiple FFT object for doing a complex to complex in place FFT.

vsip fftmf* vsip ccfftmp_create f(
vsip_length al,
vsip_length a2,
vsi p_scal ar_f a3,
vsip fft _dir a4,
vsi p_maj or a5,
unsi gned int a6
vsip_al g_hint a7);

Create aMultiple FFT object for doing areal to complex out of place FFT. All real
to complex Multiple FFT objects are created to go in the forward direction.

vsip fftmf* vsip rcfftrmop_create f(
vsi p_l ength al,
vsi p_l ength a2,
vsi p_scal ar_f a3,
vsi p_maj or a5,
unsi gned int a6,
vsi p_al g_hint a7);

Create a Multiple FFT object for doing a complex to real out of place FFT. All
complex to real Multiple FFT objects are created to go in the inverse direction.

vsip_fftmf* vsip_crfftnmop_create_f(
vsip_l ength al,
vsi p_l ength a2,
vsi p_scal ar _f a3,
vsi p_maj or a5,
unsi gned int a6,
vsi p_al g_hint a7);

Ret ur ns FFT Multiple object useful for creating a (user selected direction) forward or
inverse FFT, or null on creation failure.

Argunent al If the selected direction for doing the FFT is along the column, then thisisthe
length of the FFT. For the complex to complex cases, and the real to complex
case thisisthe number of rows in the input matrix (column length). For the com-
plex to real FFT multiple object thisisthe length of the output matrix column.
For the real to complex and complex to real FFTs this value must be even if the
column direction is selected.

DRAFT TASP VSIPL Core Plus

DRAFT

If the selected direction for doing the FFT is aong the row, then thisis the num-
ber of FFTsto be done (the number of rowsin the input matrix)

Argunent a2 If theselected direction for doing the FFT isalong the row, then thisis the length
of the FFT. For the complex to complex cases, and thereal to complex casethisis
the number of columnsin the input matrix (row length). For the complex to real
FFT Multiple object thisis the length of the output matrix row. For the real to
complex and complex to real FFTs this value must be even if the row directionis
selected.

If the selected direction for doing the FFT is along the column, then thisisthe
number of FFTsto be done (the number of columns in the input matrix)
Argunent a3 A scaefactor. If ascaefactor of 1isused for aforward FFT then a scale factor
of 1/(al) intheinverse FFT will get back the original vector.
Argunent a4 Anenumerated type defining the direction of the FFT. You may use
VSIP_FFT_FWD (-1) for the forward FFT and VSIP_FFT_INV (+1) for the

inverse FFT. The direction of the complex to real and real to complex FFT ishard
coded in the algorithm, and this argument is not included.

Argunment a5 Thedirection along which the FFT Multiple will be done. The length of the other
direction is the number of FFTs done.

Argunent a6 Estimated number of times the object will be used in an FFT Multiple call. This
optionisnot supported in TASP VSIPL. Recommend placing zero here, although
any number will work.

Argunent a7 Thisoptionisnot supported in TASP VSIPL. Recommend placing a zero here,
although any valid algorithm hint will work.

Do the Multiple FFT. The FFT Multiple object must be created with the proper cre-
ation function to match the FFT Multiple function.

Complex to complex out of place Multiple FFT.

void vsip _ccfftmop f(
const vsip fftmf* al,
const vsip_cnview f* a2,
const vsip_cnview f* a3);

Complex to complex in place Multiple FFT.

void vsip_ccfftmp_f(

const vsip_fftmf* al,

const vsip_cnview f* a2);
Real to complex out of place Multiple FFT. The input matrix must be even length
(L) dong the major direction. The complex output matrix isof length L/2 + 1
along the mgjor direction.

void vsip rcfftmop f(
const vsip fftmf* al,
const vsip_miew f* a2,
const vsip_cnview f* a3);

TASP VSIPL Core Plus DRAFT 47

DRAFT

Complex to real out of place Multiple FFT. The output matrix must be even length
L along the major direction. The complex input vector isof length L/2 + 1.

void vsip_crfftmop_f(
const vsip_fftmf* al,
const vsip_cnview f* a2,
const vsip_mview f* a3);

Argunent al Multiple FFT object.
Argunent a2 Inputview for al Multiple FFTs, and output view for in place Multiple FFT.

Argunent a3 Output view.
Destroy a Multiple FFT object.

int vsip fftmdestroy f(
vsip fftmf* al);

Ret ur ns Z€ero on success.
Argunent al Multiple FFT object to be destroyed.
Get the attributes of aMultiple FFT object. The attribute object contains the input data

size, the output data size, whether the object was created for in place or out of place
use, the scale factor, the major direction, and the direction of the Multiple FFT object.

void vsip_fftmagetattr_f(
const vsip_fftmf* al,
vsip_fftmattr_f* a2);

Argunent al Multiple FFT object.
Argunment a2 Multiple FFT attribute object.

fill
Fill avector with a constant value.
void vsip_vfill _f(

vsi p_scal ar_f a1,
const vsip_vview f* a2);

void vsip cvfill f(
vsi p_cscal ar_f al,
const vsip_cvview f* a2);

void vsip viill i
vsi p_scalar_i al,
const vsip_vview.i* a2);

Argunment al Scalar valueto fill output vector with.
Argunent a2 Output vector

finalize

Finalizethe VSIPL library. Finalize must be called before the application exits. It must
be called exactly once for each vsi p_i ni t call. The application must be designed so
that before the final call tovsi p_fi nal i ze all VSIPL objects have been destroyed.

48 DRAFT TASPVSIPL Core Plus

DRAFT

int vsip_finalize(
void *al);

Ret ur ns Zero if the initialization succeeded, and non-zero otherwise.
Argunent al Noargument other than (voi d*) 0 isdefined at thistime.

Finite impulse response filter with decimation.
Finite impulse response filter object create.

vsip fir_f* vsip fir_create f(
const vsip_vview f* al,
vsi p_symetry a2,
vsi p_l ength a3,
vsi p_l ength a4,
vsi p_obj state a5,
unsi gned int a6,
vsip_al g_hint a7);

vsip cfir f* vsip cfir_create f(
const vsip_cvview f* al,

vsi p_symetry a2,

vsi p_l ength a3,

vsip_l ength a4,

unsi gned int a5,

vsi p_al g_hint a6);
Ret ur ns Pointer to FIR object.

Argunent al Vector view containing filter kerndl. If al holds all the filter coefficients then
VS| P_NONYSM isproper for a2. If thefilter coefficients are symmetric and the
number of coefficientsis even then only thefirst half of the coefficients are neces-
sary inal and VSI P_SYM EVEN _LEN EVENIs proper for a2. If thefilter coef-
ficients are symmetric and the number of coefficientsis odd then only the first
half of the coefficients plus the center coefficient are necessary in al and
VS| P_SYM EVEN _LEN ODDis proper for a2.

Argunment a2 Symmetry enumerated typedef associated with the selected kernel
Argunent a3 Length of the datato befiltered at atime.
Argunent a4 Decimation factor.

Argunent a5 Enumerated typeindicating if the object state should be saved between function
calstovsi p_firflt f.TosavestateuseVS| P_STATE SAVE. Toignore
state use VS| P_STATE_NO_SAVE.

Argunent a6 Estimated number of timesthe object will be used. Not implemented in TASP
VSIPL. Recommend placing a0 (zero) in this spot.

Argunent a7 Algorithm hint. Not implemented in TASP VSIPL. Recommend placing a0
(zero) in this spot.

Finite impul se response filter function.

int vsip firflt f(
vsip fir_f* al,

TASP VSIPL Core Plus DRAFT

DRAFT

const vsip_vview f* a2,
const vsip_vview f* a3);

int vsip cfirflt f(
vsip cfir _f* al,
const vsip_cvview f* a2,
const vsip_vview f* a3);
Ret ur ns The number of output samples placed in argument a3.
Argunent al A FIRfilter object
Argunment a2 Theinput vector to be filtered

Argunent a3 The output vector. The length of the output vector must be the quotient of the
length of the input vector divided by the decimation. The quotient is rounded up
to give the ceiling of the division.

FIR filter object destruction function.

int vsip_fir_destroy_f(
vsip_fir_f* al);

int vsip_cfir_destroy_f(

vsip_cfir_f* al);
Ret ur ns Returns O (zero) on success.
Argunent al TheFIR filter object to be destroyed.

FIR filter object get attributes function.

void vsip_fir_getattr_f(
const vsip_fir_f* ai,
vsip fir_attr_f* a2);

void vsip_cfir_getattr f(
const vsip_cfir_f* al,
vsip_cfir_attr_f* a2);

Argunent al TheFIR filter object.
Argunent a2 TheFIR attribute object.

gat her

A vector of indicesis used elementwise to index an input view. The indexed values are
placed, elementwise, in an output vector view. The vector of indices, and the output
vector view have the same length, and are indexed the same. The only requirement on
the input view isthat the index vector contain valid entrees to index the input view. For
the core profile only vector views are defined for input.

voi d vsi p_vgat her _f(
const vsip_vview f* al,
const vsip_vview.yvi* a2,
const vsip_vview f* a3);

void vsip_cvgather f(
const vsip_cvview f* al,
const vsip_vview.yvi* a2,
const vsip_cvview f* a3);

50 DRAFT TASPVSIPL Core Plus

genp

51

DRAFT

voi d vsi p_vgather _i (

const vsip_vview.i* al,
const vsip_vview.yvi* a2,
const vsip_vview.i* a3);

Argunent al Inputview.
Argunent a2 Input vector view of indices (index vector).

Argunent a3 Output vector view.

General matrix product. The general matrix product operates on three matrices

A, B,and C and two scalars a and B in conjunction with a enumerated type to indi-
cate matrix unary matrix operations (normal, transpose, hermitian or conjugation) on

input matrices 4 and B to produce a general matrix product of the following form.

C = aop(4)op(B) +BC

The size of the matrices must be such that the selected operations will work using nor-
mal linear algebra methods.

void vsip_gemp_f(

VO

vsi p_scal ar _f a1l,

const vsip_mview f *a2,
vsi p_mat _op a3,

const vsip_mview f *a4,
vsi p_mat _op a5,

vsi p_scal ar _f a6,

vsi p_nview f* a7);

d vsip_cgemp_f(

vsi p_cscal ar _f al,

const vsip_cnview f *a2,
vsi p_mat _op a3,

const vsip_cnview f *a4,
vsi p_mat _op a5,

vsi p_cscal ar _f a6,

vsi p_cnview f* a7);

Argunent al Scalar multiplier O .

Argunent a2 Input matrix A.
Argunent a3 Unary matrix operation on a2 before matrix multiply.

Argunent a4 Input matrix B
Argunent a5 Unary matrix operation on a3 before matrix multiply.

Argunent a6 Scalar multiplier 3.

Argunent a7 Input/output matrix C.

DRAFT

TASP VSIPL Core Plus

gens

get

52

DRAFT

General matrix sum. The general matrix sum operates on two matrices 4 and B using

aunary matrix operator on matrix 4 and multiplying matrix 4 and B by scalars

o and (3 before summing the results.

B = aop(4) + BB

The matrices 4 and B must be sized properly so that the matrix sum may be done.

void vsip_genms_f(
vsi p_scal ar_f a1l,
const vsip_mview f *a2,
vsi p_mat _op a3,
vsi p_scal ar _f a4,
const vsip_mview f *ab);

void vsi p_cgens_f(

vsi p_cscal ar _f al,

const vsip_cnview f *a2,
vsi p_mat _op a3,

vsi p_cscal ar _f a4,

const vsip_cnview f *ab);

Argunent al Scalar multiplier O .
Argunment a2 Input matrix view A .

Argunment a3 Matrix operation to perform on a2.

Argunment a4 Scalar multiplier 3.

Argunent a5 Input/Output matrix view B .

Get an e ement from aview

vsi p_scal ar_f vsip_vget_f(
const vsip_vview f* al,
vsi p_scal ar_vi a2);

vsi p_cscal ar _f vsip_cvget f(
const vsip_cvview f* ail,

vsi p_scal ar_vi a2);

vsi p_scal ar_i vsip_vget _i(
const vsip_vview.i* al,

vsi p_scal ar_vi a2);

vsi p_scal ar_vi vsip_vget vi(
const vsip_vview.vi* al,

vsi p_scal ar_vi a2);

vsi p_scalar_m vsip_vget m(
const vsip_vview m?* al,

vsi p_scal ar_vi a2);

DRAFT

TASP VSIPL Core Plus

DRAFT

vsi p_scal ar_bl vsip_vget _bl (

VS

VS

Ret ur ns

const vsip_vview bl* ai,
vsi p_scal ar_vi a2);

p_scalar _f vsip_nget f(
const vsip_miew f* al,
vsi p_scal ar_vi a2,

vsi p_scal ar_vi a3);

p_cscal ar_f vsip_cnget f(
const vsip_cnview f* a2,
vsi p_scal ar_vi a2,

vsi p_scal ar_vi a3);

Value indexed by a2, and for matrices a3. For boolean the returned value will test

properly for true or false using standard ANSI C tests, but the actua valueis

implementation dependent.

Argurent al Vector view from which avalue will be selected and returned.

Argunment a2 Index value of desired element. Thefirst element will have an index value of 0

(zero). For matrices thisis the row index.

Argunent a3 Thisisthe columnindex for matrices. For instance (a2,a3) = (0,0) will bethefirst
element in the matrix, (a2,a3) = (0,1) will be the second element in the first row
and (a2,a3) = (1,0) will be the first element in the second row.

getattrib

53

Access function to retrieve a structure containing the attributes of aview object.

void vsip_vgetattrib f(

VO

VO

VO

VO

VO

VO

VO

const vsip_vview f* al,
vsip_vattr_f* a2);

d vsip_cvgetattrib f(
const vsip_vview f* al,
vsip_cvattr_f* a2);

d vsip_vgetattrib_i(
const vsip_vview.i* al,
vsip_vattr_i* a2);

d vsip_vgetattrib_vi (
const vsip_vview.yvi* al,
vsip_vattr_vi* a2);

d vsip_vgetattrib_m (
const vsip_vview m?* al,
vsip_vattr_m* a2);

d vsip_vgetattrib_bl (
const vsip_vview.yvi* al,
vsip_vattr_bl* a2);

d vsip _ngetattrib f(
const vsip_miew f* al,
vsip_mattr_f* a2);

d vsip _cngetattrib f(
const vsip_cnview f* al,
vsip cmattr _f* a2);

DRAFT

TASP VSIPL Core Plus

DRAFT

Argunent al Inputview whose attributes will be returned.
Argunent a2 Attribute structure to be filled with public attributes of input view.

get bl ock

Access function to retrieve the block associated with a view object.

vsi p_bl ock _f* vsip_vgetbl ock f(
const vsip_vview f* al);

vsi p_cbl ock _f* vsip_cvget bl ock f(

const vsip_cvview f* al);

vsi p_bl ock_i* vsip_vgetbl ock_i (

const vsip_vview.i* al);

vsi p_bl ock_vi* vsip_vget bl ock_vi (

const vsip_vviewyvi* al);

vsi p_bl ock_m * vsip_vget bl ock_mi (

const vsip_vview m?* al);

vsi p_bl ock_bl* vsip_vget bl ock_bl (

const vsip_vview bl* al);

vsi p_bl ock _f* vsip_ngetbl ock f(

const vsip_mview f* al);

vsi p_cbl ock_f* vsip_cngetbl ock f(

const vsip_cnview f* al);
Ret ur ns A block object pointer.
Argunment al Theview bound to the block object being returned.

getcol I ength

Access function to retrieve the column length of a matrix.

vsi p_l ength vsip_ngetcol | engt h_f(
const vsip_nmview f* al);

vsip_length vsip_cngetcollength f(
const vsip_cnview f* al);

Ret ur ns Number of elementsin the column of amatrix view.
Argunment al Input matrix view.

getcol stride

Access function to retrieve the column stride of a matrix.

vsi p_l ength vsip_ngetcol stride_f(
vsi p_nview f* al);

vsi p_l ength vsip_cngetcol stride_f(
vsi p_cnview f* al);

Ret ur ns Stride through the block between consecutive elements in a column.
Argunent al Input matrix view.

54 DRAFT TASPVSIPL Core Plus

DRAFT

getl ength

Access function to retrieve the row length of avector.

vsip_length vsip_vgetlength f(
vsip_vview f* al);

vsip_length vsip_cvgetrow ength_f(
vsip_cvview f* al);

vsi p_l ength vsip_vgetl ength_i (
vsip_vview.i* al);

vsi p_l ength vsi p_vgetl ength_vi (
vsi p_vview vi* al);

vsip_length vsip_vgetlength_m (
vsip_vview m* al);

vsi p_l ength vsip_vgetl ength_bl (
vsi p_vview bl * al);

Ret ur ns Number of elementsin the vector view.
Argunent al Input vector view.

get of f set

Access function to retrieve the offset from the beginning of the block associated with a
view to the first element in the view. The offset is zero based and positive so that an
offset of zero isthe first element in the block.

vsi p_offset vsip_vgetoffset f(
const vsip_vview f* al);

vsi p_offset vsip_cvgetoffset f(

const vsip_cvview f* al);

vsi p_offset vsip_vgetoffset i(

const vsip_vview.i* al);

vsi p_offset vsip_vgetoffset vi(

const vsip_vviewyvi* al);

vsi p_offset vsip_vgetoffset m(

const vsip_vview m* al);

vsi p_offset vsip_vgetoffset bl (

const vsip_vview bl* al);

vsi p_of fset vsip_ngetoffset f(

const vsip_mview f* al);

vsi p_offset vsip_cngetoffset f(

const vsip_cnview f* al);
Ret ur ns Offset of first element of view into block bound to view.

Argunent al Inputview.

getrow ength

Access function to retrieve the row length of a matrix.

TASP VSIPL Core Plus DRAFT

55

DRAFT

vsi p_l ength vsip_ngetrow engt h_f(
const vsip_nmview f* al);

vsip_length vsip_cngetrow ength_f(
const vsip_cnview f* al);

Ret ur ns Number of elementsin the row of a matrix view.
Argunment al Input matrix view.

getrowstride

Access function to retrieve the row stride of a matrix.

vsip_stride vsip_ngetrowstride_f(
const vsip_nview f* al);

vsi p_stride vsip_cngetrowstride_ f(
const vsip_cnview f* al);

Ret ur ns Stride through the block between consecutive elements in arow.
Argunent al Input matrix view.

getstride

Access function to retrieve the stride of a vector view.

vsip_stride vsip_vgetstride f(
const vsip_vview f* al);

vsi p_stride vsip_cvgetstride_f(
const vsip_cvview f* al);

vsi p_stride vsip_vgetstride_i (
const vsip_vview.i* al);

vsip_stride vsip_vgetstride_vi (
const vsip_vviewyvi* al);

vsi p_stride vsip_vgetstride_m (
const vsip_vview m?* al);

vsip_stride vsip_vgetstride_ bl (
const vsip_vview bl* al);

Ret ur ns Stride of vector view through it's asscoiated block.
Argunent al Input vector view.

hanni ng

Create a unit stride zero offset floating point vector and fill it with a Hanning window
of chosen length.

vsip_vview f* vsip_vcreate _hanning f(
visp_length al,
vsi p_menory_hint hint);

Ret ur ns The created vector view filled with the window coefficients.
Argunment al Thenumber of window coefficients.
Argunment a2 Memory hint. Not supported in TASP VSIPL. recommend placing a zero here.

56 DRAFT TASPVSIPL Core Plus

DRAFT

hi sto

Histogram function. This function uses a maximum value and a minimum value and
the length of the output vector to calculate the bin size. Input values less than the min-
imum value are counted as belonging in the first element of the output vector and input
values greater than the maximum value are counted as belonging in the last element of
the output vector. The bin sizeis distributed evenly for the other elements.

void vsip_vhisto f(
const vsip_vview f* al,
vsi p_scal ar_f* a2,
vsi p_scal ar_f* a3,
const vsip_vview f* a4);

Argunent al Input vector of values for which a histogram is desired.

Argunent a2 Minimum value for which elements less than are counted in the first output ele-
ment.

Argunent a3 Maximum vaue for which elements greater than are counted in the last output
element

Argunent a4 Output vector of histogram counts.

hypot

Hypotenuse. Compute elementwise the square root of the sum of the squares of two
input vectors.

voi d vsi p_vhypot f(
const vsip_vview f *al,
const vsip_vview f *a2,
const vsip_vview f *a3);

Argunent al Input vector view.
Argunent a2 Input vector view.
Argunment a3 Output vector view.

i mag
Copy the imaginary elements of a complex vector to areal vector.
Scalar imaginary part.

vsi p_scal ar_f vsip_img_f(
vsi p_csclar_f al);
Ret ur ns Theimaginary part.

Argunent al Theinput complex scalar.
Vector imaginary part.
voi d vsip_vi mag_f (

const vsip_cvview f* al,
const vsip_vview f* a2);

Argunment al Input complex vector.

57 DRAFT TASPVSIPL Core Plus

DRAFT

Argunent a2 Output vector to contain the imaginary part of the complex input vector.

i magvi ew
Create areal view of the imaginary portion of acomplex view. Thisis not a copy.
Modifying elementsin either the real view or the complex view will modify the corre-
sponding element in the other view. Attributes of the created view are vendor depen-
dent, and should be queried if needed.

vsi p_vview f* vsip_vinagview f(
const vsip_cvview f* al);

vsip_nmview f* vsip_m nagview f(
const vsip_cnview f* al);

Ret ur ns View of imaginary portion of the complex view al.
Argunent al Complex view from which the real view of theimaginary part will be derived.

i ndexbool

Find an index of true values in a boolean view, placing the indexes in an vector index
view.
vsi p_l ength vsi p_vi ndexbool (

const vsip_vview bl *al,
vVsi p_vvi ew vi *a2);

Ret ur ns Number of true elementsin argument al.

Argunent al Inputview of boolean.

Argunment a2 Output vector of indices. Theindices are ordered so that the smallest index with a
true value isfirst and the largest index with atrue valueislast. The length of the
vector index view is modified to the number of true values, or is unmodified if no

true values are found.
init
Initialize the VSIPL library. Init must be called before any VSIPL functioniscalled. It
may be called as often as needed in order to ensure it has been called.
int vsip_init(
void *al);
Ret ur ns Zero if the initialization succeeded, and non-zero otherwise.
Argunent al Noargument other than (voi d*) 0 isdefined at thistime.
invclip

Using three comparison threshold values and two replacement threshold values do an
elementwise clip using the following rules. Once arule is met the condition is fol-
lowed and the following rules are ignored.

58 DRAFT TASPVSIPL Core Plus

kai ser

voi d vsip_vinvcl
const vsip_vvi
vsi p_scal ar_f
vsi p_scal ar_f
vsi p_scal ar_f
vsi p_scal ar_f
vsi p_scal ar_f
const vsip_vvi

voi d vsi p_vi nvcl
const vsip_vvi
vsi p_scal ar _i
vsi p_scal ar _i
vsi p_scal ar _i
vsi p_scal ar _i
vsi p_scal ar _i

DRAFT

al <a2 [J a7 = al
else

al <a3 [a7
else

al <ad4 [J a7 =

else

as

a6

a7 = al

p_f(
ew f
az,
a3,
a4,
ab,
ao,
ew f
p_i (
ew i
az,
a3,
a4,
ab,
ao,

*al,

*ar);

*al,

const vsip_vview f

Argunent al
Argunent a2
Argunent a3
Argunent a4
Argunent a5
Argunent a6
Argunent a7

*ar);

Input view.

Comparison threshold lower boundary.
Comparison threshold mid boundary.
Comparison threshold upper boundary.
Lower replacement value.

Upper replacement value.

Output view.

Create a unit stride zero offset floating point vector and fill it with a Kaiser window of
chosen length.

59

vsi p_vview f* vsip_vcreate_kaiser_f(
visp_length al,
vsi p_scalar_f a2,
vsi p_nenory_hint a3);
Ret ur ns The created vector view filled with the window coefficients.
Argunment al Thenumber of window coefficients.
Argunent a2 Coefficient determined by user to control sidelobe levels.

Argunent a3 Memory hint. Not supported in TASP VSIPL. recommend placing a zero here.

DRAFT TASP VSIPL Core Plus

DRAFT

Il sgsol

— >
Linear Least Square Solver. Solve the linear least squares problem min”A?c,- - bi” for

— - = — _ - - —
the set of vectors X' = [x,, xy,...,x,] and B = [b,, b, ...,D,] .

int vsip_llsqgsol _f(
const vsip_mview f* ail,
const vsip_nview f* a2);

int vsip_cllsgsol _f(
const vsip_cnview f* ail,
const vsip_cnview f* a2);

Ret ur ns Zero (0) if successful, -1 if amemory alocation failure, positive if the input
matrix is not of full column rank.

Argunent al Input matrix A of sizem by n. Theinput matrix datais overwritten in the
solution process.

Argunent a2 Input matrix B of size m by k , output matrix of solution X . Note that the out-
put matrix is the same V SIPL object as the input matrix. The lengths of the solu-

tionswill be 7, the row length of the input matrix A. 1t isup to the user to reset

the column length of the matrix B where the solutions reside to the proper size.
The solution columnswill start at element zero of the input matrix column and so

only a column length adjustment is required. If the input output object will be
used repeatedly it may be desirable to have a second view with the proper
attributes for the output.
| og
Elementwise natural (base e) logarithm of a vector.
voi d vsip_vexp_l og_f(

const vsip_vview f* al,
const vsip_vview f* a2);

Argunent al Input vector.
Argunent a2 Output vector.

| 0g10

Elementwise base 10 logarithm of a vector.

voi d vsip_vloglO_f*(
const vsip_vview f* al,
const vsip_vview f* a2);

Argument al Input vector.
Argunent a2 Output vector.

| ogi cal

Functions performing logical elementwise comparisons between two input vectors.

60 DRAFT TASPVSIPL Core Plus

DRAFT

Logical Equal. Compare two vectors elementwise for equality.

voi d vsip_vleq_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview bl* a3);

Logical greater than or equal. Compare two vectors elementwise. If the element in
the first vector is greater than or equal to the element in the second input vector
then atrueis placed in the output vector, otherwise afalse.

voi d vsip_vl ge_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview bl* a3);

Logical greater than. Compare two vectors el ementwise. If the element in the first
vector is greater than the element in the second vector then atrueis placed in the
output vector, otherwise afalse.

voi d vsip_vlgt_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview bl* a3);

Logical lessthan or equal. Compare two vectors elementwise. If the element in the
first vector isless than or equal to the element in the second vector then atrueis
placed in the output vector, otherwise afalse.

voi d vsip_vlle_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview bl* a3);

Logical lessthan. Compare two vectors elementwise. If the element in the first
vector isless than the element in the second vector then atrue is placed in the out-
put vector, otherwise afalse.

void vsip_vllt_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview bl* a3);

Logical not equal. Compare two vectors elementwise. If the element in the first
vector is not equal to the element in the second vector then atrueis placed in the
output vector, otherwise afalse.

voi d vsip_vlle_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview bl* a3);

Argunent al Input vector.
Argunent a2 Input vector.

TASP VSIPL Core Plus DRAFT 61

| ud

62

DRAFT

Argunment a3 Output boolean vector of true and false values.

Matrix lower upper decomposition. Solve linear systems using a Gaussian decomposi-
tion of a square matrix.

Create an LUD object.

vsip lu f* vsip_ lud create f(
vsi p_length al);

vsip_clu_f* vsip_clud_create f(
vsi p_l ength al);

Ret ur ns The LUD object.
Argunment al Number of rows (and columns) in the expected matrix decomposition.
Compute the LUD decomposition. The matrix decomposed is overwritten and

bound to the LUD object. This matrix must not be modified aslong asthe LUD
object is needed. The lud object is created using the create function above.

int vsip_lud_f(
vsip_lu_f* ail,
const vsip_nmview f* a2);

int vsip_clud f(
vsip clu f* ai,
const vsip_cnview f* a2);

Ret ur ns Zero (0) on success.
Argunent al Input/Output LUD object.
Argunent a2 Input matrix to be decomposed. The matrix is overwritten by the decomposition.

Solve a sguare linear system.

_>
op(4)x; = b
_ - - -
X =[x, x;,..0,x,]
_ - - —
B =[b,b,, ..,b,]

int vsip_lusol f(
const vsip_ lu f* ail,
vsi p_mat_op a2,
const vsip_mview f* a3);

int vsip_clusol _f(
const vsip_lu_f* al,
vsi p_mat_op a2,
const vsip_mview f* a3);

Ret ur ns Zero (0) on success.

DRAFT TASP VSIPL Core Plus

mag

DRAFT

Argunent al Input LUD object which hasbeen created usingvsi p_| ud_create_f anda
decomposition matrix computed usingvsi p_| ud_f . TheLUD object contains

the decomposed matrix A.
Argunent a2 Matrix Operator flag. Thisflag operates on the matrix A.

Argunent a3 Input/Output matrix of Vectorsto solve for so that B isa3on input, and X isa3
on output.

Destroy LUD object.

int vsip_lud_destroy_f(
vsip_lu_ f* al);

int vsip_clud_destroy_f(
vsip_clu_f* al);

Ret ur ns Z€Ero on success.

Argunment al LUD object to be destroyed. The matrix A associated with the LUD object isnot
destroyed here, and must be destroyed using the matrix destroy functions.

Get LUD attributes. The only public attribute is the matrix size N.

void vsip_lud_gatattr_f(
const vsip_lu f* ail,
vsip lu_ attr_f* a2);

void vsip_clud_getattr f(
const vsip_clu_f* ai,
vsip_clu_attr_f* a2);

Argunent al LUD object.

Argunent a2 LUD attribute object.

Magnitude.

Scalar Magnitude.

vsi p_scal ar _f vsip_cmag_f(
vsi p_cscal ar _f *al);

Ret ur ns The magnitude of the input.
Argunent al Input scalar value.

Elementwise find the magnitude of a vectors elements and place them in an output
Vector.

voi d vsip_vmag_f(
const vsip_vview f* al,
const vsip_vview f* a2);

TASP VSIPL Core Plus DRAFT

63

DRAFT

void vsip_cvmag_f(
const vsip_cvview f* ail,
const vsip_vview f* a2);

void vsip_vnag_i(

const vsip_vview.i* al,

const vsip_vview.i* a2);
Argunment al Input vector.
Argunment a2 Output vector of magnitudes.

mat i ndex

64

Scalar function to create a scalar matrix index.

vsi p_scal ar_m vsi p_nati ndex(
vsi p_scal ar_vi al,
vsi p_scal ar_vi a2);

voi d vsi p_MATI NDEX(
vsi p_scal ar_vi al,
vsi p_scal ar_vi a2,
vsi p_scal ar_m *a3);

Ret ur ns For non-void the scalar matrix index value.
Argunent al Row index element for matrix index.
Argunent a2 Columnindex element for matrix index.

Ar gunent a3 For void scalar matrix index the scalar matrix index (al, a2)

Scalar functions to extract row index and column index from scalar matrix index.

vsi p_scal ar_vi vsip_row ndex(
vsip_scalar_m al);

vsi p_scal ar_vi vsi p_col i ndex(
vsi p_scalar_m al);

Ret ur ns Extracted row or column index.

Argunment al Input matrix index.

Compare two vectors element by element and place the maximum value of each ele-
ment comparison in an output vector.

void vsip_vmax_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3);

Argunment al Input vector.
Argunent a2 Input vector.
Argunent a3 Output vector.

DRAFT TASP VSIPL Core Plus

DRAFT

maxny

Maximum magnitude selection. Compare two real vectors elementwise and output the
maximum magnitude into the output vector.

voi d vsi p_vmaxng_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3);

Argunent al Input vector.
Argunent a2 Input vector.
Argunent a3 Output vector.

maxngval
Find the maximum magnitude among all the values of areal vector.

vsi p_scal ar _f vsi p_vmaxnmgval _f (
const vsip_vview f* al,
vsi p_i ndex* a2);

Ret ur ns Maximum magnitude value of the vector.

Argunent al Input vector.

Argunent a2 Pointer toindex (in input vector) of location of the maximum magnitude. If more
than one element has the maximum magnitude value then the index of the first
element is returned. If the pointer isanull value the index isignored.

maxval
Find the maximum value of avector and return it and it’s index.
vsi p_scal ar_f vsip_vmaxval _f(

const vsip_vview f* al,
vsi p_scal ar_vi* a2);

Ret ur ns Maximum value of the input vector

Argunent al Input Vector.
Argunent a2 If a2isnot anull valuetheindex of the (first) maximum value is returned.

meansqval
Find the average of the magnitude squared elements of a view.
vsi p_scal ar _f vsi p_vmeansqval _f(

const vsip_vview f* al);

vsi p_scal ar _f vsi p_cvneansqval _f(
const vsip_cvview f* al);

Ret ur ns The mean value of the magnitude squared values of the elements of the input.

Argunent al Theinput view.

65 DRAFT TASPVSIPL Core Plus

DRAFT

nmeanval
Find the average of the elements of aview.

vsi p_scal ar _f vsip_vneanval f(
const vsip_vview f* al);

vsi p_cscal ar _f vsip_cvneanval f(
const vsip_cvview f* al);

Ret ur ns The mean value of the elements of the view.

Argunment al Inputview.

mher m
Matrix Hermitian. Do a conjugate transpose of a complex matrix. May be done in
place only if the input matrix is square.

voi d vsip_crmherm f (
const vsip_cnview f* al,
const vsip_cnview f* a2);

Argunment al Input matrix view.
Argunment a2 Output matrix view.

Compare two vectors element by element and place the minimum value of each ele-
ment comparison in an output vector.
void vsip_vmn_f(
const vsip_vview f* al,

const vsip_vview f* a2,
const vsip_vview f* a3);

Argunent al Input vector
Argunent a2 Input vector
Argunent a3 Output vector
m nngy
Minimum magnitude selection. Compare two real vectors elementwise and output the
minimum magnitude into the output vector.
void vsip_vm nng_f(
const vsip_vview f* al,

const vsip_vview f* a2,
const vsip_vview f* a3);

Argunment al Input vector.
Argunent a2 Input vector.
Argunent a3 Output vector.

66 DRAFT TASPVSIPL Core Plus

DRAFT

m nngval
Find the minimum magnitude among all the values of areal vector.

vsi p_scal ar _f vsip_vm nngval f(
const vsip_vview f* al,
vsi p_i ndex* a2);

Argunment al Input vector.

Argunent a2 If not null, theindex of the minimum magnitudeisreturned. If more than one ele-
ment equal s the minimum magnitude then the index of thefirst equal element is
returned.

m nval
Find the minimum value of avector and return it and it’s index.

vsi p_scal ar _f vsip_vm nval _f(
const vsip_vview f* al,
vsi p_scal ar_vi* a2);

Ret ur ns Minimum value of the input vector.

Argunment al Input vector.

Argunent a2 If a2isnot anull valuethen the index of the minimum value isreturned. If more
than one element equal's the minimum value then the index of the first minimum
valueisreturned

nmodul at e

Modulate a vector by a specified frequency. Phase and information is passed to, and
returned from the modulate function to allow continuous modul ation. The modulation
formulais

a4 = (cos[t(a2) +a3] + jsin[z(a2) +a3])al
where ¢ isthe element index and ; is the complex imaginary multiplier.

vsi p_scal ar _f vsip_vnodul ate_f(
const vsip_vview f* al,
vsi p_scal ar_f a2,
vsi p_scal ar _f a3,
const vsip_cvview f* a3);

p_scalar _f vsip_vnmodul ate f(
const vsip_cvview f* al,

vsi p_scalar_f a2,

vsi p_scal ar_f a3,

const vsip_cvview f* a3);

VS

Ret ur ns Next phase value.
Argunent al Input vector view.
Argunent a2 Input frequency value.
Argunment a3 Input phase value.

TASP VSIPL Core Plus DRAFT

67

DRAFT

Argunment a4 Output complex vector view.

npr od

Matrix Products. These are standard linear algebra products of matrix views with vec-
tor or matrix views. Sizes of input and output views must match the standard linear
algebra definitions.

Matrix Product

void vsip_nprod_f(
const vsip_miew f* al,
const vsip_miew f* a2,
const vsip_mview f* a3);

void vsip_cnprod f(

const vsip_cnview f* al,
const vsip_cnview f* a2,
const vsip_cnview f* a3);

Argunent al Firstinput matrix.
Argunent a2 Second input matrix.
Argunment a3 Output matrix

Conjugate matrix product. Matrix multiply thefirst input matrix times the complex
conjugate of the second input matrix.

void vsip_cnprodj f(
const vsip_cnview f* al,
const vsip_cnview f* a2,
const vsip_cnview f* a3);

Argunent al Firstinput matrix.
Argunent a2 Second input matrix.
Argunent a3 Output matrix

Hermitian matrix product. Matrix multiply the first input matrix times the complex
conjugate transpose of the second input matrix.

void vsip_cnprodj _f(
const vsip_cnview f* ail,
const vsip_cnview f* a2,
const vsip_cnview f* a3);

Argunent al Firstinput matrix.
Argunent a2 Second input matrix.
Argunent a3 Output matrix
Vector matrix product.
void vsip_vnprod f(

const vsip_vview f* al,

const vsip_miew f* a2,
const vsip_vview f* a3);

68 DRAFT TASPVSIPL Core Plus

DRAFT

voi d vsip_cvnprod_f(
const vsip_cvview f* ail,
const vsip_cnview f* a2,
const vsip_cvview f* a3);

Argunent al Input vector view. The length of the vector view must match the number of rows
(column length) of argument a2.

Argunent a2 Input matrix view.
Argunent a3 Output vector view.

Matrix vector product.

void vsip_mvprod f(
const vsip_miew f* al,
const vsip_vview f* a2,
const vsip_vview f* a3);
void vsip_cnvprod f(
const vsip_cnview f* al,
const vsip_cvview f* a2,
const vsip_vview f* a3);

Argunent al Input matrix view.

Argunment a2 Thelength of thevector view must match the number of columns (row length) of
argument al.

Argunment a3 Output vector view.

Matrix transpose product. Matrix product of the first input matrix with the trans-
pose of the second input matrix.

void vsip_nprodt f(
const vsip_miew f* al,
const vsip_miew f* a2,
const vsip_miew f* a3);

void vsip_cnprodt f(
const vsip_cnview f* al,
const vsip_cnview f* a2,
const vsip_cnview f* a3);

Argunent _al Firstinput matrix of size MxP.
Argunent a2 Second input matrix of size Nx P

Argunment a3 Output matrix of size M XN

nmtrans

Matrix transpose. May be done in place only if the matrix is square.
voi d vsip_ntrans_f(

const vsip_mview f* al,
const vsip_nview f* a2);

TASP VSIPL Core Plus DRAFT

69

DRAFT

void vsip_cntrans_f(
const vsip_cnview f* ail,
const vsip_nmview f* a2);

Argunent al Input matrix view.
Argunent a2 Output matrix view

Multiply two objects element by element.

Multiply two scalars.

vsi p_cscalar _f vsip_cmul _f(
vsi p_cscal ar_f al,
vsi p_cscal ar_f a2);

vsip_cscalar _f vsip_rcmul f(
vsi p_scalar_f al,

vsi p_cscal ar_f a2);

d vsi p_CMJL_f (

vsi p_cscal ar _f al,
vsi p_cscal ar _f a2,
vsi p_cscal ar_f* a3);

d vsi p_RCMUL_f (

vsi p_scal ar_f ail,
vsi p_cscal ar _f a2,
vsi p_cscal ar_f *a3);

VO

VO

Ret ur ns For non void scalar functions the product of the arguments.

Argunment al Input scalar
Argunent a2 Input scalar
Argunent a3 Pointer to output complex scalar.

Multiply two vectors elementwise.

void vsip_vnul _f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3);

void vsip_vnul _i(
const vsip_vview.i* al,
const vsip_vview.i* a2,

const vsip_vview.i* a3);

void vsip_cvmul _f(
const vsip_cvview f* al,
const vsip_cvview f* a2,

const vsip_cvview f* a3);

voi d vsip_rcvmul _f(
const vsip_vview f* al,
const vsip_cvview f* a2,

const vsip_cvview f* a3);

DRAFT TASP VSIPL Core Plus

DRAFT

Argunent al Input vector view.
Argunent a2 Input vector view.

Argunent a3 Output vector view.
Multiply a scalar times a vector elementwise.

void vsip_svrmul _f(
vsi p_scal ar_f a1,
const vsip_vview f* a2,
const vsip_vview f* a3);

void vsip_svmul _i(
vsi p_scalar_i al,
const vsip_vview.i* a2,
const vsip_vview.i* a3);

void vsip_csvnul _f(
vsi p_cscal ar_f al,
const vsip_cvview f* a2,
const vsip_cvview f* a3);

voi d vsip_rscvmul _f(
vsi p_scalar_f ail,
const vsip_cvview f* a2,
const vsip_cvview f* a3);

Argurent al Input scalar.
Argunment a2 Input vector view.
Argunment a3 Output vector view.

Complex conjugate multiply.

Scalar conjugate multiply. Multiply the first input scalar times the conjugate of the
second input scalar

vsi p_cscal ar _f vsip_cjml _f(
vsi p_cscal ar _f al,
vsi p_cscal ar _f a2);

void vsip CIMJL_f(
vsi p_cscal ar_f al,
vsi p_cscal ar_f a2,
vsi p_cscal ar_f* a3);

Ret ur ns For non void the product of the arguments.
Argunent al Firstinput scaar.

Argurment a2 Second input scalar

Argunent a3 Pointer to output complex scalar.

Elementwise multiply the first input times the conjugate of the second input.
voi d vsip_cvj mul _f(
vsi p_cvview f* al,

vsi p_cvview f* a2,
vsi p_cvview f* a3);

TASP VSIPL Core Plus DRAFT

DRAFT

Argunent al Thefirst input vector view.
Argunent a2 The second input vector view.
Argunent a3 The output vector.

Vector Matrix elementwise multiply. Elementwise multiply the elements of a vector
times the elements of the rows or columns of a matrix. The length of the vector must
be the same length as the selected row or column direction.

void vsip_vmmul _f(
const vsip_vview f *al,
const vsip_miew f *a2,
vsi p_nmj or ngj or,
const vsip_mview f *a3);
voi d vsip_cvmul _f(
const vsip_cvview f *al,
const vsip_cnview f *a2,
Vsi p_nmj or ngj or,
const vsip_cnview f *a3);
voi d vsip_rvenmul _f(
const vsip_vview f *al,
const vsip_cnview f *a2,
Vsi p_nmj or mgj or,
const vsip_cnview f *a3);

Argunment al Input vector view.

Argunment a2 Input matrix view.
Argunent a3 Output matrix view.

neg

Perform an unary minus.
Scalar unary minus

vsi p_cscal ar _f vsip_cneg_f(
vsi p_cscal ar _f al);

voi d vsi p_CNEG f(
vsi p_cscal ar_f al,
vsip_cscalar_f* al);

Ret ur ns For non void the negative of the argument.
Argunent al Input scalar.

Argurent a2 Pointer to output scalar.

Elementwise perform an unary minus on aview.
void vsip_vneg f(

const vsip_vview f* al,
const vsip_vview f* a2);

DRAFT TASPVSIPL Core Plus

DRAFT

voi d vsi p_cvneg_f(
const vsip_cvview f* ail,
const vsip_cvview f* a2);

void vsip_vneg i (
const vsip_vview.i* al,
const vsip_vview.i* a2);

Argunment al Input vector
Argunent a2 Output vector

not

Elementwise calculate the bitwise “NOT” for an integer view, or alogical “NOT” for
an boolean view.

void vsip_vnot i (
const vsip_vview.i* al,
const vsip_vview.i* a2);

voi d vsi p_vnot _bl (
const vsip_vview bl* ai,
const vsip_vview bl* a2);

Argunment al Inputview.
Argunment a2 Output view.

or

Performs a bitwise “OR” operation between two integer views, or alogica “OR”
between two boolean views.

voi d vsip_vor _i(
const vsip_vview.i* al,
const vsip_vview.i* a2,
const vsip_vview.i* a3);

voi d vsip_vor_bl(
const vsip_vview bl* al,
const vsip_vview bl* a2,
const vsip_vview bl* a3);

Argunent al Inputview.
Argunent a2 Inputview.
Argunent a3 Output view.

out er

_ T
Compute a scaled outer product of two vectors.C = oX)

voi d vsi p_vouter f(
const vsip_scalar_f al,
const vsip_vview f* a2,
const vsip_vview f* a3,
const vsip_nmview f* a4);

TASP VSIPL Core Plus DRAFT

74

pol ar

put

DRAFT

voi d vsip_cvouter f(
const vsip_cscalar_f ail,
const vsip_cvview f* a2,
const vsip_cvview f* a3,
const vsip_cnview f* a4);

Argunent al Scaling factor O .
Argunent a2 Inputvector?c.

Argunent a3 Inputvectorf/

Argunment a4 Output matrix C

Convert complex rectangular to polar notation. All VSIPL complex numbersarein
rectangular notation. Conversion to polar requires output into two real objects.

Scalar functionality.

void vsip_polar_f(
vsi p_cscal ar_f al,
vsi p_scalar_f a2,
vsi p_scal ar _f a3);

Vector functionality.

voi d vsi p_vpol ar_f(
const vsip_cvview f* ail,
const vsip_vview f* a2,
const vsip_vview f* a3);

Argunent al Input complex.

Argunent a2 Output radius (square root of sum of squares of real and imaginary of input).

Argunent a3 Output angle (atan2(real al, imaginary al)).

Put an element into a vector.

voi d vsip_vput _f(
const vsip_vview f* al,
vsi p_scal ar_vi a2,
vsi p_scal ar_f a4);

void vsip_cvput _f(
const vsip_vview f* ail,
vsi p_scal ar_vi a2,
vsi p_cscal ar _f a4);

void vsip_vput _i(
const vsip_vview f* al,

DRAFT

TASPVSIPL Core Plus

DRAFT

vsi p_scal ar_vi a2,
vsi p_scal ar_i a4);

void vsip_vput _vi (
const vsip_vview.vi* al,
vsi p_scal ar_vi a2,

vsi p_scal ar_vi a4);

void vsip_vput_m (
const vsip_vview m?* al,
vsi p_scal ar_vi a2,

vsip_scalar_m a4);

voi d vsi p_vput bl (
const vsip_vview bl* ai,
vsi p_scal ar_vi a2,

vsi p_scal ar_bl a4);

voi d vsi p_mput _f(

const vsip_mview f* al,
vsi p_scal ar_vi a2,

vsi p_scal ar_vi a3

vsi p_scal ar _f a4);

void vsip_cnput _f(

const vsip_cnview f* ail,
vsi p_scal ar_vi a2,

vsi p_scal ar_vi a3,

vsi p_cscal ar _f a4);

Argunment al View intowhich an element will be placed.

Argunent a2 Index value of desired element location. Thefirst element in the view will have
an index value of 0 (zero). For matrix putsthisisthe row index.

Argunent a3 Columnindex value for matrix put. Thefirst element is 0.
Argunent a4 Valueto placein view.

putattrib

Access function to set the attributes of a view object using the public attributes object.

vsip_vview f* vsip_vputattrib_f(
vsip_vview f* ai,
const vsip_vattr_f* a2);

vsip_cvview f* vsip_cvputattrib_f(
vsi p_cvview f* al,

const vsip_cvattr_f* a2);

vsip_vview i* vsip_vputattrib_i(
vsi p_vview_i* al,

const vsip_vattr_i* a2);

vsip_vview vi* vsip_ vputattrib vi(
vsi p_vview vi* al,

const vsip_ vattr_vi* a2);

TASP VSIPL Core Plus DRAFT

76

DRAFT

vsip_vview m* vsip_vputattrib_m (
vsi p_vview m * al,
const vsip_vattr_m?* a2);

vsip_vview bl* vsip_ vputattrib_ bl (
vsi p_vview bl * al,

const vsip_ vattr_bl* a2);

vsip mview f* vsip nmputattrib f(
vsip_nview f* al,

const vsip_mttr _f* a2);

vsip_cnview f* vsip_cnputattrib_ f(

vsip_cnmview f* al,
const vsip_cmattr_f* a2);

Ret ur ns Pointer to input view as a convenience.
Argunent al Input vector whose attributes will be modified.

Argunent a2 Attribute structure to befilled with attributes of input vector. Note that the block
isignored when putting an attribute.

put col | engt h

Replace the column length in amatrix view.

vsip_nmview f* vsip _nputcollength f(
vsip_nview f* al,
vsip_length a3);

vsip_cnview f* vsip_cnputcollength f(
vsi p_cnview f* al,
vsip_length a3);

Ret ur ns Pointer to input view as a convenience.
Argunment al Input matrix whose column length will be modified.

Argunment a2 New length.

put col stri de

Replace the column stride in a matrix view.

vsi p_nmview f* vsip_nputcol stride_f(
vsi p_nview f* ail,
vsi p_stride a3);

vsip_cnview f* vsip_cnputcol stride f(
vsi p_cnview f* al,
vsi p_stride a3);

Ret ur ns Pointer to input view as a convenience.
Argunent al Input matrix whose column stride will be modified.

Argument a2 New stride.

DRAFT TASPVSIPL Core Plus

DRAFT

put of f set

Access function to set the offset of aview object

vsip_vview f* vsip_vputoffset f(
vsip_vview f* al,
vsi p_offset a2);

vsip_cvview f* vsip_cvputoffset f(
vsi p_cvview f* al,

vsi p_of fset a2);

VSi

p_vview_i* vsip_vputoffset_i(
vsip_vview.i* al,
vsi p_of fset a2);

VSi

p_vview vi* vsip_vputoffset_vi(
vsi p_vview vi* al,
vsi p_offset a2);

vsi p_vview m * vsip_vputoffset m(
vsi p_vview m * al,

vsi p_offset a2);

vsi p_vview bl * vsip_vputoffset bl (
vsi p_vview bl * al,

vsi p_offset a2);

VSi

p_nview f* vsip_nputoffset f(
vsip_nview f* al,
vsi p_offset a2);

vsip_cnview f* vsip_cnputoffset f(
vsi p_cnview f* al,
vsi p_of fset a2);

Ret ur ns Pointer to input view as a convenience.
Argunment al View whose offset isto be reset.

Argunent a2 Offset value. An offset of O (zero) will place the offset at the first element of the
block.

put row ength

Replace the row length in a matrix view.

vsi p_nmview f* vsip_nputrow ength_f(
vsi p_nview f* ail,
vsi p_l ength a3);

vsip_cnview f* vsip_cnputrow ength_f(
vsi p_cnview f* al,
vsi p_l ength a3);

Ret ur ns Pointer to input view as a convenience.
Argunent al Input matrix whose row length will be modified.

Argunent a2 New length.

TASP VSIPL Core Plus DRAFT

77

78

put rowstri

DRAFT

de

Replace the row stride in amatrix view.

VSi

VSi

p_nmview f* vsip nputrowstride f(
vsip_nview f* al,

vsi p_stride a3);

p_cnmview f* vsip cnputrowstride f(
vsi p_cnview f* al,

vsi p_stride a3);

Ret ur ns Pointer to input view as a convenience.

Argunent al Input matrix whose row stride will be modified.

Argunment a2 New stride.

put stride

Access function to set the stride of a vector view object.

vsi p_vview f* vsip_vputstride_f(
vsi p_vview f* ail,
vsi p_stride a2);

vsip_cvview f* vsip_cvputstride f(
vsi p_cvview f* al,

vsi p_stride a2);

vsip_vview i* vsip_vputstride_ i(
vsip_vview.i* al,

vsi p_stride a2);

Vsi p_vvi ew vi* vsip_vputstride_vi (
vsi p_vvi ew vi* al,

vsi p_stride a2);

vsi p_vview m* vsip_vputstride_m(
vsip_vview m* al,

vsi p_stride a2);

vsi p_vview bl * vsip_vputstride_bl (

vsi p_vview bl * al,

vsi p_stride a2);

Ret ur ns Pointer to input view as a convenience.

Argunent al Vector view whose stride isto be reset.

Argunent a2 Stridevalue. Strides may be positive, negative or zero.

put | engt h

Access function to set the length of a vector view object

vsi p_vview f* vsip_vputlength_f(
vsip_vview f* al,
vsi p_l ength a2);

DRAFT

TASPVSIPL Core Plus

grd

DRAFT

vsi p_cvview f* vsip_cvputlength_f(
vsi p_cvview f* al,
vsi p_l ength a2);

vsip_vview i* vsip_vputlength_i(
vsip_vview.i* al,
vsi p_l ength a2);

vsip_vview vi* vsip_vputlength vi(
vsi p_vview vi* al,
vsip_length a2);

vsi p_vview m* vsip_vputlength_m (
vsi p_vview m* al,
vsi p_l ength a2);

vsi p_vvi ew bl * vsi p_vputl engt h_bl (
vsi p_vview bl * al,
vsi p_l ength a2);

Ret ur ns Pointer to input view as a convenience.

Argunent al Vector whoselengthisto be reset.
Argunent a2 Lengthvalue.

Matrix decomposition using the QR method. This function set is used for solving lin-
ear systems, in particular over determined systems.

QRD create function. Create the QRD object.

vsip_qgr_f* vsip_qrd_create_f(
vsi p_l ength al,
vsi p_l ength a2,
vsi p_qrd_gopt a3);

vsip_cqr_f* vsip_cqrd_create f(
vsip_length al,
vsip_l ength a2,
vsi p_qrd_gopt a3);

Ret ur ns A QRD object.

Argunent _al Number of rowsin theinput matrix A in the QRD decomposition func-
tionvsip_qrd_f orvsip_cqrd_f.

Argunent a2 Number of columnsin theinput matrix 4 in the QRD decomposition
functionvsi p_qrd_f orvsip_cqrd_f.

Argunment a3 Enumerated type definition indicating what type of QRD informa-
tion isrequired in the matrix decomposition, either no O, full O, or
skinny Q.

Decompose the input matrix 4 and bind the decomposition to the QRD object.

Note that the 4 matrix is used in the decomposition, and should not be modified or

TASP VSIPL Core Plus DRAFT 79

80

DRAFT

destroyed until the QRD object is no longer needed. For the following the size of
Aismbyn.
int vsip_grd_f(

vsip_qr_f* ail,
const vsip_nmview f* a2);

int vsip_cqrd_f(
vsip_cqr_f* ai,
const vsip_cnview f* a2);

Ret ur ns Zero (0) on success.

Argunent al Input QRD object which will contain the A decomposition information.
Argunent a2 Input matrix A tobe decomposed using QR methods.

Using the QRD object calculate the product of the matrix O from the QR decom-

position of matrix 4 where A4 isof size m,, by n, and m, > n,. To use this func-
tion the QRD object must have been created with one of the save Q options. If
VS| P_QRD_SAVEQWas specified the size of theimplied O matrix is m,, by m,, . if

VSI P_QRD_SAVEQL was specified the size of theimplied O matrix is m,byn,.
This function preforms the operation.
op(Q) [or C [bp(Q)

Note that this matrix product isdonein place and is of theform # (K = C where
H isof sizem by n, K isof sizen by k and C isof size m by k. Either matrix
H or K (depending upon the option selected) may be required to be in place with

C sincethe op(Q) may be€either on the left or right. The output matrix may be the
same size asthe input, or it may be larger or smaller than the input matrix, depend-

ing ontheinput sizesof A and K, and which input matrix represents the output
matrix. The following in-place rules are followed. (1) The elements of the input/
output matrices are arranged in there natural matrix element locations in the upper
left corner of the input/output matrix view. (2) The input/output matrix view will be
of the input. (3) If the output is larger than the input then the strides of the input
matrix must be sufficient so that the output data may be contained in the block.

int vsip_grdprodg_f(
const vsip_qgr_f* al,
vsi p_mat_op a2,
vsi p_mat _si de a3,
const vsip_nview f* a4);

int vsip_cqrdprodg_f(
const vsip_cqgr_f* ai,

DRAFT TASPVSIPL Core Plus

DRAFT

vsi p_mat _op a2,
vsi p_mat _si de a3,
const vsip_cnview f* a4);

Ret ur ns Zero (0) on success.

Argunent al Input QRD object.

Argunent a2 Input Operator flag. For real case only the no transpose and transpose cases are
supported. For the complex case only the no transpose and hermitian transpose
case are supported.

Argunment a3 Input flag to cause the matrix multiply to happen on the left or the right.

Ar gqument a4 Input matrix to be multiplied with op(Q) , and the output matrix of result. The

attributes of the input and output matrix are the same, and the row and column
lengths may need to be adjusted to fit the output matrix data space. Note that if
the input and output matrix are not the same size it may be convenient to define a
second view of a4 which describes the input or the output, whichever is smaller.

Solve linear system using QRD object. The solution isbased on the R matrix from
the QR decomposition, and the linear system solved is of the form

= >
op(R)x; = ab;. Thesolution is done (in place) for aset of input vectors

- - = - _ - - -
B = [by, by, ...,b;] andoutput vectors X' = [xg, x;, ..., x;] .

int vsip_grdsolr_f(
const vsip_qgr_f* al,
vsi p_mat_op a2,
vsi p_scal ar_f a3,
const vsip_nview f* ad);

int vsip_cqrdsolr_f(
const vsip_cqr_f* al,
vsi p_mat _op a2,
vsi p_scal ar_f a4,
const vsip_cnview f* a4);

Ret ur ns Zero (0) on success.

Argunent al Input QRD object.

Argunent a2 Input operator flag to determine form of R.
Argunent a3 Input scale factor.

Argunment a4 Input matrix B and output matrix X.
Solve a covariance or linear least square problem. The covariance problem solved

—— -
isof the form ATAxl. = b;. The solution is done (in place) for aset of input vec-

— - = - — - = -
tors B = [by, by, ..., b;] and output vectors X' = [x,, x;, ..., x;] .

int vsip_grsol _f(
vsip_qgr_f* al,

TASP VSIPL Core Plus DRAFT

81

DRAFT

vsi p_qrd_prob a2,
const vsip_nmview f *a3);

int vsip_cqrsol f(
vsip_cqr_f* al,
vsip_qrd_prob a2,
const vsip_cnview f* a3);

Ret ur ns Zero (0) on success.

Argunent al Input QRD object.

Argunent a2 Flagto determineif the least squares problem is solved, or the covariance prob-
lemissolved.vsip_mrealview f

Argunment a3 Inputview B tosolvefor, and output view X . Notethat for the covariance prob-
lem B and X are of the same size, but for the least squares problem B hasa

column length greater than or equal to X.The in-place rule is that the output

matrix goesin the upper left corner of the input matrix in natural order, and the
view attributes are unchanged for input and output. It may be convenient to
define a second view of a3 defining the output.

Get the attributes of a QRD object.

void vsip_qrd_getattr_f(
const vsip_qr_f *al,
vsip_qrd_attr_f *a2);

void vsip cqrd getattr f(
const vsip_cqr_f *al,
vsip _cqrd_attr _f *a2);

Argunent al QRD object whose attributes are being queried.
Argunment a2 QRD attribute object.

Destroy a QRD object.

int vsip_qgqrd_destroy f(
vsip_qr _f *al);

int vsip_cqrd_destroy f(
vsip_cqr_f *a2);

Argunment al QRD object to be destroyed.

ranp
Fill avector with an initial value plus some increment times the vector index.

voi d vsip_vranp_f(
vsi p_scal ar_f ail,
vsi p_scal ar_f a2,
const vsip_vview f* a3);

void vsip_vranp_i (
vsi p_scalar_i al,
vsi p_scalar_i a2,
const vsip_vview.i* a3);

DRAFT TASPVSIPL Core Plus

rand

DRAFT

Argunent al Starting value of ramp.
Argunent a2 Ramp increment value.
Argunent a3 Output vector containing ramp values.

Generate a uniform random sequence. The current non-portable sequence in the TASP
V SIPL implementation is based on the congruential sequence

o= [(1664525) X, _, + 1013904223] mod (232).
The number produced is normalized to afloat value between zero and one.

Create arandom state object.

vsi p_randstate* vsip_randcreate(
vsi p_i ndex al,
vsi p_i ndex a2,
vsi p_i ndex a3,
vsi p_rng a4);

Ret ur ns A random state object
Argunent al Theinitia seed value for the random state object.
Argunment a2 Thetota number of independent random state objects needed.

Argunment a3 The particular random state object needed out of the number specified in argu-
ment a2. Numbering starts at 1. For instance if a2 is 3 then a3 will be 1, 2, or 3.

Argunent a4 A flag to indicate whether the desired generator is the portable generator defined
in the VSIPL specification, or a non-portable generator which is implementation
dependent. The non-portable generator may be the same as the portabl e generator
(For TASP VSIPL they are not the same).

Create the next random number from random state object.

Scalar function for uniform random number generator. Generates uniformly dis-
tributed floats bounded by zero and one.

vsi p_scal ar _f vsip_randu_f(
vsi p_randstate *al);

vsi p_cscal ar_f vsip_crandu_f(
vsi p_randstate *al);

Scalar function for N (0, 1) Gaussian random number generator.

vsi p_scal ar_f vsip_randn_f(
vsi p_randstate *al);

vsi p_cscal ar _f vsi p_crandn_f(
vsi p_randstate *al);

Ret ur ns A random number
Argunment al Random state object, created by randstate.

Create a vector of random numbers from the random state object.

TASP VSIPL Core Plus DRAFT 83

DRAFT

Vector function for uniform random number generator. Generates uniformly dis-
tributed floats bounded by zero and one.

void vsip_vrandu_f(
vsi p_randstate *al,
const vsip_vview f *a2);

voi d vsi p_cvrandu_f (
vsi p_randstate *al,
const vsip_cvview f *a2);

Vector function for N (0, 1) Gaussian random number generator.

voi d vsip_vrandn_f (
vsi p_randstate *al,
const vsip_vviewf *a2);

voi d vsip_cvrandn_f(
vsi p_randstate *al,
const vsip_cvview f *a2);

Argunent al Therandom state operator

Argunent a2 A vector view to be filled with sequential numbers from the generator specified
by the randstate object.

Destroy the random state object

i nt vsip_randdestroy(
vsi p_randstate *al);

Ret ur ns 0 on success.
Argunent al Therandom state object to be destroyed.

r eal

Copy the imaginary elements of a complex vector to areal vector.

Scalar real part.

vsi p_scal ar_f vsip_real _f(
vsi p_csclar_f al);

Ret ur ns Therea part.

Argunent al Theinput complex scalar.
Vector real part.

void vsip_vreal f(

const vsip_cvview f* ail,
const vsip_vview f* a2);

Argunent al Input complex vector.
Argunent a2 Output vector to contain real part of input vector.

DRAFT TASPVSIPL Core Plus

DRAFT

real vi ew

Create area view of the real portion of acomplex view. Thisis not acopy. Modifying
elementsin either the real view or the complex view will modify the corresponding
element in the other view.

vsi p_vview f* vsip_vreal view f(
const vsip_cvview f* al);

vsip_nview f* vsip_nreal view f(
const vsip_nview f* al);

Ret ur ns Vector view of the real portion of the complex view al.
Argunment al Complex vector view from which the real view of the real part will be derived.

recip

Find the reciprocal value.

Scalar Reciprocal

vsi p_cscal ar _f vsip_crecip_f(
vsi p_cscal ar _f al);

voi d vsi p_CRECI P_f(
vsi p_cscal ar _f al,
vsi p_cscal ar _f *a2);

Ret ur ns For non void scalar the reciprocal of the argument.

Argunent al Input scaar.
Argunent a2 Output of thereciprical of the input for non-void scalar function.

Elementwise find the reciprocal of avectors elements and place them in an output
vector.

void vsip_vrecip_f(
const vsip_vview f* al,
const vsip_vview f* a2);

voi d vsip_cvrecip_f(
const vsip_cvview f* ail,
const vsip_cvview f* a2);

Argunment al Input vector
Argunent a2 Output vector
rect

Convert rectangular notation to complex rectangular. VSIPL has no polar scalar stor-
age. Polar storageisin two rea objects. Complex storage is always in rectangular
form.

Scalar rectangular. Convert two real scalars representing a number in polar nota-
tion to a complex number in rectangular notation.

TASP VSIPL Core Plus DRAFT

85

DRAFT

vsi p_cscal ar_f vsip_rect _f(
vsi p_scal ar_f a1,
vsi p_scal ar_f a2);

void vsi p_RECT f(
vsi p_scalar_f al,
vsi p_scalar_f a2,
vsi p_cscal ar_f *a3);

Ret ur ns The rectangular notation complex scalar.
Argunment al Magnitude (radius) of polar notation scalar.
Argunent a2 Angle of radius vector of polar notation scalar.

Vector rectangular. Elementwise convert two real vectors representing (pairwise)
numbers in polar notation to a complex vector in rectangular notation.

void vsip_vrect_f(
vsi p_vview f* ail,
vsi p_vview f* a2,
vsi p_cvview f* a3);

Argunent al Input vector representing magnitude of polar notation.
Argunent a2 Input vector representing angle of polar notation.
Argunment a3 Output complex vector in complex rectangular notation.

rowi ew

Create a vector view of a selected row of a matrix

vsi p_vview f* vsip_nrowiew f(
const vsip_mview f* al,
vsi p_i ndex a2);

vsi p_cvview f* vsip_cnrowiew f(
const vsip_cnview f* ail,
vsi p_i ndex a2);

Ret ur ns A vector view of the selected row, or aNULL if the memory alocation for the
view object fails.

Argunent al Inputview.

Argunent a2 Index of desired view. Indices are zero based so that the first (top) row of the
matrix has index zero.

rsqrt

Reciprocal square root. Find the reciprocal square root of the elements of aview.

voi d vsip_vrsqgrt_f(
const vsip_vviewf *al,
const vwi p_vview f *a2);

Argunment al Inputview.
Argunment a2 Output view.

DRAFT TASPVSIPL Core Plus

DRAFT

scatter

Anindex vector and an input vector (of the same length) are indexed elementwise. The
input vector value is placed in an output view based on the index vector value. The
only requirement on the output view is that the index vector values are valid indices
into the output view. For the core profile only vector views are supported for the out-
put.

void vsip_vscatter_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vviewyvi* a3);

void vsip_cvscatter f(
const vsip_cvview f* ail,
const vsip_cvview f* a2,

const vsip_vview.vi* a3);

void vsip _vscatter i (

const vsip_vview.i* al,
const vsip_vview.i* a2,
const vsip_vviewyvi* a3);

Argunent al Input vector view.

Argunent a2 Output view.
Argunent a3 Input vector view of indices (index vector).

Elementwise Sine of avector

void vsip_vsin_f(
const vsip_vview f* al,
const vsip_vview f* a2);

Argunment al Input vector in radian format.
Argunent a2 output vector of Sine values.

Sq
Elementwise find the square of a vectors elements

void vsip_vsqg_f(
const vsip_vview f* al,
cons vsip_vview f* a2);

Argunment al Input vector.
Argunent a2 Output vector of element squares from the input vector.

sqrt
Square Root

Scalar Square Root

TASP VSIPL Core Plus DRAFT

DRAFT

vsi p_cscal ar _f vsip_csqgrt_f(
vsi p_cscal ar _f al);

voi d vsi p_CSQRT_f (
vsi p_cscal ar_f al,
vsi p_cscal ar _f *a2);

Ret ur ns For non-void scalar the square root of the input.

Argunent al Inputvaue.
Argunent a2 For void scalar the square root of the input.

Elementwise square root of a vector.

void vsip vsqrt f(
const vsip_vview f* al,
const vsip_vview f* a2);

voi d vsip_cvsqgrt_f(
const vsip_cvview f* al,
const vsip_cvview f* a2);

Argunent al Input vector.
Argunent a2 Output vector.

sub
Subtract the second input from the first input.

Scalar Subtraction

vsi p_cscal ar _f vsip_csub_f(
vsi p_cscal ar _f al,
vsi p_cscal ar _f a2);

vsi p_cscal ar _f vsip_rcsub_f(
vsi p_scal ar_f a1l,

vsi p_cscal ar _f a2);

vsi p_cscal ar _f vsip_crsub_f(
vsi p_cscal ar _f al,

vsi p_scal ar _f a2);

d vsip_CSUB f(

vsi p_cscal ar_f al,
vsi p_cscal ar_f a2,
vsi p_cscal ar_f *a3);

d vsip_RCSUB f(

vsi p_scalar_f al,
vsi p_cscal ar_f a2,
vsi p_cscal ar_f *a3);

d vsip_CRSUB f(

vsi p_cscal ar _f al,
vsi p_scal ar_f a2,
vsi p_cscal ar_f *a3);

VO

VO

VO

Ret ur ns For non-void scalars the result of the second input subtracted from the first input.

DRAFT TASPVSIPL Core Plus

DRAFT

Argunent al Firstinput.
Argunent a2 Second input
Argunent a3 For void scalars the result of the second input subtracted from the first input.

Subtract a vector from a scalar

voi d vsi p_svsub_f(
vsi p_scal ar_f a1,
const vsip_vview f* a2,
const vsip_vview f* a3);

voi d vsip_svsub_ i (
vsi p_scalar_i al,
const vsip_vview.i* a2,

const vsip_vview.i* a3);

voi d vsip_csvsub_f(
vsi p_cscal ar_f al,
const vsip_cvview f* a2,

const vsip_cvview f* a3);

voi d vsip_rscvsub_f(
vsi p_scalar_f ail,
const vsip_cvview f* a2,

const vsip_cvview f* a3);

Argunent al Input scalar.

Argunent a2 Input vector.

Argunent a3 Output vector.

Subtract two vectors element by element

voi d vsip_vsub_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3);

void vsip_vsub_i(
const vsip_vview.i* al,
const vsip_vview.i* a2,

const vsip_vview.i* a3);

voi d vsip_cvsub_f(
const vsip_cvview f* ail,
const vsip_cvview f* a2,

const vsip_cvview f* a3);

void vsip_rcvsub_f(
const vsip_vview f* al,
const vsip_cvview f* a2,

const vsip_cvview f* a3);

void vsip_crvsub_f(
const vsip_cvview f* al,
const vsip_vview f* a2,

const vsip_cvview f* a3);
Argunent al Firstinput argument

TASP VSIPL Core Plus DRAFT

89

DRAFT

Argunment a2 Second input argument, subtracted from al.
Argunent a3 Output vector.

subvi ew

Creates a new view object from a parent object with a selected subset of the data of the
parent object accessed by the new view.

Vector Subviews.

vsi p_vview f* vsip_vsubview f(
const vsip_vview f* al,
vsi p_i ndex a2,
vsi p_l ength a3);

vsi p_cvview f* vsip_cvsubvi ew f(
const vsip_cvview f* ail,
vsi p_i ndex a2,
vsi p_l ength a3);

vsi p_vview_i* vsip_vsubview. i (
const vsip_vview.i* al,
vsi p_i ndex a2,

vsi p_l ength a3);

VSi

p_vview vi* vsip_vsubview vi(
const vsip_vview.yvi* al,

vsi p_i ndex a2,

vsi p_l ength a3);

VSi

p_vview m* vsip_vsubview ni(
const vsip_vview m?* al,

vsi p_i ndex a2,

vsip_length a3);

vsi p_vvi ew_ bl * vsi p_vsubvi ew_bl (
const vsip_vview bl* al,
vsi p_i ndex a2,

vsi p_l ength a3);
Ret ur ns Pointer to the new vector view object

Argunent al Input vector.

Argunent a2 Index of element in al starting the new vector view. Thefirst element isindex O
(zero).

Argunent a3 Length of new output vector view.
Matrix subviews.

vsi p_nmview f* vsip_nsubvi ew f(
const vsip_mview f* al,
vsi p_i ndex a2,
vsi p_i ndex a3,
vsi p_l ength a4,
vsi p_l ength ab);

DRAFT TASPVSIPL Core Plus

DRAFT

vsi p_cnview f* vsip_cnsubvi ew f(
const vsip_cnview f* ail,
vsi p_i ndex a2,
vsi p_i ndex a3,
vsi p_l ength a4,
vsi p_l ength ab);

Ret ur ns Pointer to new matrix view object.

Argunent al Input parent view.

Argunent a2 Row index of parent view for first element in child view.
Argunment a3 Columnindex of parent view for first element in child view.
Argunment a4 Length of column (number of rows) of child view.
Argunent a5 Length of row (number of columns) of child view.

sunsqval

Sum all the squares of the elements of a vector and return the sum.

vsi p_scal ar _f* vsip_sunsqval f(
const vsip_vview f* al);

Ret ur ns Input vector elements squared and summed.
Argunent al Input vector

sunval

Sum all the elements of avector and return the sum. For boolean the number of true
valuesis returned.

vsi p_scalar_f* vsip_vsumval f(
const vsip_vview f* al);

vsi p_scal ar_vi* vsip_vsunval _bl (
const vsip_vview bl* al);

Ret ur ns Sum of input vector values. For boolean the number of true valuesis returned.

Argunent al Input Vector.

swap

Exchange the elements of two vectors.

void vsip_vswap_f(
const vsip_vview f* al,
const vsip_vview f* a2);

void vsip_cvswap_f(
const vsip_cvview f* al,
const vsip_cvview f* a2);

Argunent al Inputand output vector.
Argunent a2 Input and output vector.

TASP VSIPL Core Plus DRAFT

91

DRAFT

tan

Tangent function.

vsip_vview f* vsip_vtan f(
vsip_vview f* al,
vsip_vview f* a2);

Argunent al Inputview.
Argunent a2 Output view of Tangent values.
Ternary Functions

These functions involve two operations, and three inputs. The operations are a combi-
nation of add, multiply and subtract.

Vector vector add and vector multiply. Add two vectors el ementwise and then mul-
tiply the result elementwise times a third vector.

voi d vsip_vamf(

const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3,
const vsip_vview f* ad);
void vsip_cvam f(

const vsip_cvview f* al,
const vsip_cvview f* a2,
const vsip_cvview f* a3,
const vsip_cvview f* ad);

Vector vector multiply and vector add. Multiply two vectors elementwise and then
add the result elementwise to athird vector.

void vsip_vna_f(

const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3,
const vsip_vview f* a4);
void vsip_cvma_f(

const vsip_cvview f* al,
const vsip_cvview f* a2,
const vsip_cvview f* a3,
const vsip_cvview f* ad);

Vector vector multiply and scalar add. Multiply two vectors elementwise and then
add the result elementwise to a scalar.

voi d vsip_vnsa_f(
const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_scalar_f* a3,
const vsip_vview f* ad);

DRAFT TASPVSIPL Core Plus

DRAFT

void vsip_cvmsa_f(
const vsip_cvview f* ail,
const vsip_cvview f* a2,
const vsip_cscalar_f* a3,
const vsip_cvview f* a4);

Vector vector multiply and vector subtract. Multiply two vectors elementwise and
then subtract elementwise from the result a third vector.

void vsip_vnsb_f(

const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3,
const vsip_vview f* a4);
voi d vsip_cvnsb_f (

const vsip_cvview f* al,
const vsip_cvview f* a2,
const vsip_cvview f* a3,
const vsip_cvview f* a4);

Vector scalar add and vector multiply. Add a scalar to a vector elementwise and
then multiply the result elementwise times a third vector.

void vsip_vsam f(
const vsip_vview f* al,
const vsip_scalar_f* a2,
const vsip_vview f* a3,
const vsip_vview f* a4);

void vsip_cvsam f(

const vsip_cvview f* ail,
const vsip_cscalar_f* a2,
const vsip_cvview f* a3,

const vsip_cvview f* a4);

Vector vector subtract and vector multiply. Subtract the second input vector from
the first input vector multiply the result times a third input vector elementwise.

void vsip_vsbm f(

const vsip_vview f* al,
const vsip_vview f* a2,
const vsip_vview f* a3,
const vsip_vview f* a4);
voi d vsip_cvsbm f (

const vsip_cvview f* al,
const vsip_cvview f* a2,
const vsip_cvview f* a3,
const vsip_cvview f* a4);

TASP VSIPL Core Plus

Vector scalar multiply and vector add. Multiply a scalar times a vector and subtract
athird vector from the result.

void vsip_vsma_f(
const vsip_vview f* al,

DRAFT 93

const
const
const

VO
const
const
const
const

DRAFT

vsi p_scal ar_f* a2,
vsi p_vview f* a3,
vsi p_vview f* a4);

d vsip_cvsma_f(

vsi p_cvview f* al,
vsi p_cscal ar_f* a2,
vsi p_cvview f* a3,
vsi p_cvview f* a4);

Vector scalar multiply and scalar add. Multiply a scalar times avector and then add
ascaar to the result.

voi d vsip_vsnsa_f (

const
const
const
const

VO
const
const
const
const

vsip_vview f* al,

vsi p_scal ar_f* a2,
vsi p_scal ar_f* a3,
vsi p_vview f* ad);

d vsip_cvsnea_f(

vsi p_cvview f* al,

vsi p_cscal ar_f* a2,
vsi p_cscal ar_f* a3,
vsi p_cvview f* a4);

Argunent al Firstinput vector view.

Argunment a2 Second input vector view or scalar.

Argunent a3 Third input vector view or scalar.

Argunent a4 Output vector view.

t oepsol

Solve a Toeplitz linear system. The Toeplitz matrix must be symmetric if real or Her-
mitian if complex and positive definite. The matrix is square, and we solve a system of

theform 7% = 3. Since the Toeplitz matrix is completely determined by its first row,
then only a vector view containing the elements of the first row is required for matrix

input.

int vsip_toepsol f(

const
const
const
const

vsip_vview f* ail,
vsi p_vview f* a2,
vsi p_vview f* a3,
vsi p_vview f* ad);

int vsip_ctoepsol f(

const
const
const
const

Ret ur ns

vsi p_cvview f* al,
vsi p_cvview f* a2,
vsi p_cvview f* a3,
vsip_cvview f* a4);

Zero if successful, -1 if memory allocation failure, positive if the Toeplitz matrix
is not positive definite.

Argunent al Input vector containing first row of Toeplitz matrix. This vector may not overlap

94

w any other vector in the work space.

DRAFT TASPVSIPL Core Plus

DRAFT

Argunent a2 Input vector containing f/ . This vector may not overlap any other vector in the
work space. This vector may be overwritten during the calculation.
Argunent a3 Vector, the same length as a2, for scratch space. The data elements of the vector

on input and output are not defined, and may be any value. This vector may not
overlap any other vector in the work space.

Argunent a4 Output solution vector ?c . This vector may not overlap any other vector in the
work space.

transvi ew

Xor

Create aview of the transpose of a matrix.

vsip_nmview f* vsip_ntransview f(
vsip_nview f* al);

vsi p_cnview f* vsip_cntransvi ew f(
vsi p_cnview f* al);

Ret ur ns Pointer to created view, or NULL if the view creation failed.
Argunment al Input matrix view.

Performs a bitwise “exclusive OR” (*XOR”) operation between two integer views, or
alogical “XOR” between two boolean views.

voi d vsip_vxor _i(
const vsip_vview.i* al,
const vsip_vview.i* a2,
const vsip_vview.i* a3);

voi d vsi p_vxor_bl (
const vsip_vview bl* ai,
const vsip_vview bl* a2,
const vsip_vview bl* a3);

Argunment al Inputview.
Argunent a2 Inputview.
Argunent a3 Output view.

TASP VSIPL Core Plus DRAFT

95

96

DRAFT

DRAFT

TASPVSIPL Core Plus

DRAFT

CHAPTER 3 Introduction to VSIPL Programming
using the Core Lite Profile

I ntroduction

This chapter introduces programing methods using VSIPL in general, and the VSIPL Core
Lite function set in particular. Although this chapter iswritten for the VSIPL Core Lite profile
it worksjust as well as an introduction for any V SIPL implementation. The examples are sim-
ple. Explanatory text accompanies each example.

Support Functions

The support functions are those functions used to make or destroy V SIPL objects, copy data,
modify object properties (such as stride, length and offset) or do input and output from
VSIPL. Theinput and output functionality of VSIPL will be handled in its own section since it
isacomplicated topic.

Block Creation

The base method for block creation isthe function bl ockcr eat e. Thisfunction takes asize
argument, which indicates how many elements of the block typeto create, and aV SIPL mem-
ory hint indicating how the data will be used by the program. TASP VSIPL just uses normal
ANSI C memory allocation methods and so this hint is unused.

Generaly examples will have a zero for creation hints since they are unused by the TASP
implementation of the library; however if the programer expects to develop code using TASP
V SIPL on aworkstation and then compile the workstation code on an embedded product, then
it isrecommended the programer useaVSIPL hint if it is supported by the embedded product.
All VSIPL implementations are required to ignore the hint if it is not supported, so using an
unsupported hint is harmless.

Vector Creation

The base method for vector creation isthe bi nd function. This function creates a vector
object, binds ablock to the vector, and sets the stride, offset, and length of the vector to view
the required data within the block. Example 2 below is a code segment to create areal float
block and a complex float block and attach a vector to each block.

TASPVSIPL Core Plus DRAFT 97

DRAFT

Example 2

/* Create a block and bind a vector to it */
vsi p_block_f *a = vsip_bl ockcreate_f (10, 0);
vsi p_cblock _f *b = vsip_cbl ockcreate f (10, 0);
vsip vview f *v_a = vsip_vbind f(a,0,1, 10);
vsip_cvview f *cv_b = vsip_cvbind f(b, 0,1, 10);

g B~ WN -

Notice that we create ablock in lines 2 and 3 each of size 10 elements, but the elements of
block a arerea and the elements of block b are complex. Inlines4 and 5 we define ared
view v_a and acomplex view cv_b. Theview is created with the bi nd function, and we set the
offset to zero, the stride to one, and the length to ten. Notice that the vectors we create here
encompass the entire block, and could just as well have been created with the convenience

cr eat e function used in Example 1.

Examination of the type definitions used for the block and vector views, and the function
name of the bl ockcr eat e functionsisworthwhilein order to devel op an understanding of the
VSIPL naming convention. The precision of the data hereisfloat and isindicated with an _f
prefix. The depth of the datais either real (understood in the name) or complex, indicated with
ac prefix on the root name.

Other methods of view creation and view modification.

There are several methods of view creation. We will cover some of thesein this section, and
also some methods for view modification. It isfrequently preferable to modify aview since no
create needs to take place.

A new view of ablock may always be created using the bind function. Each time thisis done
memory allocation takes place and the new view must be destroyed when no longer needed.
Example 3ishow to use a current view and vector bind to create anew view. Lets say we want
avector view of every other element (element 0, 2, 4, etc.) of an available view.

Example 3

vsip_vattr_f attr;
vsi p_vview f *b;
vsip_vgetattrib f(a, &ttr);
b = vsip_vbind_f(attr. bl ock,
attr.offset,2 * attr.stride,attr.length/2));
/[* do sonmething with b */
vsi p_vdestroy_f(b);

© 00 ~NOo ol &~ WN B

}

We note that the vector view a resides outside the curly brackets. Since we don’t know the
stride and length of a we usetheget at t ri b function in line 4 to retrieve that information. In
addition to offset, stride, and length getting the attribute structure also gets the block object.
Thebi nd function creates aview and binds the block to it. We set the offset to the same offset
as a; however we only want every other point of the vector a so we set the stride to double the

98 DRAFT TASPVSIPL Core Plus

DRAFT

stride of a. Note that if we just set the stride to two we would get every other point in the block
a was attached to, and not every other point of a (unless a happens to have a stride of one).
Finally we set the length of the vector. We do not know if the length of a is even or odd, but
length is some sort of unsigned integer, so division by 2 will result in an unsigned integer of
the floor of the division, which is the number we need.

There are several ways to accomplish the same thing we accomplished in example 3. For
instance in example 4 we demonstrate the same affect, but use cl onevi ewinstead of bi nd and
for a change of pace we make the vector a complex.

Example 4

vsip_cvattr _f attr;

vsi p_cvview f *b = vsip_cvcl oneview f(a);
vsi p_cvgetattrib f(a, &ttr);

attr.stride *= 2;

attr.length /=2;
vsip_cvputattrib f(b, &ttr);

/[* do sonmething with b */

vsi p_cvdestroy_f(b);

O N O O & W N P

[y
o

1}

Now we notice two things here. Thefirst isVSIPL strides and offsets are in terms of the block
element type. Thereis no difference in calculating the length and stride for this new complex
view than there was in the real view of example 3. We also see anew function putattribin
line 7. Note that putting an attribute is the opposite of getting an attribute, except that the
block value of the attribute isignored. The block of the view object is set on view creation in
line 3. The block attribute of aview is aways set when the view is created, and it is not possi-
ble to reset the views block attribute. Also notice that the attribute is passed by reference (a
pointer), both for getting, and putting, the attribute.

Another method to create aview isthe subvi ew function. The subview function takes an
index into the parent view of thefirst element of the child view, and alength. Note that indexes
are into vectors, not blocks. The stride isinherited from the original view, and there is no argu-
ment to allow resetting the stride in the subvi ew function. In example 5 below we do example
4 again using a subview. This time we assume we know the stride and length of the vector a,
and have stored them in variable a_st ri de and a_I engt h respectively.

Example 5
1
2 vsip_cvview f *b = vsip_vsubview f(a,0,a_length/2);
3 vsi p_vputstride_f(b,a_stride * 2);
4 /* do something with b */
5 vsi p_cvdestroy _f(b);
6}

TASPVSIPL Core Plus DRAFT 99

DRAFT

Example 5 is shorter than example 4, but that is mostly because we already know the stride
and length of the input vector. The new function to note here, besides subvi ew, isthe put -

st ri de function on line 3. The Core Lite profile does not support any of the get attribute func-
tionsexcept get at t ri b, but it does support al the put attribute functions, including

put | engt h and put of f set .

The final methods we will discuss to make views arer eal vi ewand i magvi ew. These two
functions are so important that we will discuss them in their own section below.

Viewing the Real and Imaginary portions of a Complex Vector

In the elementwise function set there are two functionsvsi p_vreal _f andvsi p_vi mag_f
which will copy the real or imaginary portion of acomplex vector to areal vector, and another
function vsi p_vcnpl x_f which will copy two real vector, one designated as real and one as
imaginary, to acomplex vector. Frequently it is desirable to operate on acomplex vectors real
or imaginary portions separately, but using the above function set is alot of copying and
requires extramemory allocation to allow room for the copies. What isreally desirableisto be
able to produce areal and imaginary view of the two parts of a complex vector in-place with
NO COpi€s.

Functionsin VSIPL alow oneto create real and imaginary views of a complex vector. The
functions arevsi p_vi magvi ew f andvsi p_vr eal vi ew_f . Producing aview of thereal or
imaginary part of acomplex view is more involved than one might at first think. We will only
look at one of the issues here. The problem is that these function create a vector view of type
vsi p_vvi ew f, areal vector view. Thistype view must be attached to a block of type

vsi p_bl ock_f ; however the complex view that the real views for the imaginary part and read
part are derived from is bound to acomplex block of typevsi p_cbl ock_f . Thefirst thing that
must be done (by the implementation) isthat areal block must be derived from the complex
block which represents the data of the real or imaginary portion of the complex block. This
block is termed a derived block.

A derived block is of the same data type as any other real block. Whether or not ablock is
derived from a complex block is apart of the state information kept by the block object.
Derived blocks may not be destroyed. The derived block is destroyed when the complex block
it is derived from is destroyed. The derived views are destroyed in the normal manner using
vsi p_vdestroy_f.

The only way to get aderived block isto derive aview (aderived view) using thei magvi ewor
real vi ewfunctions. The method VSIPL uses to create the derived block is implementation
dependent. These functions create areal view, bind the real view to the derived block, and set
the offset, strides and lengths of the real view to view the required real or imaginary portion of
the parent complex view. Although the length of the new view will be the same as the parent
view, the stride and offset are implementation dependent. If these are needed for some reason
the derived view must be queried.

Derived blocks may not be destroyed directly, they are destroyed when the parent complex
block is destroyed. Derived blocks may be bound to new vector views. It is recommended that
new views bound to derived blocks stay within the data space spanned by the original derived
view.

100 DRAFT TASPVSIPL Core Plus

DRAFT

There are some other subtle issues which we can ignore most of the time, and will ignore for
this introduction. Lets do a couple of simple examples.

We may want to initialize a complex vector to zero. In the Core Lite profile there is no com-
plex fill operation, only areal fill. Example 6 shows a method to fill acomplex vector with a
zero. Assume we have already produced the complex vector a outside the brackets.

Example 6

{ [I* replacenent for vsip cvfill _f */
vsip_vview f *b = vsip_vrealview f(a);
vsip vfill _f(b,0.0);
vsi p_vdestroy_f(b);

b = vsip_vimgvi ew f(a);
vsip vfill _f(b,0.0);
vsi p_vdestroy _f(b);

O N O O & W N P

}

It isimportant to notice that we destroy vector b twice, once on line 4 and again on line 7.
Thisisrequired. When we define the vector b on line 2 we actually define a pointer of type
real vector view. When we destroy the vector view in line 4 we don't destroy the pointer, just
what the pointer was pointed to which is the vector view created in line 2. We then create a
new vector view in line 5 and store the pointer in b. If we had not destroyed the object pointed
to by b inline 4 then in line 5 we would have replaced the view object pointer and |eaked the
memory allocated for the real view object in line 2.

If thisisclear, great. If not think about it this way. One wouldn’t want to do

/* bad code */

float *b;

b = (float)malloc(N * sizeof (float));/* allocate nmenory */
b = (float)malloc(N * sizeof (float));/* | eak above nenory */
free((void *) b);

Thisis equivalent to what happensif you don’t destroy a vector view before assigning a new
vector view. Of coursethisisalso truefor blocks. With (VSIPL) blocks not destroyed properly
you also leak the memory associated with the data array.

Another function that is not included with the Core Lite profile is the Euler function. Euler
takes an input vector of angles (in radians) and outputs a complex vector of cosine valuesin
thereal part and sine valuesin the imaginary part. Example 7 shows us how to do that, and
will also demonstrate some of the in-place functionality of VSIPL. In-place means to replace
the input with the output. Most elementwise functions support in-place, but not all functions
do. Seethe VSIPL specification for more details of in-place.

TASPVSIPL Core Plus DRAFT 101

DRAFT

Example7
1 vsip_cvview f *v = vsip_cvcreate f(N,0);
2 {/* do euler */
3 vsip_vview f *v_ r = vsip_vrealview f(v);
4 vsip_vview f *v_ i = vsip_vimgview f(v);
5 vsip_vranmp_f(0,ft_f _2PI/(vsip_scalar _f)N v_r);
6 vsip_vsin_ f(v_r,v_i);
7 vsip_vcos _f(v_r,v_r);
8 vsi p_vdestroy_f(v_r);
9 vsi p_vdestroy_f(v_i)
10}

Inline 1 of example 7 we create a complex vector of length N. We want to perform an Euler
operation to fill this vector with sine and cosine values of angle arguments equally distributed

between zero and 271. In this example the input vector will stop just one increment short of

2T1t. Inlines 3 and 4 we produce views of the real and imaginary portion of the complex vec-
tor. Inline 5 wefill the real part of the vector v with angles starting at zero and incrementing
by (21)/ N until the last value of the vector v_r is ((N —1)/N)2T1t. Inline 6 we place the
sine of the real part values into the imaginary part of vector v. In line 7 we replace the angles
inthereal part of the vector v with their cosine values. Line 7 isthe in-place operation. Inline
8 and 9 we destroy the views created in lines 3 and 4 since they are no longer needed. Note
that destroying these views does not destroy the data. The datais stored in the complex block
and is still viewed by the complex vector v.

VSIPL Input and Output Methods

Since VSIPL blocks are created using incompl ete type definitionsit is not possible to manipu-
late the data array directly. There is no method within VSIPL to retrieve a pointer to any data
memory which was created using cr eat e Or bl ockcr eat e. Blocks created by these functions
aretermed VSIPL blocks.

It isimportant to get datainto or out of VSIPL in order to communicate with other processes
or to manipulate the data directly for some purpose. VSIPL has an understanding of owning
the data it operates on. Now V SIPL blocks are always owned by VSIPL and are said to be in
the admitted state. It is not possible to remove VSIPL blocks from the admitted state. It is pos-
sibleto create ablock and bind it to memory allocated by the application external to VSIPL.
This type memory, and block, are termed user data arrays, and user blocks. A user block is
created using the bl ockbi nd function. It is created in areleased state. It is an error to use any
V SIPL function which will read or write the data array of areleased block.

When a user block isto be used by VSIPL It must first be admitted to VSIPL using the bl ock-
admi t function. When the application needs to access the data of an admitted user block
directly the block must first be released using the bl ockr el ease function.

102 DRAFT TASPVSIPL Core Plus

DRAFT

Note the following. A user block and a VSIPL block of the same type and precision have the
same type definition. All of the information as to whether ablock is a user block, a VSIPL
block, or isreleased or admitted is maintained by the block object as state information. A
VSIPL block is always admitted, and may not be released. A user block is created as released
and may be admitted or released as required.

Rebinding user datato a user block

In a situation where input and output (1/O) is continuous, sometimes called data streaming, it
would be bad resource management to destroy and allocate new user blocks continuously
where it is desirable to have multiple data buffers used for essentially the same thing. In addi-
tion the view setup on a user block would also need to be destroyed and reconstructed every
time a new buffer is admitted to VSIPL and an old buffer is released. To get around this prob-
lem afunction was defined in VSIPL that allows one to rebind a new buffer to ablock. The
new buffer has the same features as the old buffer. Thisway, for instance, while the second
buffer isbeing filled VSIPL can be operating on data from the first buffer. When VSIPL is
done the user block is released, and when the second buffer isfilled it is bound to the user
block using r ebi nd, and the first buffer unbound from the block is free to accept new data
from the user process while the user block is admitted to VSIPL for data manipulation.

I/O Example

In example 8 we assume we need an el ementwise vector cosh function. Inthe VSIPL standard
there is ageneral function for doing elementwise operations like this; however it is not
included in the Core profile. For this example we would like to manipul ate the elements
directly and then import them into VSIPL. We will do thisin-place.

Now we examine Example 8 below. Note the use of the capital | P in the vector cosh function
name to denote in-place is the author’s notation, not VSIPL's.

TASPVSIPL Core Plus DRAFT 103

DRAFT

Example 8
1 #i ncl ude<vsi p. h>
2 /[* return 1 on failure, O on success */
3 int VUvcoshlP f(vsip_vview f *a)
4 { wvsip_vattr_ f attr;
5 vsip_vview f *b = a;
6 vsi p_scal ar _f *buff;
7 vsi p_length n;
8 vsi p_bl ock_f *B;
9 vsi p_vgetattrib _f(a, &attr);
10 B = attr.block; n = attr.|ength;
1 I f ((buff = vsip_blockrelease f(B,VSIP_TRUE)) == NULL){
12 buf f=(vsi p_scalar_f *)mall oc(
13 n * sizeof (vsip_scalar f));
14 i f(buff !'= NULL){/* create a user block */
15 i f((B = vsip_blockbind f(buff,n,0)) == NULL){
16 free((voi d*) buff);
17 return 1;/* user block create failed */
18 }
19 }el sef
20 return 1;/* buff create failed */
21 }
22 vsi p_bl ockadm t _f (B, VSI P_FALSE)
23 if((b = vsip_vbind f(B,0,1,n)) == NULL){
24 vsi p_bl ockdestroy_f(B);
25 free((voi d*) buff);
26 return 1;/* view create failed */
27 }
28 vsi p_vcopy_f_f(a,b);
29 vsi p_bl ockr el ease_f (B, VSI P_TRUE)
30 }
31 while(n-- >0){/* Do the work */
32 *puff = cosh(*buff);
33 buf f ++;
34 }
35 buff = vsip_bl ockfind_f(B);
36 vsi p_bl ockadm t _f (B, VSI P_TRUE)
37 if(a!= b){
38 vsi p_vcopy_f _f(b, a);
39 vsi p_val | destroy_f (b);
40 free((void *) buff);
41 }return O;
42 3
43
44

Example 8 (Continued)

104 DRAFT TASPVSIPL Core Plus

DRAFT

45 void VUvprint _f(vsip_vview f* a){

46 int i;

47 vsip_vattr_f attr;

48 vsi p_vgetattrib_f(a, &ttr);

49 for(i=0; i<attr.length; i++)

50 printf("%.4f ",vsip_vget _f(a,i));
51 printf("\n");

52 return;

53}

54 int main()

55 { int init = vsip_init((void*)0);

56 int VUvcoshlP_f(vsip_vview f *);

57 void VU vprint_f(vsip_vviewf *);

58 vsip vview f *A = vsip vcreate f(8,0);
59 vsi p_vramp_f(0,.2,A);

60 printf("A =\n");VU.vprint_f(A);

61 VU vcoshl P_f(A);

62 printf("cosh(A) = \n");VU.vprint_f(A);
63 vsi p_val l destroy_f (A);

64 vsip_finalize((void*0);

65 return 1;

66 }

In line 11 we attempt to release the block attached to vector a.

If the block releases we go to lines 31-34 where the buffer returned from the blockreleaseis
used directly to calculate an in place cosh. We then readmit the block in line 36 and return a0
for successful inline 42. Note we set vector b equal toa inline5soline 37 isfalse and wefall
through to the return statement.

If the bl ockr el ease returnsanull pointer at line 11 then we know that the input vector aiis
not a user vector. In this case we create a buffer of the proper size to hold the number of

vsi p_scal ar _f elementsin vector a. We check to make sure we were successful at allocating
memory for ablock, and return oneif not successful. Inline 15 we create ablock and bind the
buffer to it. In line 22 we admit the block to VSIPL. In line 28 we copy the input vector a to
the user vector b. Note that pointer b was set to a in line 5, but wasreset in line 23 to the newly
created user vector b. We now release the block B and go into the loop at line 31 to calculate
the cosh vector.

Note that we had to admit the block B before copying the input vector to the user vector, and
then we had to release the block B before using the buffer directly. We now reset the buff
pointer to its original value, and then admit B at line 36. Note that when we reset the pointer
with blockfind on line 35 we must do it before the block is admitted. An admitted block will
not return the public buffer. If the pointer a isnot equal to the pointer b then it has been reset.
We enter thei f code (at line 37) which copiesthe result of the cosh to the vector a, wherewe
want it, and then on line 30, destroy the vector b, the block B, and any memory allocated by
VSIPL. Note that the buffer buf f was not allocated by VSIPL, but by the application. The
application is responsible for cleaning that up. On line 31 we free this memory.

TASPVSIPL Core Plus DRAFT 105

DRAFT

Note that the admission on line 22 has a vsI P_FALSE as the second argument. This equates to
fasein VSIPL and tells VSIPL that we are not interested in what the buffer contains. Note
that the release in lines 11 and 29 and the admit in line 36 have vsSI P_TRUE for this argument.
Thisequatesto atruein VSIPL and indicates that the buffer contains data that we are inter-
ested in maintaining during the change of state of the block.

To test our code we do a simple program starting on line 54. In Matlab our program (main)
looks like.

a=1[0:.2:1.4]
a=
0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000
a= cosh(a)
a=

1.0000 1.0201 1.0811 1.1855 1.3374 1.5431 1.8107 2.1509
The output of Example 8is

A =

0. 0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000
cosh(A) =

1.0000 1.0201 1.0811 1.1855 1.3374 1.5431 1.8107 2.1509

Here we elected to use a VS PL vector for our input to our cosh function; however we could
have used a user vector and avoided the creates and destroys in the function.

Complex User Data

Most user datawill be an array of vsip scalars of the type of the block the user array will be
bound to. There are afew exceptionsin VSIPL and only one exception in VSIPL Core Lite.
This exception is an array of complex.

For user data, complex isnot an array of typevsip_cscalar_f. For acomplex user data array of
size N the memory alocated is of typevsip_scalar_f, and is either two arrays of equal size N

or asinglearray of size 2 x N . Thefirst case of two arraysistermed split data, and the second
case of asingle array istermed interleaved data. For interleaved data the elements are orga-
nized consecutively as real, imaginary, real, imaginary, etcetera. For split dataone array is
real, the other imaginary. Examination of vsi p_cbl ockbi nd_f will show how the two cases
are handled in the function call.

Note that because of the possibility of split user data, requiring two data pointers, the I/O sup-
port functions for complex r el ease, adni t, and r ebi nd, are slightly more complicated than
their real counterparts. Examination of the prototypesin chapter two should make the differ-
ences clear.

There are many intricaciesto I/O in VSIPL that were not covered in this section; however the
author does not want to get bogged down in an introductory section with alot of details. There
isagreat deal of information available in Appendix A, VSIPL fundamental s which deals with
user blocks and data in some depth.

106 DRAFT TASPVSIPL Core Plus

DRAFT

Scalar Functions

The Core Lite profile only defines four scalar functions. Three of these arevsi p_real _f,
vsip_imag_f,andvsi p_cnpl x_f. Thereisalso afunctionvsi p_CvPLX_f which isincluded
to alow the vendors to include a macro for creating complex numbers. The TASP VSIPL
Core Lite profile has not implemented CVPLX as amacro, and just calls the cnpl x function
within CVPLX.

The functionsr eal , i mag and cnpl x are important for manipulating complex scalars. For
examplevsi p_cvget _f returnsascalar of typevsi p_cscal ar _f. To extract thereal or
imaginary portion of this scalar you would usevsi p_real _f or vsi p_i mag_f. To makea
complex number you would usevsi p_cnpl x_f . For instance:

/[* put a conplex nunber (a,b) at */
/* el enment nunber 6 (index #5) in a vector */
vsi p_vput _f(conpl ex_vector,5,vsip_cnplx_f(a,b));

Or to print the real and imaginary portions of a complex number:

vsi p_cscal ar _f a;

/* sonme code */

a = vsip_cvget f(conpl ex_vector, 5);

print(“% + %i ”",vsip_real f(a),vsip_img_f(a));

VSIPL Elementwise Functions

Most elementwise functions are straightforward. Generally these functions take one or more
input vector views, or a scalar and a vector view, and do an element by element calculation
outputting the result in an output vector. A few of the elementwise functions, such as sunval
and dot calculate some value based on an elementwise operation and accumulate. Finaly we
haver anp, fill, and random numbers. These functions generate data and fill a vector based
on some formula, element by element. The functionsranmp andfi || have been used in previ-
ous examples and are easy to understand based on their prototype definition; however random
number generation is more complicated and requires some explanation.

Except for random number generators no specific example of elementwise functions will be
included; however amost al of the examples include elementwise operations.

Random Number Generation

The VSIPL random number generator is a more complicated function, actually a set of func-
tions, than the other elementwise functions. The function set includes a create function which
is used to create arandom number state object, a destroy function to destroy the random state
object when we are done with it, and a vector random generator function. For VSIPL Core
Lite only the uniform generator for real vectorsis part of the profile. The function generates a
uniform random number between zero and 1.

The vector random number is simple, just filling a vector with uniform random numbers from
the sequence, and updating the state object each time.

TASPVSIPL Core Plus DRAFT 107

DRAFT

The random number state creation is alittle more complicated than the generator function. To
understand it first one must understand the expectation that VSIPL programswill berunin
multiple processor environments, and it is desirable to be able to calculate independent ran-
dom number sequences on the different processes based on asingle seed value. To thisend the
randcr eat e function has an argument which indicates the total number of processes that will
be cal culating random sequences, and an argument that indicates which process the state
object isbeing created for. Having the value of the total number of processes allowsthe create
function to subset the random number sequence into the proper number, and having the num-
ber of the process allows the create to initialize the state object for the process to the correct
subset.

The random state creation also alows one to chose either the required portable random num-
ber generator (portable because all implementations use the same generator, defined by
VSIPL), or anon-portable generator of the implementors choosing. There is no requirement
for an implementation to support its own generator, and the non-portable generator may
default to the portable version.

Below find Example 9 demonstrating the r andu function set. In this example create two sepa-
rate vectors full of independent random numbers. The random number generator is aso used
in Examples 10 and 11 to make some data to work with.

Example 9
1 /* Create two i ndependent random sequences */
2 #i ncl ude<st di 0. h>
3 #i ncl ude<vsi p. h>
4 #define TYPE VSI P_NPRNG /* non portable generator flag*/
5 #define N 1024 /* |length of random vector */
6 #define init 17 /* randominitialization */
.
8 int main()
9 { int vsip_init((void*)O0);
10 vsip_vview f *ranl = vsip_vcreate f(N, 0),
11 *ran2 = vsip_vcreate f(N, 0);
12 vsi p_randstate *statel =
13 vsi p_randcreate(init, 2, 1, NPRNG
14 vsi p_randstate *state2 =
15 vsi p_randcreate(init, 2,2, N°PRNG ;
16 vsi p_vrandu_f (statel, ranl);
17 vsi p_vrandu_f (state2,ran2);
18 /[* do something with ranl and ran2 */
19 vsi p_randdestroy(statel);
20 vsi p_randdestroy(state2);
21 vsi p_val | destroy_f(ranl);
22 vsi p_val | destroy_f (ran2);
23 vsip_finalize((void*)0);return 1
24 }

108 DRAFT TASPVSIPL Core Plus

DRAFT

Example 9 is very ssmple and does not do anything interesting. In lines 10 and 11 we create
two vectors to hold our random sequences. In lines 12 and 14 we create two random state
objects. Argument two of rand create tells the randcreate function we want a state object suit-
able for two independent random number generators. Argument 3 of line 12 saysto create the
state object for the first process. Argument 3 of line 14 saysto create the state object for the
second process. In lines 16 and 17 we generate the random numbers and fill the two vectors
created to hold them. Lines 19 through 22 clean up all the objects created by VSIPL.

Signal Processing Functions

The Core Lite profile supports a histogram function, a complex to complex out of place Fou-
rier transform, areal to complex, and acomplex to real Fourier transform, and afinite impulse
response (FIR) filter with desampling.

TheFourier Transform

The fourier transform function set for Core Lite includes three discrete fourier transforms
(DFT), three corresponding create functions to create the fourier transform object, and a
destroy function to destroy the fourier transform object. Thereis only one data type for the
fourier transform object, and so only one destroy function is required. The type of fourier
transform object created (for ccfft op, rcfftop or crfftop)iskept as state information by
the fourier transform object.

Theccfftop_create function will create an fft for either aforward or inverse DFT. It is
assumed that rcfftop and cr f f t op are donein the forward and inverse directions respec-
tively, so thereis no direction argumentsinrcfftop_create andcrfftop_create. Within
the header filevsi p. h resides an enumerated type definition which may be used for the direc-
tion argument.

t ypedef enunf
VS| P_FFT_FWD
VSI P_FFT_I NV

} vsip_fft_dir;

-1,
1

VSIPL requires an FFT (Fast Fourier Transform) algorithm for aradix of two with one radix
of 3if necessary. Any length DFT isrequired to be supported, but afast transform is only

required for lengthsof N = 273" where m iseither 0 or 1. The TASPVSIPL CorelLite
FFT base algorithm actually supports N = 2"°4"'8"°3"15™7" \where m, iseither 0 or 1

and n; is some integer greater than or equal to zero. In the TASP VSIPL implementation if N

is not factorable as above then the last factor (which is not factorable by 2, 4, 8, 3,5, or 7) is
used as afinal factor and aDFT is done for that stage.

Thefunctionsrcfftop andcrfftop requirethat the databe even, and only half the transform
isreturned. Sofor r cf f t op the input real vector is of length N and the output complex vector
isof length N/2 + 1. Theinverseistruefor crfftop.

TASPVSIPL Core Plus DRAFT 109

DRAFT

So far we have done a few meaningless examplesto illustrate VSIPL. This example will be
just as meaningless. Lets find the FFT of areal vector of random numbers using rcfftop,
extend the FFT to full length and find itsinverse using ccf f t op. We will then subtract the
input vector from the output vector and find the mean square value of the result, which should
be close to zero.

110 DRAFT TASPVSIPL Core Plus

DRAFT

TASPVSIPL Core Plus DRAFT 111

DRAFT

Example 10
1 #i ncl ude<st di 0. h>
2 #i ncl ude<vsi p. h>
3 #define RNL 1024 /* length of random vector */
4 #define RNS 17 /* random nunber seed */
5 #define RNT VSI P_PRNG /* random nunber type */
6 int main(){int vsip_init((void*)O0);
7 vsip_cvview f *fft = vsip_cvcreate f(RNL, 0),
8 *Invfft = vsip_cvcreate f(RNL, 0);
9 vsi p_randstate *state = vsip_randcreate(RNS, 1, 1, RNT);
10 vsi p_vvi ew f *Input = vsip_vcreate f(RNL, 0);
1 vsip_fft _f *rcfft = vsip_rcfftop_create_f(RNL, 1,0, 0);
12 vsip fft _f *ccfftl = vsip_ccfftop create f(
13 RNL, 1.0/RNL, VSIP_FFT_INV,O0,0);
14 vsi p_vrandu_f(state,input);
15 vsi p_cvputlength_f(fft, RNL/2+1);
16 vsip_rcfftop f(rcfft, input, fft);
17 vsi p_cvputoffset f(fft, 1);
18 vsip_cvputlength_f(fft, RNL/2-1);
19 { /* fill out the forward fft to full length */
20 vsip_cvview f *tenp = vsip_cvcloneview f(fft);
21 vsip_cvattr_f at; vsip_cvgetattrib f(tenp, &t);
22 at.offset = RNL - 1; at.stride = - 1;
23 vsip_cvputattrib_f(tenp, &at);
24 vsi p_cvconj _f(fft,tenp); vsip_cvdestroy_f(tenp);
25 }
26 vsi p_cvputoffset f(fft,0);
27 vsi p_cvputlength_f(fft, RNL);
28 vsip_ccfftop f(ccfftl,fft,invift);
29 { /* conpare results */
30 vsip_vview f *real = vsip_vrealview f(invfft);
31 vsip_ vview f *result = vsip vimagview f(invfft);
32 vsi p_vsub f(input,real,result);
33 printf(“%\n”,vsip_vsunsqval _f(result)/RNL);
34 vsi p_vdestroy_f(real); vsip_vdestroy f(result);
35 }
36 vsip_fft _destroy f(rcfft);
37 vsip fft _destroy f(ccfftl);
38 vsi p_randdestroy(state);
39 vsi p_cval | destroy f(fft);
40 vsi p_cval I destroy f(invfft);
41 vsi p_val | destroy_f (i nput);
42 vsip_finalize((void*)0O;return 1;
43}

112 DRAFT TASPVSIPL Core Plus

DRAFT

In Example 10 we create the data space with cr eat e functions. We modify the stride, length
and offset attributes with full knowledge of the initial attributes of the views. For this reason
we don’t need to get the attributesfirst. We do need to keep track as we move through the code
however.

Inline 4 we define a constant for initializing the random number state created inline 9. Inline
14 we use the random number generator to initialize areal input vector of random values. In
line 7 and 8 we create two complex vectors of length RNL , thefirst (f f t) to hold the trans-
form of the random input vector, and the second (i nvf f t) to hold the inverse transform of
fft.

We want to do the forward transform using vsi p_rcfft op_f . Wemadef ft of length RNL
since we plan on filling out the vector to afull lengthfft for useinvsi p_ccfftop_f for
doing the inverse transform; however r cf f t op requires avector of length RNL/2 + 1 sowe
set thislength in line 25. We create the fft object in line 11 for alength of RNL and ascale

factor of 1. The last two arguments of the create are not used in TASP VSIPL so we set them
to zero.

In line 16 we do the Fourier transform oni nput placing theresultinf ft . Now we need to
select the redundant portion of fft in preparation for filling out the fft vector to full length. In
line 17 we set the offset of f ft to 1 (the second element), since the first element isthe DC
value of the transform and is unique. The last value of the transform is also unique since the
input real vector was even, so we set thelength of f ft to RNL/2 —1. Now we enter a section
of code between lines 19 and 25 where we copy the conjugate of the redundant section in
reverse order to the end of the final transform vector. In1i ne 20 we createacloneof f f t
which sets the length of the vector properly. Thisis the vector we are going to copy into, and
thefirst element of fft (asthe view is currently defined) must copy to the first element of

t enp. We want this to be the last element of the block, so we set the offset of t enp to the end
of the block at offset RNL — 1. Wewant t enp to travel backward through the block so we set

the stride of t enp to —1 . We now do the copy and conjugation in one step using cvconj in
line 24, and then destroy thet enp vector inline 24. Inline 26 and 27 we restorethef ft view
to the entire block. What we have done between lines 17 and 27 would look in Matlab, for

Matlab vector a of length RNL , as
>> a(end:-1:RNL/2+2) = conj(a(2: RNL/2));

In line 12 we create an fft object for usein ccf f t op to do an inverse Fourier transform of
length RNL and with ascale factor of 1/RNL . Noticethat ccfft op_cr eat e hasan argu-
ment for forward or inverse transform, but r cf f t op_cr eat e does not have the argument and
always goesin the forward direction. The last two arguments are not implemented in the
TASP implementation of corelite and so are set to zero. We now find theinverseof fft inline
28.

In lines 29 through 35 we subtract thei nput fromther eal output and examine the mean
square value of ther esul t . This should be very close to zero as the input and output should
be the same.

TASPVSIPL Core Plus DRAFT 113

DRAFT

TheFinite Impulse Response Filter

The FIR (finite impul se response) function set is designed to allow for continuous filtering
with desampling. The filter object saves state information from the previous filter operation
allowing for continuous filtering of vector segments of a data stream. When desampling the
number of returned filtered elements may vary depending upon the state of the filter object.
For thisreason the FIR filter function returns an integer which is equal to the number of ele-
ments in the output vector from the filter operation. Since afilter object is created thereis afil-
ter destroy function available for destroying the filter object.

The FIR filter create requires an input of afilter kernel, filter symmetry information, the length
of the input vector to be filtered, and a desampling factor. The final two arguments are
included to allow the vendor to optimize his routine for various common filter operations. Nei-
ther arguments are implemented in TASP VSIPL and so a zero will normally be placed here
when using TASP VSIPL. For application programmers who are developing on TASP V SIPL
for other hardwareit is recommended to use the proper valuesfor that hardware. TASP V SIPL
ignores these values and will work fine for any information inserted.

Thefilter kernel and the symmetry argument vary depending upon the type of filter coeffi-
cients. For TASP VSIPL including all of thefilter coefficientswithaVSIP_NONSYM sym-
metry argument will alwayswork. If the filter coefficients are symmetric and there are an even
number then using the first half of the filter coefficients as the kernel and the
VSIP_SYM_EVEN_LEN_EVEN argument will work. If thefilter coefficients are symmetric
and there are an odd number then using the first half of the filter coefficients plus the middie
point (N —1)/2 + 1) asthekernel and the VSIP_SYM_EVEN_LEN_ODD argument will
work. TASP VSIPL aways expands the filter coefficientsto full length and does the same fil -
ter for al three cases, so the author recommends always using the VSIP_NONSY M version
kernel, unless developing for another platform. Note that the kernel is simply a vector of filter
coefficients as described above. Also be aware that the current FIR filter in TASPVSIPL is
not afast fir, and is not optimized in any way. For some operations it may be desirable to do
the FIR filter directly using other VSIPL operations.

The FIR filter function requires aFIR filter object, an input vector of length N, and an output
vector which has alength equal to the input vector length divided by the desampling factor

rounded up to the nearest integer. Thisiscommonly called the ceiling of N/ D where N isthe
input vector length and D is the desampling factor.

The FIR isdemonstrated in Example 11. The filter coefficients arein lines 21 through 29 and
areinput to auser data array. In line 31 we create a block and bind the coefficients to it using
bl ockbi nd, and then bi nd the block to a vector view at line 32. Since thisisauser block in
line 34 weadni t it to VSIPL so we can use any vector views binding the block in our func-
tions.

We then create the FIR object in line 35. Notice that we included the entire set of filter coeffi-
cients and so we create the object as VSIP_NONSY M. The actual filter coefficients are odd
symmetric so we could have created thefilter object asjust the first 22 (of 43) coefficients and
passed a symmetry argument of VSIP_SYM_EVEN_LEN_ODD. We then destroy the kernel
since we no longer need it after the filter object is created. Noticewe use al | dest r oy so that

114 DRAFT TASPVSIPL Core Plus

DRAFT

both the vector view and the block is destroyed. The kernel datais not destroyed because the
blocks user state is set, and the destroy function knows to not destroy the user data array.

For the example we set a decimation factor D, average avg, and base length N inlines 3
through 5. In line 6 we set a constant to initialize the random number generator.

We create an input vector of length D x N inline 12. This ensures the output from the FIR fil-
ter will be of length N. In line 41 we fill the input vector with uniform random numbers

between 0 and 1. In line 42 we do a negative DC offset of our input vector by 0.5 andinline
43 we filter the input vector into the output vector. In line 44 and 45 we do an FFT estimate of
the spectrum. Note power normalization is not done and is not important to the example. In
line 46 we do a running sum of the spectrums. In line 4 we define avg, the number of sums,
and in line 48 we normalize our sum by the avg number. We then print out the result using a
print subroutine VU_vprint_f contained at the end of the example. Note that line 49 alowsthe
output to be brought into Matlab and plotted by piping standard out into a“.m” file and exe-
cuting the filein Matlab. (The author knows there are better waysto get data into Matlab, but
heistoo lazy to figure them out.)

In Figure 1 we note the frequency response of the filter coefficients as the bottom plot of the
figure. Matlab code to generate this plot, and the filter coefficients for the example, were
obtained from an internet site at Rice University
(http://jazz.rice.edu/software/RU-FILTER/cpnv)

Thereis apaper describing the method for calculating the coefficients by 1. W. Selesnick and
C. S. Burrus,

“Exchange Algorithms that Complement the Parks-McClellan Algorithm for Linear-Phase
FIR Filter Design”.

I. W. Selesnick appearsto be the author of the Matlab code.

Summary

In this chapter we have quickly covered the functionality of the Core Lite profile and given
examples on its use. We cover methods for creating and destroying blocks and views, and for
obtaining views of the real and imaginary portions of complex views. User data and methods
to get datain and out of VSIPL are discussed. Finally we do examplesillustrating the use of
the random number generator, Fourier transform, and the FIR filter.

TASPVSIPL Core Plus DRAFT 115

© 00 N O Ol B W N -

W W WWWwWOmWwWWNNNRNNNNRNNNERRRERRRREPR P P
O N AN NPOOW®OMNOOADNWNREOOOOWNOJDN~wWDNPRPO

116

DRAFT

Example 11 (Page 1 of 2)

#i ncl ude<stdi o. h>

#i ncl ude<vsi p. h>

#define N 1024

#defi ne avg 1000

#define D 2

#define RNS 17 /* Random Nunber Seed */
#define RNT VSIP_PRNG /* Random Number Type */
void VU vprint _f(vsip_vviewf*);

{

int main()
int i, init = vsip_init((void*)0);
vsip_vview f *dataln = vsip_vcreate f(D * N, 0);

vsi p_cvview f *dataFFT vsip_cvcreate f(N2 + 1,0);
vsi p_vvi ew f *dat aCut vsi p_vcreate f(N, 0);
vsip_vview f *spect _avg = vsip_vcreate f(N2 + 1.0,0);
vsip_vview f *spect _new = vsip_vcreate f(N2 + 1.0,0);
vsi p_randstate *state = vsip_randcreate(RNS, 1,1, RNT);
vsip fir f *fir;

vsip fft f *fft = vsip rcfftop create f(N,1,0,0);
vsip_scalar_f b[] =

{0.0234, -0.0094, -0.0180, -0.0129, 0.0037,
0.0110, -0.0026, -0.0195, -0.0136, 0.0122,
0.0232, -0.0007, -0.0314, -0.0223, 0.0250,
0. 0483, -0.0002, -0.0746, -0.0619, 0.0930,
0.3023, 0.3999, 0.3023, 0.0930, -0.0619,
-0.0746, -0.0002, 0.0483, 0.0250, -0.0223,
-0.0314, -0.0007, 0.0232, 0.0122, -0.0136,
-0.0195, -0.0026, 0.0110, 0.0037, -0.0129,
-0.0180 ,-0.0094, 0.0234};
{
vsi p_block f *kbl ock = vsip_bl ockbind f(b, 43,0);
vsi p_vview f *kernel =
vsi p_vbi nd_f (kbl ock, 0, 1, 43) ;
vsi p_bl ockadm t _f (kbl ock, 1);
fir = vsip_fir_create_f(kernel, VSIP_NONSYM
D* N, D, VSIP_STATE_SAVE, 0, 0);
vsi p_val | destroy_f (kernel);
}

DRAFT TASP VSIPL Core Plus

39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

}

DRAFT

Example 11 (Page 2 of 2)

vsip_vfill _f(O, spect_avg);

for(i=0; i<avg; i++){
vsi p_vrandu_f (state, dataln);
vsi p_svadd f(-.5, dataln, dataln);
vsip_firflt _f(fir,dataln, dataCut);
vsip_rcfftop f(fft, dataQut, dataFFT);
vsi p_vcmagsqg_f (dat aFFT, spect _new);
vsi p_vadd_f (spect _new, spect _avg, spect _avg);

}

vsi p_svrmul _f(1.0/avg, spect _avg, spect _avg);

printf(“spect_avg ="); VU vprint_f(spect_avg);

vsi p_val | destroy_f (datal n);
vsi p_val | destroy_f (spect _avg);
vsi p_val | destroy_f (spect_new);
vsi p_cval | destroy_f (dat aFFT);
vsi p_val | destroy_f (dataQut);
vsi p_randdestroy(state);
vsip_fft_destroy f(fft);
vsip_fir_destroy_f(fir);
return 1,

void VU vprint _f(vsip_vview f *a)

{

vsip_vattr _f attr;

vsi p_i ndex i;

vsi p_vgetattrib_f(a, &ttr);

printf(“[");

for(i=0; i<attr.length-1; i++)
printf(“%.4f;\n",vsip_vget _f(a,i));

printf(“%.4f];\n”, vsip_vget _f(a,i));

vsip_finalize((void*)0);

return;

TASPVSIPL Core Plus DRAFT 117

DRAFT

Figurel

Decimation 1

100 - .

Not Normalized
I o ©
o o o

N
o

o

0.4 0.6 0.8 1

o
o
(V)

Decimation 2

Not Normalized
N oW A
o o o

=
o

0.2 0.4 0.6 0.8 1
w/pi

The figures above are related to Example 11. The bottom plot is the frequency response
related to the kernel in lines 20 through 29 of the example. Matlab code available at internet
sitejazz.rice.edu/software/RU-FILTER/cpm/ was used to generate the plot and the filter
coefficients, and is directly from the first Example referenced on that web page. The plots
Decimation 1 and 2 are the result of Example 11 for the stated decimation factors.

118 DRAFT TASPVSIPL Core Plus

DRAFT

TASPVSIPL Core Plus DRAFT 119

DRAFT

120 DRAFT TASPVSIPL Core Plus

DRAFT

CHAPTER 4 Introduction to VSIPL Matrices

Introduction

In the previous chapter V SIPL programing was introduced using the Core Lite profile. One of
the main differences between the Core Lite profile and the Core profile is the addition of
matrix functionality in Core. This chapter will introduce VSIPL matrices.

M atrix Fundamentals

Although matrices are probably well understood by most readers the V SIPL forum had many,
sometimes heated, discussions on how best to describe them within the VSIPL framework.
Most of these discussions boiled down to terminology, and what is standard. In addition there
were efforts to generalize matrices so the terminology would fit with higher order views so
that the VSIPL terminology would be the same for three dimensional views as for two dimen-
sional, or even one dimensional view.

Sincethe VSIPL Core Profile has no dimensions above two the author will stick with standard
linear algebra matrix terminology. First we define some of the “ standard terminology” asthe
author has found that not all people agree on what it is. Readers may not agree that thisis stan-
dard terminology, but at least they will know what the author thinks.

Some of the following may seem a bit fundamental. However it isimportant that we under-
stand how matrices are described on a block, and how to manipulate the matrix view attributes
properly. Without agreeing on the fundamentalsit is easy to become confused, and the author
remembers being very confused afew times.

A Matrix

A matrix is aset of data elements described by two indices. Thefirst index is called arow
index, and the second index is called a column index. When the elements of the matrix are
placed on a piece of paper so that all the elements with the same row index go across the paper
(inarow), and all the elements with the same column index go down the paper (in a column)
and the rows with the smaller index values are above the rows with the higher index value (in
order) and similar for the columns, then we have written the matrix down. VSIPL defines
index values as starting at zero so that the matrix index of the very first element located at the

top left of the matrix will be at (0, 0).

The size of amatrix is usually described as m by n where m isthe number of rowsand » is
the number of columns. Here iswhere confusion can begin. The number of rowsinamatrix is
also the number of elementsin a column. The number of columnsin amatrix is also the num-

TASPVSIPL Core Plus DRAFT 121

DRAFT

ber of elementsin arow. So amatrix size of [m rows, ncolumns] , isaso amatrix size of
[column length m , row length n] .

In general the author will generally speak of amatrix as having a certain column length and
row length. The row length (number of elementsin arow), and the column length (number of
elements in a column) are two of the attributes of a matrix view used to define the matrix lay-

out on a block. The following example of a matrix of size (4 by 3) may help.

Column0 Column 2

Row 0 > (0,0) (0.1) (0.2) &
(1,0) (1,1) (1,2) L%#ém
(2,0) (2,1) (2,2) 4
Row 3

> ((3,0) (3,1) (3,2)

- >
Row Length 3

Matrix Views

The underlying block containing data associated with a matrix view is the same type block as
that associated with a vector view. The view on the block is what makes the object a vector or
amatrix.

For avector view the datais described using an offset from the beginning of the block to the
first element of the vector, a stride through the block between elementsin the vector, and a
vector length which is the number of el ements in the vector.

A matrix view is similar to a vector view except there are now two strides, and two lengths.
Thetwo strides are arow stride specifying the distance through the block between consecutive
elements of arow, and a column stride specifying the distance through the block between con-
secutive elements in a column. The two lengths are arow length specifying the number of ele-
mentsin arow of the matrix, and a column length specifying the number of elementsin a
column of amatrix. Thereis also an offset specifying the number of elements from the begin-
ning of the block to the first element in the matrix.

The following may help in understanding how a matrix view maps the elements of a block
into amatrix. For this example lets map a block of length 12 into amatrix of size 3,4. Thisisa
dense mapping so that every element of the block is mapped into the matrix. We will do the
first mapping so that the row stride is one, and the second mapping so that the column strideis
one. The dimension with the smallest stride is called the major direction. We have the matrix

do,0 90,1 90,2 90,3

a0 91,1 91,2 91,3

dp0 92,1 92,2 92,3

For this matrix we know the row length is 4 and the column length is 3. Note that the row

122 DRAFT TASPVSIPL Core Plus

DRAFT

length and the column length are properties of the matrix definition. These two attributes
define the size and shape of the matrix. They come from alinear algebra point of view, and
are important when doing matrix operations. Except for defining the minimum block size that
amatrix will fit into and the minimum stride between elements in the non-major (minor)
direction matrix lengths are not important when mapping a matrix on a block.

For the case of arow stride of one (row major) we have the following consecutive elementsin
the block.

@o,00 90,11 90,2:90,3191,0:41,1:91,2:91,3:92,0:92,1 42,2 42 3

The offset and stride attributes define the location of the matrix in the block. They have noth-
ing to do with amatrix from a algebra point of view, and are not needed when thinking about
how matrices combine when doing matrix math. We note that since the matrix is dense the
column stride is the row length. In the case above thisis four. We can get this by counting the

number of elements between a,, , and a .

Now lets consider the case of column major. For this case the column stride will be one and
(in consecutive block locations starting at zero) the matrix layout will be

Ao, 00 41,0092,0090,1191,1:9,1:90,2:41,2:42 280 3,41 34y 3-
Once again the matrix is dense so the row stride is the column length which is three.

We do one more case with this example for ablock size of 18. We designate elementsin the
block which are not mapped by the matrix with an e, . The matrix is row major, with arow

stride of one, a column stride of five, and an offset of two. The matrix is not dense. The map-
ping looks as follows.

€0: €1:40,01%),1:90,2:90,3:€6:91,0:91,1:91,241,3:€11 Q2,0 421 A2 2 A23 Fl6 f17

Matrix Creation

There are two fundamental methods for creating a matrix. The most fundamental method isto
obtain ablock object, either by creating it or by using one already created, of sufficient sizeto
hold the matrix. Then a matrix is defined on the block using the matrix bind function

(vsi p_nbi nd_f). Thislooks like the following.

/* create a block and bind a matrix to it of size
Mrows by N colums */
vsi p_bl ock_f *block = vsip_bl ockcreate f(M* N, VSIP_MEM NONE);
vsip_ nview f *matrix =
vsi p_nbi nd_f (bl ock, of f set,
col _stride, col Iength,
row stride, row_ | ength);

In the code segment above we have created a block exactly the size needed for amatrix of size
M, N . Thismeansthat (in order for the matrix to fit in the block and make sense) the offset

must be zero and either the column stride must be one and the row stride must be the column
length, or the row stride must be one and the column stride must be the row length. A better

TASPVSIPL Core Plus DRAFT 123

DRAFT

way to create a dense matrix of thistypeisto use the matrix create function. Thislooks like
the following.

/* Create a dense row major matrix of size Mrows by
N col ums */
vsip_mview f *matrix = vsip_nctreate f(MN,
VS| P_ROW VSI P_VEM NONE) ;

It is also possible to create a new matrix view from an existing matrix view using the matrix
subview function. For complex matrices areal matrix view of thereal or imaginary part of the
complex view may be created using the matrix real view and imaginary view functions.

Extracting Vector viewsfrom Matrix Views

The ability to obtain avector view of arow, column, or diagonal of a matrix is an important
feature of VSIPL. The view can be created directly by using the bind function to create and
bind a vector view to the same block the matrix is bound to, and then setting the attributes of
the vector view to map the proper portion of the matrix view into the vector view, or it can be
done with vector view create functions designed for this purpose. For example to obtain avec-

tor view of the second row of a 5, 4 matrix would look as follows.

/* Create a dense colum major matrix of size 5,4
and then create a vector view of the second row
of the matrix. */

vsip_mview f *matrix = vsip_ncreate f(5,4,

VS| P_COL, VSI P_MEM NONE) ;

vsi p_vview f *vview = vsip_nrowiew f(matrix, 1);

To obtain aview of thefirst diagonal above the main diagonal of the matrix would look as fol-
lows.

/* Create a dense colum major matrix of size 5,4

and then create a vector view of the first upper diagonal

of the matrix. */
vsip_mview f *matrix = vsip_ncreate f(5,4,

VS| P_CAL, VSI P_MEM_NONE)

vsi p_vview f *vview = vsip_ndiagview f(matrix, 1);
Note that the index for the diagonal view is positive for diagonals above the main diagonal,
and negative for diagonals below the main diagonal. The index datatype for VSIPL is some
type of unsigned integer and all indices start at zero and increase so thisis asmall problem.

For this reason the data type for the diagonal index argument of the diagonal view functionis
astride type, not an index type.

Fundamental Matrix Calculation

The author defines the fundamental matrix calculation as the calculation necessary to find the
block location of any element in a matrix given the matrix index of the element and the stride

and offset attributes of the matrix view. Given amatrix index (r, ¢) where r istherow and ¢

124 DRAFT TASPVSIPL Core Plus

DRAFT

isthe column, and matrix attributes o, r, ¢, where o isthe offset in the block to matrix ele-
ment (0, 0), », istherow stride, and ¢, isthe column stride we calculate the element offset in
the block, designated £ (7, ¢), using the following formula.

E(ric) = o+ (r)(c,) +(c)(ry)

For the case of a dense matrix with stride in the major direction of one, then the stride in the
minor direction will be equal to the length along the magjor direction. For other cases the nec-
essary stride in the minor direction is not obvious. The following formulawill give the mini-

mum stride length in the minor direction to give a usable matrix. Let r; be the row length and
c; be the column length. For row major we calculate the minimum ¢, using

c = (r;=1)r,+1

smin
and for column major we calculate the minimum »_ using

r = (¢;=1)c, +1.

smin
Notethat (r,— 1) isthelargest possibleindex inarow, and (c;—1) isthelargest possible
index in a column.

Simple Matrix Manipulations

The VSIPL core profile has many support functionsfor creating various sub views of amatrix,
either amatrix subview or avector view. Although these functions are easy to use, they may
not be the most efficient means to an end. In addition VSIPL core does not support matrix ele-
mentwise functions. One could always do elementwise cal cul ations using the element get

(vsi p_nget _f) and the element put (vsi p_nput _f). Thisisvery inefficient and is not a good
way to do elementwise calculations. It is better to find vector views that view al or part of a
matrix views data and then do the elementwise cal culations using vector elementwise func-
tions. In this section we explore some of the possibilities. We will usevsi p_vadd_f asan
example of an elementwise operation, but any elementwise function could be substituted.

A Simple Print Function

In order to make the examples usable we need to print the results. Below isa simple print util-
ity which will allow printing (small) matricesin aformat suitable for pasting into Matlab. We
use thisfunction (or asimilar function) in examples below. Note in lines 3 and 4 the use of the
support functions to get the row or column length of amatrix, and in line 10 the method to get
amatrix element.

TASPVSIPL Core Plus DRAFT 125

DRAFT

1 #include<vsip. h>

2 void VU nprintmf(char format[], vsip_nview f *X)
3 { vsip_length RL = vsip_ngetrow ength_f(X),

4 CL = vsip_ngetcollength_f(X),

5 row, col ;

6 vsi p_scal ar _f x;

7 printf("[\n");

8 for(row=0; row<CL; rowt++){

9 for(col =0; col <RL; col ++){

10 x=vsi p_nget _f (X, row, col);

1 printf(format,x, ((col==(RL-1)) 2?2 ";" : " "));
12 } oprintf("\n");

13 pprintf("];\n");

14 return;

15}

General Elementwise Matrix Operation Using Row or Column View

Using thevsi p_nr owi ew f Or vsi p_ntol vi ew_f functionsit is easy to get a vector view
corresponding to any row or column of amatrix. By incrementing through all the rows or col-
umns of matrices of the same size and using an appropriate vector elementwise function it is
easy to do elementwise operations on any matrix. In example 12 below we do thisin a
straightforward way without manipulating any attributes. In lines 2 through 20 we write a
simple elementwise matrix add function. In lines 22 through 40 we write a program to test the
matrix add program.

Note that the matrix add function does not do any error checking and makes the assumption
that the input matrices are all the same size, and that the view creates all work and have no
allocation failure. To make the function more robust these errors should be checked for, and
the function should return an error code instead of being void.

For this example we have arbitrarily decided to do the addition using column views. We could
also have used row views. We start in line 5 by getting the row length. Since the row length is
the number of columnsin the matrix thisis the information necessary to cal cul ate the number
of columns we need to add over. In lines 7 through 9 we obtain a vector view of the first col-
umn of each matrix. We then add these columns in the proper order using vadd inline 10. In
lines 11 through 16 we iterate through all the rest of the columns and add them. Note that we
must destroy aview before we can reassign it, and in lines 17 and 18 we destroy the views
before returning from the function.

In main we create 3 vectorsin lines 23 through 25 and fill them with some datausing vr anp in
line 30. These steps are just to give us some blocks with some simple to understand datainit.
We don't fill the output vector. Since we only place datain it there is no need to initialize it.

Inlines 26 through 29 we create some matrix views on the blocks created when we created the
data vectorsin lines 23 through 25. For this example we create ssmple row major matrices
with column length of 3 and row length of 4.

The output of example 12 is below.

126 DRAFT TASPVSIPL Core Plus

DRAFT

A =

[

0.00 0.01 0.02 0.03
0.04 0.05 0.06 0.07
0.08 0.09 0.10 0.11

]

— W

0.00 1.00 2.00 3.00
4.00 5.00 6.00 7.00
8.00 9.00 10.00 11.00
I;
A+B=C=

[

0.00 1.01 2.02 3.03
4.04 5.05 6.06 7.07
8.08 9.0910.10 11.11

I;

We note that using colview as the vector direction in example 12 is probably not the most effi-
cient method since the vectors sent to the add function will not have the minimum stride. we
also seethat it is possible in this example to define single vectors of length 12 which included
all the elements of each matrix and therefore would only require one call to the add function.
In addition the view creates and destroys are very inefficient. In Example 13 wetry todo a
more efficient version of the matrix add function in Example 12.

TASPVSIPL Core Plus DRAFT 127

DRAFT

Example 12

1 #include<vsip. h>

2 void VU _madd_f (vsip_nview f* A

3 vsi p_nmview f* B,

4 vsip_nmview f* O {

5 vsip_length L = vsi p_ngetrow ength_f(A);
6 vsi p_i ndex i;

7 vsip_vview f *a = vsip_ntol view f(A 0),
8 *b = vsip_ntol view f(B,0),
9 —

*c¢ = vsip_ntolview f(C, 0);
10 vsi p_vadd f(a, b, c);
1 for(i=1; i<L; i++){
12 vsi p_vdestroy _f(a); a = vsip_ntolview f(Ai);
13 vsi p_vdestroy f(b); b = vsip_ntolview f(B,i);
14 vsi p_vdestroy_f(c); ¢ = vsip_ntolview f(Ci);
15 vsi p_vadd_f(a, b, c);
16 }
17 vsi p_vdestroy_f(a); vsip_vdestroy_f(b);
18 vsi p_vdestroy_f(c);
19 return;
20}
21

22 int main()

23 { vsip_vview f *a vsi p_vcreate f(50,0),

24 *b = vsip_vcreate f(50,0),

25 *Cc = vsip_vcreate f(50,0);

26 vsi p_nmvi ew_f

27 *A = vsip_nbind_f(vsip_vgetblock f(a),0,4,3,1,4),
28 *B = vsip_nbind _f(vsip_vgetblock f(b),O0,4,3,1,4),
29 *C = vsip_nbind f(vsip_vgetblock f(c),0,4,3,1,4);
30 vsi p_vranp_f(0.0,.01,a); vsip_vranp_f(0.0,1.0,Db);

31 VU nmadd_f (A, B, O ;

32 printf("A=\n");VUnprintmf("%.2f ", A);

33 printf("B =\n");VU nprintmf ("%.2f ", B);

34 printf("A+B=C=\n");VUnprintmf("%.2f ",QO;
35 vsi p_ndestroy_f(A); vsip_ndestroy_f(B);

36 vsi p_ndestroy_f(CO);

37 vsi p_val l destroy f(a); vsip_valldestroy f(b);

38 vsi p_val l destroy_f(c);

39 return O,

40 }

128 DRAFT TASPVSIPL Core Plus

DRAFT

In example 13 we make a decision to use one of two methods to do the elementwise calcula-
tion. We use method one if the input matrices data may be represented as a single vector. For
this method to work all three matrices must each be representable by a single vector. Other-
wise we use method two which is the same as example 12 except we iterate the columns by
resetting offset of the column vectors.

In lines 7 and 8 we retrieve the attributes of each matrix. In line 6 we set acheck to false. In
lines 9 through 26 we find out if the matrices may all be represented using a single vector. To
use a single vector all the matrices must have the same major direction, so we check this first
in lines 10-13. We then find the difference for row major (column major) between the offset of
the last element of arow (column) and the first element of the next row (column). By compar-
ing this difference with the magjor direction stride to check for equality we set the check value
to true if the matrices data may be represented by a vector.

If the check value istrue we create a view along the mgjor direction in lines 28 through 33. In
line 34 we find the number of elementsin the matrix and reset each vector length to that value.
We then add the vectorsin line 37, destroy the vector views (38,39), and exit the subroutine.
The matrix add is done. It isimportant that the initial view be at index zero along the major
direction for the proper stride and offset.

If the check isfalse then we do the addition using column views starting at index zero (42-43).
In lines 45-47 we store the initial offset of these column views. We note that for index zero
thisis the same offset as the parent matrix. In line 48 we add the first set of columns. In lines
49-55 we iterate through the rest of the columns. We first reset the vector view offset to the
next column by adding the row stride (50-53). We then add the vectors in line 54. After com-
pletion we are done adding so we destroy the vector views and return.

The main program starting in line 63 tests the matrix add subroutine we have written. Note
that thisis basically the same main as example 12, except the attributes for the matrix bind
function are set to different values, and we also do two matrix adds, once for method one and
once for method two. Note that the ramp function filling the 4 and B matrices are set up so

that the block elements are numbered 0.00 through 0.49 for 4 and 0 through 49 for B. This
makesit easy to keep track of what portion of the block is referenced by the matrix view given
aparticular set of attributes in the matrix bind function. The reader is encouraged to try chang-
ing the arguments in the bind functions to become familiar with how matrices are accessed on
ablock given a particular view.

Asaside note it would be easy to modify example 13 to do any elementwise function with
two matrices as input and a matrix as output by passing in the vector elementwise function as
a pointer, and replacing vector add with the function pointer.

TASPVSIPL Core Plus DRAFT 129

DRAFT

Example 13 (Page 1 of 2)

1 #include<vsip. h>

2 void VU _madd_f (vsip_nview f* A

3 vsi p_nmview f* B,

4 vsip_nmview f* O {

5 vsip_mattr_f Aa,Ba,Ca; /* Matrix attributes */

6 int ¢c_ bl = 0;

7 vsip_ngetattrib f(A &A\a); vsip_ngetattrib f(B, &a);

8 vsi p_ngetattrib_f(C, &Ca);

9 { /* decide if it can be done with one vector */

10 int check = (Aa.row stride < Aa.col _stride) ? 1 : O;
1 check += (Ba.row_stride < Ba.col _stride) ? 1 : O;
12 check += (Ca.row stride < Ca.col __stride) ? 1 : O;
13 if((check '= 3) && (check '=0)){ c_bl = 0;

14 } else { vsip_stride Ac, Bc, Cc;

15 i f (check){

16 A c=Aa.col stride-Aa.row stride*(Aa.row | ength-1);
17 B c=Ba.col _stride-Ba.row stride*(Ba.row_| ength-1);
18 C c=Ca.col _stride-Ca.row stride*(Ca.row_| ength-1);
19 i f((A c==Aa.row stride)&& B c==Ba.row stride)

20 &&(C c == Ca.row_stride)) c_bl=1;

21 }el se{

22 A c=Aa.row stride-Aa.col _stride*(Aa.col _length-1);
23 B c=Ba.row _ stride-Ba.col _stride*(Ba.col _| ength-1);
24 C c=Ca.row_stride-Ca.col _stride*(Ca.col _|Iength-1);
25 i f((A c==Aa.col _stride) && (B _c==Ba.col stride)

26 &&(C c==Ca. col _stride)) c_bl=1;}

27 }

28 }if(c_bl){ /* everything can be nmade into a vector */

29 vsip_vview f *a=(Aa.row_stride < Aa.col _stride) ?

30 vsi p_nmrowiew f(A 0) : vsip_ntolview f(A 0),

31 *b=(Ba.row stride < Ba.col _stride) ?

32 vsi p_nmrowiew f(B,0) : vsip_ntolviewf(B,O0),

33 *c=(Ca.row_stride < Ca.col _stride) ?

34 vsi p_nmrowiew f(C,0) : vsip_ntolview f(C 0);

35 vsi p_l ength N en=Aa. row_| engt h*Aa. col _I engt h;

36 vsi p_vputlength _f(a, Nl en);vsip_vputlength f(b, N en);
37 vsi p_vputlength f(c,N en); vsip_ vadd f(a,b,c);

38 vsi p_vdestroy_f(a); vsip_vdestroy_f(b);

39 vsi p_vdestroy _f(c); printf("method 1\n");

40 l}else{/* add by colums */

41 vsi p_i ndex i;

42 vsip_vview f *a = vsip_ntol view f(A 0),

43 *b = vsip_ntol view f(B,0),

44 *c¢ = vsip_ntolview f(C, 0);

130 DRAFT TASPVSIPL Core Plus

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

TASP VSIPL Core Plus

}

vsip_offset a

}

DRAFT

Example 13 (Page 2 of 2

0 = Aa.offset,
b o = Ba.offset,
c_0 = Ca.offset;

vsi p_vadd _f(a, b, c);
for(i=1; i<Aa.row_length; i++){

}

a o += Aa.row stride; b _o += Ba.row stride;

c_o += Ca.row stride;

vsi p_vputoffset f(a,a o0);vsip_ vputoffset f(b,b 0);
vsi p_vputoffset f(c,c_o);

vsi p_vadd f(a, b, c);

vsi p_vdestroy_f(a); vsip_vdestroy_f(b);
vsi p_vdestroy f(c);
printf("method 2\n");

return;

int main()

{

vsip _vview f *a

= vsi p_vcreate f(50,0),
*b = vsip_vcreate f(50,0),
*c = vsip_vcreate f(50,0);

vsi p_nmvi ew f

*A = vsip_nbind f(vsip_vgetblock f(a), 3, 10,3, 3,4),
*B = vsip_nbind_f(vsip_vgetblock f(b),0,8,3,2,4),
*C = vsip_nbind f(vsip_vgetblock f(c), 10,4,3,1,4);

vsi p_vranp_f(0.0,.01,a); vsip_vranp_f(0.0,1.0,b);
VU _rmadd_f (A B, O ;
printf("A=\n");VUnnprintmf("%.2f ",A);
printf("B =\n"); VU nprintmf("%.2f ", B);
printf("A+B=C=\n");VUnprintmf("%.2f ",0;
vsi p_mndestroy _f(A);vsip_ndestroy f(B);

vsi p_ndestroy f(CO);

A = vsip_nbind_f(vsi p_vgetblock_f(a), 3,8, 3, 2,4),

B
C

vsi p_mbi nd_f(vsi p_vgetblock f(b),0,4,3,1,4),
vsi p_nbind f(vsip_vgetblock f(c),10,4,3,1,4);

VU nmadd_f (A, B, O ;
printf("A=\n");VUnnprintmf("%.2f ",A);
printf("B =\n");VUnnprintmf("%.2f ", B);
printf("A+B=C=\n");VUnprintmf("%.2f ",0O;
vsi p_ndestroy f(A); vsip_ndestroy f(B);

vsi p_ndestroy_f(CO);

A = vsip_nbind_f(vsip_vgetblock f(a), 3, 10,3,3,4),
vsip_val l destroy f(a); vsip_valldestroy f(b);
vsip_val l destroy_f(c);returnO;}

DRAFT 131

DRAFT

132 DRAFT TASPVSIPL Core Plus

DRAFT

CHAPTER 5 Introduction to Vector Index Views,
Boolean views, Gather, Scatter, and
Indexbool

Introduction

The V SIPL specification supports vectors which contain index values. Only vectors are sup-
ported for this purpose and there are no matrix data types which may contain index values. For
the VSIPL Core profile there are vectors and matrices, so the core profile supports vector
views of type vector index and vector views of type matrix index. In this chapter we will
spend most of our time on vector views of type vector index which we term vector index view.

In addition the VSIPL Core profile requires support for boolean vector views. A vector bool-
ean view may be used to create a vector index view using the vsi p_vi ndexbool function.

Vector Index Views

By this stage in the book the reader should be fairly comfortable with manipulating vector
views of type float. There are no differences with a vector index view. The data type stored in
the vector index isof typevsi p_scal ar _vi . Thistypeisan unsigned integer of sufficient size
to index any possible vector for the implementation.

There are few elementwise functionsin VSIPL Core which operate on vector index views.
You may retrieve or put an index in a vector using the standard get or put, and you may copy
an index using the copy functions. It is also possible to define a user data array of type vector
index (vsi p_scal ar _vi index[size_of _user_data_array]) and then bind the user datato
ablock of type vector index (vsi p_bl ock_vi). Vector index views (vsi p_vvi ew_vi) may
then be bound to the user block. After manipulating the user data array using normal ANSI C
methods the block may be admitted to VSIPL (or released as required) and views (user data)
bound to the block may be used in the normal manner.

The main method to set vector index views are to use boolean vector views created using a
logical function, and then use the index boolean function to fill the index vector using the
boolean vector. The index vector created may then be used to select values from a vector asso-
ciated with the logical operation and place the values in another vector using a gather or scat-
ter.

Vector Boolean Views

All of the standard vector manipulation methods supplied with the support functions, includ-
ing user data arrays defined astype vsi p_scal ar _bl which may be used with boolean vector

TASPVSIPL Core Plus DRAFT 133

DRAFT

views using the standard VSIPL block bind, block admit and block release methods. A bool-
ean internal to VSIPL isvendor dependent. Only the interface to boolean is defined. We will
try to cover most of those interface properties here.

For get functions a zero will be returned if the indexed value is false, and a non-zero will be
returned if theindexed value is true (the exact returned value for boolean get for true is vendor
dependent). For put azero is put as false and anon-zero is put as true.

For acopy of aboolean to afloat vector atrueis copied as 1.0 and afalseas 0.0 . For a copy
of afloat vector to aboolean a0.0 is copied as afalse and everything elseis copied as true.
Sinceit isdifficult to get exactly 0.0 for float values using standard cal cul ations users are cau-
tioned about copying float vectors to boolean.

Any function which returns a boolean of typevsi p_scal ar _bl isrequired to test true for
VS| P_TRUE and false for vsI P_FALSE using standard ANSI C tests. The values VS| P_TRUE
and VsI P_FALSE are defined in the VSIP header file (vsi p. h).

A first example using the scalar vector index

Before exploring vector index using vector index views lets do a simple example program
using the scalar vector index. In example 14 we do a simple sort subroutine.

Note that VSIPL includes atype definition vsi p_i ndex which is the same as

vsi p_scacl ar _vi . inline 5 we set the index value. Many value selection functions return as
an argument the index of the value selected. Since we want our sort function to start at mini-
mum values and go to maximum we use the minimum value function to retrieve the minimum
valuein the array. We clone the input array in line 4 since we want to change attributesin it.
Note that “bullet proof code” would check for NULL here and return an error if thereisno
room to create the view. We could also save the attributes and restore them at the end. For this
example the author usesindividual get attribute functions, but an attribute structure could have
been used as well.

The actual sorting isdonein lines 9 - 17. The value stored at index zero is saved to a tempo-
rary storage. The minimum value is then found in lines 11-12 and stored in the zero index
location. When the minimum value is found it’s original location isreturned in the i ndex.
The value in the temporary location is stored in line 13 where the minimum value was. We
now have the minimum value in the array stored in location zero. We then reduce the length of
the array by one, and increase the offset so that the cloned array zero location points to the
second location of the original array. We do the algorithm again to find the minimum value
and store it in thefirst location of the new array. When the length (decremented in line 9)
reaches one we know the array has been sorted. We destroy the cloned view in line 18 and
return.

The program used to test the examplein lines 21 through 38 makes an arbitrary float user data
array, bindsit to ablock, binds the block to a view, prints the input data, admits the block,
sorts the vector view, releases the block, and finally prints the output user data. The program
output is:

input 5.0-3.0 3.02.0 1.09.085115 9.0
output -3.0 1.0 2.0 3.0 5.0 85 9.0 9.011.5

134 DRAFT TASPVSIPL Core Plus

DRAFT

Example 14

1 #include<vsip. h>

2 void VU.vsort_f(vsip_vviewf *x){ /* do this in place */
3 vsip_scalar_f tenp; /* need to store sone tenp data */
4 vsip_vview f *x _clone = vsip_vcloneview f(x);

5 vsi p_i ndex i ndex;

6 vsi p_vgetl ength_f(x);

7 vsi p_vgetoffset f(x);

8 vsi p_vgetstride_f(x);

9

vsip_length x I ength
vsi p_offset x_offset

vsip_stride x_stride
whil e(x_length-- >1){

10 tenp = vsip_vget f(x_clone, 0);

1 vsi p_vput _f(x_cl one, 0,

12 vsi p_vm nval _f(x_cl one, & ndex));

13 vsi p_vput _f(x_cl one,index, tenmp);

14 x_offset += x_stride;

15 vsi p_vputl ength_f(x_cl one, x_| engt h);

16 vsi p_vputoffset f(x_clone, x offset);

17 }

18 vsi p_vdestroy_f(x_cl one);

19 return;

20}

21 int main(){

22 int init = vsip_init((void*)O0);

23 vsip_scalar_f u_data]] = {5.0, -3.0, 3.0, 2.0, 1.0, 9.0,
24 8.5, 11.5, 9.0};

25 vsi p_block f *u bl ock = vsip_bl ockbind f(u_data, 9, 0);
26 vsip_vview f *u view = vsip_vbind f(u_block,O0,1,9);

27 printf("input\n");

28 {int i; for(i=0; i1<9; i++) printf("%.1f\n",u_datali]);}
29 vsi p_bl ockadm t _f (u_bl ock, VSIP_TRUE)

30 VU vsort _f(u_view;

31 vsi p_bl ockrel ease_f (u_bl ock, VSI P_TRUE)

32 printf("output\n");

33 {int i; for(i=0; i<9; i++) printf("9%.1f\n",u datali]);}
34 vsi p_val l destroy f(u_view;

35 vsi p_finalize((void*)O0);

36 return O;

38}

TASPVSIPL Core Plus DRAFT 135

Boolean and Vector Index Views

DRAFT

Example 15 demonstrates the use and creation of Boolean and Vector index views. In this
example we create two vector views and determine all locations where the views are equal. In
lines 12-13 we create one ramp increasing and one ramp decreasing. They cross at zero so

there is exactly one time where the two ramps are equal .

Inlines 7 and 8 we create a boolean vector and a vector index view of size equal to the size of
the data vectors. In line 20 we do a vector logical equal to compare the values of the input vec-
tors elementwise. The output (true or false) is placed in the boolean vector ab_bl .

In line 22 we check to see if there are any true values in the boolean output of the logical
equal. If there arewe do vsi p_vi ndexbool to extract the index values of the true locations
into the index vector. The index vector must be of sufficient size to hold all the possible true
indices. The number of true values are returned, and the length of the index vector isreset to

the actual number of indices input into it.

We finish by printing out all the indices where the elements of the input vectorsto logical

equal are equal.

Note that the index vector must be large enough to hold all the indices returned by
vsi p_vi ndexbool . Since the index vector length is reset to the actual number returned, then

the length of the input vector index view must be reset before it is used again.
The output of example 15 follows.

index A B

0 -20
-1.0
0.0
10
2.0
3.0
4.0
5.0
6.0

O~NOOT A WN PR

A=Batindex 2

136

2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0

DRAFT

TASP VSIPL Core Plus

DRAFT

Example 15
1 #include<vsip. h>
2 #define L 9 /* length */
3 int main(){
4 int init = vsip_init((void*)0);
5 vsip_vview f *a = vsip_vcreate_f(L,O0),
6 *b = vsip_vcreate f(L,0);
7 vsip_vview bl *ab bl = vsip_vcreate bl (L, 0);
8 vsip_vview vi *ab vi = vsip_vcreate vi(L,0);
9 vsi p_l ength numirue = O;
10 int i = 0;
1 /* Make up sone data */
12 vsip_vranp_f(-2.0, 1, a);
13 vsip_vranp f(2.0, -1, b);
14 printf("index A B\n");
15 for(i = 0; i<L; i++)
16 printf("98i %.1f %.1f \n", i,
17 vsi p_vget _f(a,i),
18 vsi p_vget _f(b,i1));
19
20 vsip_vleq f(a, b,ab _bl);
21
22 i f(vsip_vanytrue bl (ab_bl)){
23 nunmlrue = vsi p_vi ndexbool (ab_bl,ab_vi);
24 for(i = 0; i < nunilrue; i++)
25 printf("A =B at index %3i\n",
26 (int)vsip_vget_vi(ab_vi,i));
27 }
28 el se{
29 printf("No true cases\n");
30 }
31 vsi p_val |l destroy f(a);
32 vsi p_val | destroy_f(b);
33 vsi p_val | destroy_bl (ab_bl);
34 vsi p_val | destroy_vi (ab_vi);
35 vsi p_finalize((void*)0);
36 return O,
37}

TASPVSIPL Core Plus DRAFT 137

DRAFT

Gather and Scatter

To finish this chapter we demonstrate the use of gather and scatter using a couple of simple
examples.

In example 16 we create a vector and find all the values greater than zero. We then place these
values in avector and print them.

In lines 5-8 we make the data space and vectors we plan to use. In lines12-13 we create a
cosine wave for angles between zero and two 11. We then fill a zero vector to compare the

cosine vector with in line 15. Note we could use a vector with zero stride here and save some
space, but we need this vector anyway to copy output datato.

In line 16 we compare the cosine to the zero vector and output a boolean vector set to true
where the cosine vector is greater than zero.

In line 18 we recover the index values where the cosine vector is greater than zero and place
them in the index vector. Note we check the return value to ensure that there were some values
greater than zero.

We then use the gather function to collect the cosine values greater than zero and place them
into the zero vector in line 21. Note that we first reset the vector length of the zero vector to be
equal to the number of true valuesreturned in line 18 by vsi p_vi ndexbool . Since the vector
put length function returns a pointer to the vector view we can useit directly in the

vsi p_vi ndexbool function. In agather the input vector index view isread in order. The
index read is used to read the input data vector. The result is used in order and placed in the
output vector. So for agather the input vector index view and the output data view are indexed
the same. The output data view length must be set to the same length as the vector index view
before gather is used. The input data view isindexed using the value read from the input vec-
tor index view.

Finally we print the results, destroy the data space and exit.

For example 17 we use both gather and scatter. For this example we create a clipped cosine
wave.

In example 17 lines 5 - 26 we simply do what was done in example 16. At line 27 wefill the
original cosine view with the clip value, which for thiscaseiszero. Theninline 28 we replace
the cosine values above the clip value using a scatter function. In a gather the input vector
index view’s values are used to find data in the input data vector. In a scatter the input vector
index view’s values are used to place data in the output vector. For the scatter case the index
vector view and the input data vector are indexed the same (in order). So the data gathered in
the first part of the code is now scattered back to its proper location. The result is aclipped
cosine.

Note one would normally do aclip using the clip function. This example is to demonstrate
scatter, not to demonstrate how to clip data.

Asafinal comment we note that for a scatter the index vector may contain duplicate entries.
For duplicate entries the final value stored in the output vector is vendor dependent.

138 DRAFT TASPVSIPL Core Plus

DRAFT

Example 16
1 #include<vsip. h>
2 #define L 20 /* A |l ength*/
3 int main()
4 { int init = vsip_init((void*)O0);
5 vsi p_vview f* a = vsip_vcreate f(L,0);
6 vsi p_vview f* b = vsip_vcreate f(L,0);
7 vsip_vview vi* ab vi = vsip_ vcreate vi(L,0);
8 vsip_vview bl* ab_bl= vsip_vcreate_ bl (L, 0);
9 int i;
10 vsip_length N,
1 /* make up sone data */
12 vsip_vranp f(0,2 * MPI/(L-1),a);
13 vsi p_vcos_f(a, b);
14 /* find out where b is greater than zero */
15 vsip_vfill _f(0,a);
16 vsip_vlgt f(b,a,ab _bl);
17 /* find the index where b is greater than zero */
18 i f((N = vsip_vindexbool (ab_bl,ab_vi))){
19 /* make a vector of those points where b
20 I's greater than zero*/
21 vsi p_vgat her _f(b,ab_vi,vsip_vputlength f(a, N));
22 [*print out the results */
23 printf("lndex Value\n");
24 for(i=0; i<N, i++)
25 printf("%i %. 3f\ n",
26 vsi p_vget vi(ab_vi,i),
27 vsip_vget f(a,i));
28 }
29 else{ printf("Zero Length |Index");
30 }
31 vsi p_val | destroy_f(a);
32 vsi p_val | destroy_f (b);
33 vsi p_val | destroy_vi (ab_vi);
34 vsi p_val | destroy_bl (ab_bl);
35 vsi p_finalize((void*)O0);
36 return O;

TASPVSIPL Core Plus DRAFT 139

DRAFT

Example 17
1 #include<vsip. h>
2 #define L 50 /* A |length*/
3 int main()
4 | int init = vsip_init((void*)0);
5 vsip_vview f *a = vsip_vcreate_f(L,O0),
6 *b = vsip_vcreate f(L,0);
7 vsip_vview vi *ab vi = vsip_vcreate vi(L,0);
8 vsip_vview bl *ab bl = vsip_vcreate bl (L, 0);
9 int i;
10 vsip_length N
1 /* make up sone data */
12 vsip_vranp_f(0,2 * MPI/(L-1),a);
13 vsi p_vcos f(a,b);
14 /* find out where b is greater than zero */
15 vsip_vfill _f(0,a);
16 vsip vligt f(b,a,ab _bl);
17 /* find the index where b is greater than zero */
18 i f((N = vsip_vindexbool (ab_bl,ab_vi))){
19 /* make a vector of those points where b
20 Is greater than zero*/
21 vsi p_vgat her _f (b, ab_vi,vsip_vputlength_f(a, N));
22 }
23 el se{
24 printf("Zero Length ab_vi");
25 exit(0);
26 }
27 vsip_vfill _f(0,b);
28 vsi p_vscatter f(a,b,ab vi); /* cliped cosine */
29 for(i=0; i<L; i++)
30 printf ("% . 3f\n",vsip_vget _f(b,i));
31 / *recover the data space*/
32 vsi p_val l destroy_f(a);
33 vsi p_val | destroy_f (b);
34 vsi p_val | destroy_vi (ab_vi);
35 vsi p_val | destroy_bl (ab_bl);
36 vsi p_finalize((void*)O0);
37 return O;
38}

140 DRAFT TASPVSIPL Core Plus

DRAFT

CHAPTER 6 Signal Processing Functionality in
the VSIPL Core Profile

I ntroduction

For the core profile signal processing functions included are, with the exception of multiple
FFT, defined for use on single vectors. Multiple FFT is also one dimensional, except it is done
over amatrix input. With the exception of the IR filter routines almost all the one dimensional
functionality of the VSIPL signal processing specification is contained in the core profile.

Window Creation

V SIPL provides functions to create Blackman, Chebyshev, Hanning and Kaiser windows.
Unlike most functionsin VSIPL the window creation routines do not use an aready created
vector and fill it. Instead they actually create a block, allocate data for the block, create a unit
stride full length vector on the block, fill the vector with the window coefficients, and then
return the pointer to the vector view. The return value will be NULL on an allocation failure,
and careful programmerswill check this (as the examples demonstrate the author tends to be
not very careful).

The four window functions are standard and discussed in many texts. The actual formulas for
the windows areincluded in the VSIPL standard and will not be included here. In Example 18
below we look at window creation for the Chebyshev window.

In lines 6 and 7 we define a couple of V SIP user functions to allow usto print vectorsto afile
(Vector File Print y gnuplot => vfprintyg in case your wondering), and to rearrange an fft out-
put so the DC value goes to the middle of the vector. VSIPL has defined a function to allow
this, but it is not included in the core profile. These functions arein lines 38-81.

On line 8-9 we calculate the Chebyshev window. In lines 12-14 we create a complex vector
for calculating the frequency response. We initialize the vector to zero. Thisisimportant if the
vector contents are not replaced in some other step. For this example the real part is replaced
with the window, but the imaginary part isinitialized using the complex vector fill done on
line 14.

In line 18 we copy the window to the real portion of the complex vector. Note that frequently
we can do things directly in areal view, versus doing a copy, but the window creation method
in VSIPL does not allow this, since the windows data space is created directly. In line 18 and
19 we find the fourier transform of the window and it’s magnitude squared value.

TASPVSIPL Core Plus DRAFT 141

DRAFT

Example 18 (1 of 2)

1 #include<vsip. h>

2 #define ripple 100 /* First side |obe 100 db down */
3 #define Nlength 101 /* wi ndow |l ength */

4 int main()

5 int init vsip_init((void*)0);

6 void VU vfprintyg_f(char*,vsip_vviewf*, char*);
7 voi d VU vfregswapl P_f(vsip_vviewf*);

8 vsip_vview f* Cw = vsip_vcreate _cheby f(

9 Nl ength, ripple,0); /* window create here */
10 vsip fft f *fft = vsip_ccfftip create f(

1 Nl engt h, 1. 0, VSI P_FFT_FWD, 0, 0) ;

12 vsi p_cvview f* FCW = vsip_cvcreate_f(N ength, 0);
13 VU vfprintyg f("%. 8f\n", Cw, "Cheby W ndow");

14 vsip_cvfill _f(vsip_cnplx_f(0,0), FCW;

15 { /* look at frequency response */

16 vsip _vview f *rv = vsip_vrealview f(FCW;

17 vsi p_vcopy_f _f(Cw,rv);

18 vsip_ccfftip_f(fft, FCW;

19 vsi p_vcmagsq_f(FCWrv);

20 { /* scale by 130 dB mn to max*/

21 vsi p_i ndex ind;

22 vsi p_scalar_f max = vsip_vmaxval f(rv, & nd);
23 vsip_scalar_f mn = max * (le-13);

24 vsip_vclip_f(rv,mn, max, mn, max, rv);

25 }

26 vsi p_vl 0ogl0 _f(rv,rv);

27 vsi p_svrmul _f(10,rv,rv);

28 VU vfreqswapl P_f(rv);

29 VU viprintyg f("%.8f\n",rv,

30 Cheby_ W ndow_Fr equency_Response");

31 vsi p_vdestroy f(rv);

32 }

33 vsip_fft_destroy f(fft);

34 vsi p_val | destroy f(Cw);

35 vsi p_cval | destroy_f (FCW ;

36 vsip_finalize((void*)0); return O;

37}

142 DRAFT TASPVSIPL Core Plus

DRAFT

Example 18 (2 of 2)

38 void VU vfreqgswapl P_f(vsip_vview f* b)
39 { vsip_length N = vsip_vgetlength_f(b);

40 i f(NOR){/* odd */

41 vsip_vview f *al = vsip_vsubview f (b,

42 (vsip_index) (N 2)+1,

43 (vsip_length)(N2));

44 vsip_vview f *a2 = vsip_vsubview f (b,

45 (vsi p_i ndex)O0,

46 (vsip_length) (N 2)+1);

47 vsip _vview f *a3 = vsip_vcreate f(

48 (vsip_length) (N 2)+1,

49 VS| P_VEM NONE) ;

50 vsi p_vcopy_f f(a2,al);

51 vsi p_vputl ength_f (a2, (vsip_length)(N2));
52 vsi p_vcopy_f_f(al, a2);

53 vsi p_vputlength f(a2, (vsip_length)(N2) + 1);
54 vsi p_vputoffset _f(a2, (vsip_offset)(N2));
55 vsi p_vcopy_f _f(a3, a2);

56 vsi p_vdestroy f(al); vsip_vdestroy f(a2);
57 vsi p_val | destroy_f(a3);

58 telse{ /* even */

59 vsip_vview f *al = vsip_vsubview f (b,

60 (vsip_index) (N 2),

51 (vsip_length)(N2));

62 vsi p_vputlength f(b, (vsip_length)(N2));
63 vsi p_vswap_f (b, al);

64 vsi p_vdestroy_f(al);

65 vsi p_vputlength f(b, N);

66 }

67 return;

68 }

69

70

71 void VU vfprintyg f(char* format,

72 vsip_vview f* a,

73 char* fnane)

4 | vsip_length N = vsip_vgetlength f(a);

75 vsip_length i;

76 FILE *of = fopen(fname,"w');

7 for(i=0; i<N i++)

78 fprintf(of,format, vsip_vget f(a,i));
79 fclose(of);

80 return;

81}

TASPVSIPL Core Plus DRAFT 143

144

DRAFT

Figure2

0.8 -

0.6

05

04 -

03

0.1

"Cheb);_Window" —

40

20

-20

-40

-60

-80

-100 *

20

T T
"Cheby_Window_Frequency_Response" —+—

20

40

60

80

100

Output of example 18 plotted using gnuplot. The top plot is the Chebyshev
window, the bottom the corresponding frequency response.

DRAFT

TASP VSIPL Core Plus

DRAFT

For the window in example 18 we requested 100 db between the highest sidelobe and the main
lobe; however the minimum value could be zero. Very small or zero values are inconvenient
when doing logs. In lines 20-25 we scale the frequency response values to 130 dB. We find
10 log base 10 of the valuesin lines 26-27 (thisisthe dB value), and in line 29-30 print them
out. Figure 2 is the resultant window, and it’s frequency response.

The author notes that he has run example 18 on two platforms, a Sun server and a Pentium
based Linux computer, but for some reason the result of the float version of the Chebyshev
window on the Sun is not very good (the first side lobe is only down about 60 dB on the Sun
float version). The double version on the Sun platform works fine. The version in figure 2 is
the float version from the pentium platform. The library and example code isidentical on both
platforms. The author has not tracked down the problem yet.

Convolution, Correlation and FIR Filtering

There are many similarities between these three functions. The convolution and FIR use aker-
nel vector in there object creation which is stored in the object; however the correlation uses a
reference data vector which is not stored in the object. The convolution and FIR are basically
filter functions and allow de-sampling. The correlation has an option to remove bias. The cor-
relation and convolution have options to indicate what portion of the output is desired. The
convolution is designed to filter asingle piece of data, the FIR object maintains state informa-
tion so that it may be used to filter a continuous data stream.

The FIR has already been demonstrated in example 11. In this section we will do two addi-
tional examples, one for convolution and one for correlation. In the convolution example the
FIR and convolution results for identical kernels will be compared.

Correlation

The Correlation example is number 19. In lines 2-3 we define afrequency of 5 Hz for creat-

ing dataand asample rate of 128 Hz. Inlines 4-5 we define N\val as 75 (the length of the
input vector) and wal as 51 (the length of the reference vector). In lines 11-16 we create
some data space. Notethat z_y isused to store lag time values, and z_xh is used to store sam-
pletime values. These allow for nicer plotting, but are not really necessary. Note that the func-
tioninline7 (codein lines 68-80) allows easy printing to afile of x, y values suitable for use
in asimple plotting package.

Inline 17 we create a correlation object for full support (VSI P_SUPPORT_FULL). Inline 19 we
create aramp for use in creating our input vector and reference vector in lines 25-26 and 23-
24 respectively. Note that the reference vector length must be less than or equal to the input
vector length. In lines 20-22 we set up the time vector and the lag vector.

In lines 32 through 43 we do a biased correlation and save it infile*y full” and an unbiased
correlation and saveitinfile®y full_unbiased’. In line 43 we destroy the correlation object so
we can reuse it. We then create and do a biased correlation for same support
(VSIP_SUPPORT_SAME) in lines 44-51 storing theresult infile“y _same”, and in lines 53
through 60 we create and do a biased correlation for minimum support storing theresult in file

TASPVSIPL Core Plus DRAFT 145

DRAFT

“y_min”. Note that we must destroy a correlation object before creating a new one (lines 51
and 52) for the same reason we must destroy a vector object before creating a new one.

In example 19 we have not done every possible case for unbiased but the results can be
inferred from the biased case. The results of example 19 are plotted in figure 3.

Note that for the minimum support case a point isonly output for correlation where every
point of the reference vector is used in the calculation. If the reference vector and the input
vector are both the same length only one point will be output for the minimum support case.

In the correlation plot of figure 3 for the unbiased case the three supports are each plotted in a
separate color, black for full support, blue for same support, and red for minimum support.

146 DRAFT TASPVSIPL Core Plus

DRAFT

Example 19 (1 of 2)

1 #include<vsip. h>

2 #define fO 5 /* Frequency */

3 #define fs 128 /* Sanple rate */

4 #define Nval 75 /* lInput Data Length */

5 #define Mval 51 /* Reference Data Length */

6

7 void VU vfprintxyg f(

8 char*,vsip_vview f* vsip_vview f*, char*);

9 int main()

10 { int init vsip_init((void*)0);

1 vsip_length max_|I = Nval + Mal - 1;

12 vsi p_vview f *x = vsip_vcreate_f(Nval, 0);

13 vsip _vview f *h = vsip vcreate f(Mal, 0);

14 vsip_vview f *y = vsip_vcreate_f(max_|,0);

15 vsip_ vviewf *z y = vsip_ vcreate f(mx_|,0);

16 vsip vview f *z xh = vsip_vcreate f(Nval, 0);

17 vsip_corrld_f *cor = vsip_corrld_create_f(

18 Mval , Nval , VSI P_SUPPORT_FULL, 0, 0);

19 vsip_vranp f(0,(2 * MPI * f0)/ fs,x);

20 vsip_vranp_f(-((vsip_scalar_f)max_I)/(2.0 * fs),
21 1.0/ (fs),z_y);

22 vsip_vranp f(0.0,1.0/(fs), z_xh);

23 vsi p_vputl engt h_f(x, Mval);

24 vsi p_vsin_f (x, h);

25 vsi p_vputl ength f(x, Nval);

26 vsi p_vsin_f(x,x);

27 vsi p_vputlength_f(z_xh, Mal /*h length*/);

28 VU vfprintxyg f("98.6f 98.6f\n",z xh,h,"h _data");
29 vsi p_vputlength_f(z_xh, Nval /*x length*/);

30 VU viprintxyg f("98.6f 98.6f\n",z_xh,x,"x_data");
31

32 vsi p_correl ateld_f (cor, VSI P_BI ASED, h, x, y);

33 vsi p_vputoffset _f(z_y, 0);

34 vsi p_vputlength f(z_y,vsip_vgetlength f(y));

35 VU viprintxyg f("98.6f 98.6f\n",z_vy,y,"y full");
36

37 vsi p_correl ateld f(cor, VSI P_UNBI ASED, h, x,Yy);

38 VU vfprintxyg_f(

39 "08.6f 98.6f\n",z vy,y,"y full _unbiased");
40 vsi p_corrld destroy f(cor);

TASPVSIPL Core Plus DRAFT 147

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

148

cor

}

DRAFT

Example 19 (2 of 2)

= vsip_corrld create f(

Mral , Nval , VSI P_SUPPORT_SAME, 0, 0) ;
vsi p_vputlength_f(y, Nval);
vsi p_vputlength f(z_y, Nval);
vsi p_vputoffset _f(z_y, (vsip_offset)(Mal/2));
vsi p_correlateld f(cor, VSI P_BI ASED, h, x,Yy);
VU vfprintxyg f("98.6f 98.6f\n",z vy,y,"y sane");
vsip_corrld destroy f(cor);

cor = vsip_corrld create f(

Mral , Nval , VSI P_SUPPORT_M N, 0, 0) ;
vsi p_vputl engt h_f (y, Nval - Mval +1);
vsi p_vputoffset f(z_y, (vsip_offset)(Mal - 1));
vsi p_vputlength_f(z_y, Nval - Mval +1);
vsi p_correlateld f(cor, VSIP_BI ASED, h, x,Vy);
VU viprintxyg f("98.6f 98.6f\n",z y,y,"y mn");
vsip_corrld destroy f(cor);

vsi p_val |l destroy f(x);
vsi p_val | destroy_f(h);
vsi p_val |l destroy _f(y);
vsip_finalize((void*)0); return O;

void VU vfprintxyg f(char* fornat,

vsi p_vview f* x,

vsi p_vview f* vy,

char* fnane){
vsip_length N = vsip_vgetlength f(y);
vsip_length i;
FILE *of = fopen(fnane,"wW');
for(i=0; i<N i++)

fprintf(of,formt,
vsip_vget f(x,i), vsip_vget f(y,i));

fcl ose(of);
return;

DRAFT TASP VSIPL Core Plus

DRAFT

Figure 3

Reference Data

0.8 -
0.6 |-
04
0.2 I

T T T T
"h_data" -— -

Magnitude
o

-0.2 -
04
-0.6 -
-0.8
1 1 1 1 1
0.1 0.15 0.2

.\\\/
0.3 0.35

0 0.05 . 0.25 0.4
Time (seconds)
Input Data
1 T T T T T
0.8 "x_data" -— A
0.6 [i
04 R
)
B 0.2 R
c 0
% 02 - .
g -0.
-0.4 | E
-0.6 | R
-0.8 -
-1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (seconds)

Correlation Output

30 T T T T T T T T
% ~ "y_full" -—
e Or 'y, same” + 1
2 y_min" O
© 10 |) 1
o
8§ o
= W
] -10 1
8
[}
20 .
_30 1 1 1 1 i 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
lag (seconds)
Correlation Output
0.6 T T T T T T T T
"y_f@ll ynbiased" -o—
c 0.4 -
k)
a
© 02 R
8
= 0
[}
a
3 -0.2 | R
Qo
[=
=] -0.4 | R
_06 1 1 1 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Output of example 19 plotted using gnuplot. Note that the input data and the
reference data are not the same number of samples, although they are the same

sample rate and frequency.

TASP VSIPL Core Plus

lag (seconds)

DRAFT

149

DRAFT

Convolution

The convolution is very similar to the FIR filter, except the FIR is designed to be done on con-
tinuous data, and the Convolution is designed to be done on a single data vector. In addition
since the convolution is done only once the portion of the output (support type definition

vsi p_support _r egi on) isdefined for minimum, same or full output similar to the correlation
function. The outputs for the convolution and the FIR for the same kernel should be similar. In
example 20 we create a Kaiser window in line 9-10 and use this as the kernel for use in the
convolution creates and FIR creates. We use the non-portable random number generator to

create N (0, 1) gaussian datafor an input. We do two cases, one with a decimation factor of

one (no decimation) and one with a decimation factor of three. The output is displayed in fig-
ure 4.

We note that the current version of TASP_V SIPL uses atime domain moving weighted (by
the kernel) sum with save information between data sets to cal cul ate the output. For the FIR
decimation is done on the fly by skipping calculations not needed in the output. The convolu-
tion uses an FFT method and does the decimation only on the final output, after the total con-
volution is complete. The two methods should be equivalent, with some small calculation
errors. The output shows up alarger sidelobe level (see figure 4) for the FIR method with dec-
imation. The author is not sure what is going on here.

We want to display the results as afrequency responsein dB. Theroutinevu_vfrdB_f inlines
134-177 computes a simple frequency response. Note the routine returns one on allocation
faillure and a zero on success. We don't use this feature in the main routine, but it is handy to
be able to check for allocation failures. We aso allow for arange to be passed into the routine
for scaling. Even though we have a complex magnitude squared function (line 149) which
ensures a positive result we may still have azero in the data and log functions do not handle
zero gracefully. The input is replaced with the output in this function. Although the input is
always real we use acomplex to complex FFT to calculate the frequency response. Thisis
because the real to complex FFT requires an even number of input values, and we want this
function to be more general than that.

A print function (in lines 125-133) supports output to afile suitable for use in asimple graph
program.

We create the convolution and FIR objects in lines 26-30 for the decimation factor of one
case. These are destroyed in lines 63-64 and new ones created for the decimation factor of
three case in lines 65-70. Note that just like vectors we must destroy these objects before reas-
signing the pointer to new ones to avoid memory leaks.

The length of the output vector for the full support on the convolution is

floor[(N —1)/D] + 1 where N istheinput datalength and D isthe decimation factor. The
number of samples for the FIR output may not aways be the same, depending on the input
vector length, the decimation factor, and the state of the FIR object. The maximum output
length for the FIR will be the ceiling[N/ D] . The FIR returns a value equal to the number of
new samples actually returned in the output vector. For this example we have ignored this fac-
tor since it isonly one sample point at the end of the vector and only affects the decimation 3

150 DRAFT TASPVSIPL Core Plus

DRAFT

case. The vector lengths are set in lines 22-25 and lines 71- 74. The calculation for the convo-
lution returns the correct value for maximum output length for the FIR.

We output the datafor the various piecesin lines 38-44, 56-62, 82-89, 97-103. Note the x axis
isafrequency whichisbasically apercent of the samplerate. The largest frequency is one half
the sample rate.

We output the kernel, and the kernels frequency responsein lines 105-115.

TASPVSIPL Core Plus DRAFT 151

DRAFT

Example 20 (1 of 4)

1 #include<vsip. h>

2 #define N data 4096

3 #define decl 1

4 #define dec3 3

5 int VU.vfrdB f(vsip_vview f* vsip_scalar_f);

6 wvoid VU.vfprintxyg f(char*, vsip_vviewf*,

7 vsip_vview f* char*);

8 int main () /* Start of main progranf****x*x*xxkxkxrkrsx/
9 { int init =vsip_init((void*)0);

10 vsip_vview f *kernel =

1 vsi p_vcreat e_kai ser _f (128, 15. 0, VSI P_MEM _NONE) ;
12 vsi p_randstate *r_state =

13 vsi p_randcreate(11, 1, 1, VSI P_NPRNG ;

14 vsi p_convld f *conv;

15 vsip fir_f *fir,

16 vsip vview f *data = vsip_vcreate f(

17 N _dat a, VSI P_MVEM NONE) ,

18 *noi se = vsip_vcreate f(

19 N_dat a, VSI P_VEM NONE) ,

20 *avg = vsi p_vcreate_f(

21 N_dat a, VS| P_MEM NONE) ;

22 int i; vsip_length N.Ien;

23 vsi p_vput |l engt h_f (dat a,

24 (vsip_length)((N data-1)/decl)+1);

25 vsi p_vputl ength_f(avg, (vsi p_l ength) ((N_data-1)/decl)+1);
26 conv = vsip_convld_create_f(kernel, VSl P_NONSYM

27 N_dat a, decl, VSI P_SUPPORT_SAME, 0, 0) ;

28 fir = vsip fir_create f(kernel, VSI P_NONSYM N _dat a,
29 dec1, VSI P_STATE_SAVE, 0, 0) ;

30 vsi p_vfill _f (0, avg);

31 for(i=0; i<10; i++){

32 vsi p_vrandn_f (r_state, noi se);

33 vsi p_convol veld_f (conv, noi se, data) ;

34 VU vfrdB f(data, le-13);

35 vsi p_vsma_f(data, 0.1, avg, avg) ;

36 }

37 N | en = vsip_vgetlength f(avg);

38 { wvsip_vviewf *x = vsip_vcreate_f(

39 N_| en, VSI P_VEM_NONE) ;

40 vsip_vranp f(-.5,1.0/(vsip_scalar f)(N.len-1),x);
41 VU vfprintxyg f("98.6f 98.6f\n", x, avg, "conv_decl");
42

43 vsi p_vdestroy_f(x);

44 }

152 DRAFT TASPVSIPL Core Plus

DRAFT

Example 20 (2 of 4)

49 vsip_vfill _f(0,avQ);

50 for(i=0; i<10; i++){

51 vsi p_vrandn_f (r_state, noi se);

52 vsip firflt _f(fir,noise,data);

53 VU vfrdB_ f(data, le-13);

54 vsi p_vsma_f (data, 0.1, avg, avg);

55 }

56 N | en = vsip_vgetlength_f(avg);

57 { wvsip_vviewf *x = vsip_vcreate f(

58 N_| en, VSI P_MEM NONE) ;

59 vsip_vranp_f(-.5,1.0/(vsip_scalar_f)(N_.len-1),x);
60 VU vfprintxyg f("98.6f 98.6f\n", x,avg, "fir_decl");
61 vsi p_vdestroy_ f(x);

62 }

63 vsi p_convld_destroy_f(conv);

64 vsip fir_destroy f(fir);

65 conv = vsip_convld _create_f(

66 ker nel , VSI P_NONSYM

67 N_dat a, dec3, VSI P_SUPPORT_SAME, 0, 0);
68 fir = vsip_fir_create_f(

69 ker nel , VSI P_NONSYM

70 N_dat a, dec3, VSI P_STATE_SAVE, 0, 0) ;
71 vsi p_vput | engt h_f (dat a,

72 (vsip_length)((N data-1)/dec3)+1);
73 vsi p_vputl ength_f(avg,

74 (vsip_length)((N_data-1)/dec3)+1);
75 vsi p_vfill_f (0, avg);

76 for(i=0; i<10; i++){

7 vsi p_vrandn_f (r_state, noi se);

78 vsi p_convol veld_f (conv, noi se, data) ;

79 VU vfrdB f(data, le-13);

80 vsi p_vsma_f(data, 0.1, avg, avg) ;

81 }

82 N | en = vsip_vgetlength f(avg);

83 { wvsip_vviewf *x = vsip_vcreate_f(

84 N | en, VSI P_MEM NONE) ;

85 vsip_vranp f(-.5,1.0/(vsip_scalar f)(Nlen - 1),Xx);
86 VU vfprintxyg f("98.6f 98.6f\n",

87 X, avg, "conv_dec3");

88 vsi p_vdestroy_ f(x);

89 }

TASPVSIPL Core Plus DRAFT 153

DRAFT

Example 20 (3 of 4)

90 vsip_vfill _f(0,avQ);

91 for(i=0; i<10; i++){

92 vsi p_vrandn_f (r_state, noi se);

93 vsip firflt _f(fir,noise,data);

94 VU vfrdB_ f(data, le-13);

95 vsi p_vsna_f (data, 0.1, avg, avg) ;

96 }

97 N | en = vsip_vgetlength_f(avg);

98 { wvsip_vview f *x = vsip_vcreate f(

99 N_| en, VSI P_MEM NONE) ;

100 vsip_vranp_f(-.5,1.0/(vsip_scalar_f)(N_len-1),x);
101 VU viprintxyg f("98.6f 98.6f\n",

102 X, avg,"fir_dec3");

103 vsi p_vdestroy_f(x);

104 }

105 N | en = vsip_vgetlength f(kernel);

106 { vsip_vview f *x = vsip_vcreate_f(

107 N_| en, VSI P_VEM _NONE) ;

108 vsip_vranp_f (0,1, x);

109 VU vfprintxyg f("98.6f 98.6f\n",

110 X, kernel , "kai ser _wi ndow") ;

11 vsip_vranp f(-.5,1.0/(vsip_scalar f)(N.len-1),x);
112 VU vfrdB_f (kernel, le-20);

113 VU viprintxyg f("98.6f 98.6f\n",

114 X, kernel ,"Freq_Resp_Kai ser");

115 vsi p_vdestroy_f(x);

116 }

117 vsi p_randdestroy(r_state);

118 vsi p_val | destroy_f (kernel);

119 vsi p_convld _destroy f(conv);vsip_fir_destroy f(fir);
120 vsi p_val l destroy f(data); vsip_valldestroy f(noise);

121 vsi p_val |l destroy_f (avg);

122 vsi p_finalize((void*)0); return O;

123 }/*end Of rraln program *******************************/
124

125 void VU _vfprintxyg_ f(char* format,vsip_vview f* x,

126 vsip_vview f* y, char* fnamne)
127 { vsip_length N = vsip_vgetlength f(y);

128 vsip_length i;

129 FILE *of = fopen(fnane,"w');

130 for(i=0; i<N, i++)fprintf(of,

131 format, vsip_vget_f(x,i),vsip_vget f(y,i));
132 fclose(of); return;

133}

154 DRAFT TASPVSIPL Core Plus

DRAFT

Example 20 (4 of 4)

134 int VU vfrdB f(vsip_vview f *a,vsip_scalar_f range)

135 { int ret = 0;

136 vsip_length N I en=vsip_vgetlength f(a);

137 vsi p_cvview f *ca=vsip_cvcreate f(N_Ien, VSI P_MVEM NONE) ;

138 vsip_fft f *fft = vsip_ccfftip_create_f(

139 N len, 1, VSIP_FFT_FWD, 0, 0);

140 vsip vview f *ra = vsip_vrealview f(ca),

141 *Ia = vsip_vimgvi ew_f(ca),

142 *ta = vsip_vcloneview f(a);

143 vsip offset s = (vsip_offset)vsip vgetstride f(ta);
144 if((ca == NULL) |] (fft == NULL) || (ra == NULL) ||
145 (ia == NULL) || (ta == NULL)){ret = 1;

146 }el se{

147 vsip_vfill _f(0,ia); vsip_vcopy_ f f(a,ra);

148 vsip_ccfftip f(fft,ca);

149 vsi p_vcmagsg_f(ca,ra);

150 { wvsip_index ind;/* scale by "range" mn to max*/
151 vsi p_scalar_f max = vsip_vmaxval _f(ra, & nd);
152 vsip_scalar _f mn = max * range;

153 vsip_vclip_f(ra, mn, max, mn, max, ra);

154 }

155 i f(N_len¥){vsip length Nlen = N_ | en/2;

156 vsi p_vputlength_f(ta, Nlen+l);

157 vsi p_vputlength_f(ra, Nl en+l);

158 vsi p_vputoffset f(ta,Nen * s);

159 vsi p_vcopy_f _f(ra,ta);

160 vsi p_vputlength_f(ra, Nl en);

161 vsi p_vputlength f(ta, Nl en);

162 vsi p_vputoffset f(ta, vsip_vgetoffset _f(a));
163 vsi p_vputoffset _f(ra, Nl en+l);

164 vsip_vcopy f f(ra,ta);

165 }else{vsip_length NNen = N len/2;

166 vsi p_vcopy_f f(ra,ta);

167 vsi p_vputlength f(ta, Nl en);

168 vsi p_vputlength_f(a, Nl en);

169 vsi p_vputoffset f(ta, (vsip_offset)(Nen) * s);
170 vsi p_vswap f(ta, a);

17 vsi p_vputlength_f(a, N |len);

172 }vsip_vlogl0_f(a,a);vsip_svnul _f(10, a, a);

173 }vsip fft _destroy f(fft);

174 vsi p_vdestroy_f(ra); vsip_vdestroy f(ia);

175 vsi p_cval | destroy_f(ca);vsi p_vdestroy f(ta);

176 return ret;

177}

TASPVSIPL Core Plus DRAFT 155

DRAFT

Figure4

Kaiser Window

1
88 N I I "kaiser_wintiow“ ——]
$ 07F]
2 06 i
R :
s 2 []
0.3 [1
= 02fF]
01 B
0 bbb 1 1 bt M FETETE
0 20 40 60 80 100 120 140
Sample Point
Kaiser Window Frequency Response
40 T T T
28 C "Freq_Resp_Kaiser" —+— 7]
20 4
40 F 4
m -60 | —
° 80 R
-100 R
-120 B
-140 g
:%gg C I I I I I 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
F/Fs
FIR versus Convolution For Decimation 1
70 T T T T
"conv_decl" +
"fir_decl" X
60 |- R
50 F 1
40 R
Jus}
el
30 1
20 | R
10 | 1
O 1 1 1 1 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
FIFs
FIR versus Convolution For Decimation 3
60 T T T T
"conv_dec3" +
"fir_dec3" X
50 F 1
40 g
D 30 -
20 1
10 | 1
O 1 1 1 1 1
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Output of example 20. Comparison of FIR and Convolution results.

156

FIFs

DRAFT

TASP VSIPL Core Plus

DRAFT

Fourier Transforms

We have used the FFT routine in several previous examplesin this document. The main differ-
encesin FFT functionality between the core lite profile and the core profile is the addition of
real to complex and complex to real FFTs and the addition of multiple FFTs. In example 21
we demonstrate the real to complex multiple FFT and the complex to complex multiple FFT
in the computation of a wavenumber frequency plot.

Wavenumber /Frequency plot

For example 21we need alittle background for the example to make sense. If the reader is
aready familiar with kw plots he should skip this section. Thereisno VSIPL information
here.

9
A wavenumber is (211)/A where A isthe wavelength, and awave vector k isthe wavenum-
ber times a unit vector in the direction of propagation. Please refer to Figure 5.

Basically we define atwo dimensional medium and propagate a plan wave through it. The
plane wave propagates at a speed of ¢ . We sample the plane wave in time with samplerate £
and in space with samplerate . Notethat /' issamples per second and F is samples per
meter. For example if our sensors were placed at one meter intervals then the sampleratein
space would be one sample per meter for awave vector parallél to the array. For the array of
sensors shown in Figure 5 we can see that 7c O = ((21)/N)cos(0)x where x isthe position
of the sensor along the direction of the unit vector e, . Note we can place our origin any place

we want we and make the y component go away by setting it to zero. We now see that if we
calculate the FFT of p(¢, x) with time (seconds) that we transform to frequency space f
cycles per second (Hz), and if we do an FFT with x (meters) we transform to frequency space
with frequency ((211)/A)cos(0) cycles per meter. Since the equation

p(t,x) = p,p,(t)p,(x) we can do adiscrete transform in time and space independently.
Note that our sensors need to be equally spaced to use the FFT method in space. Another way
to say thisisthat ' isaconstant.

The above explanation is pretty short. For a more thorough description of frequency domain
beamforming the author recommends “Array Signal Processing: Concepts and Techniques’
by Johnson and Dudgeon.

Demonstration for kw

Although the purpose of example 21 is to demonstrate frequency domain beamforming using
multiple fourier transform functions available in VSIPL most of the example calculations are
to smulate data to beam form, and then format the output for plotting. The output isin figure
6 and was done using the “tv” plotting tool in PV-Wave. The author was not successful in find-
ing a better way to do thistype of plot using public domain tools. We will go through the code
in some detail, but all the beamforming takes place in lines 101-102 where the datais win-

TASPVSIPL Core Plus DRAFT 157

DRAFT

dowed (data taper) to reduce side lobes, and in lines 104-105 where FFT beamforming is
done.

In lines 3-16 we define some constants. Our array has a sensor spacing D of 1.5, and each
sensor issampled intimeat Fs = 1000 Hz . We define some frequenciesin line 5-8 to simu-
late a narrow band source. The source is located on beam 30. The number of samples col-
lected on each sensor before processing the array is Ns = 512 . We need to define some noise
coming from various directions. We define anoise length Nn = 1024 to allow for simple

beamforming of the noise. The number of independent noise sources are Nnoise = 64 . We
define some constants for aKaiser window in lines 15-16. The Kaiser window we use asalow
passfilter for the noise estimate. (The author mostly guessed around till he found some values
that seemed to give a suitable output for Figure 6. There is no science to the selection of this

window.) The number of sensorsin our array will be Mp = 128 and the propagation speed of

the mediumwill be ¢ = 1500 . Note that the propagation speed of the medium and the sensor
spacing must have conformant units (meters, feet, yards) but for this example the actual length
unit does not matter.

In lines 22-23 we create windows to do the data taper in time (wi ndowt) and space (wi ndowp)
In lines 24-25 we create the FIR filter object. Most of the code through lines 44 create various
works spaces which the author may discuss latter in the program. The author is not sure hedid
the routine in the most efficient way so some of the work space may seem alittle redundant.
Note line 29 where we create an array to hold the noise vectors. We could have kept the noise
vectorsin amatrix, but it would not have been as handy to work with. In line 42 we create a
constant which isbasically the travel time of asignal between two sensorsif the signal arrives
at endfire. (Theterm “endfire” indicates a plain wave traveling with a wave vector parallel to
the array. Thisisthe maximum travel time between sensors.) Thisis normalized by the sample
rate.

In line 45 we create a state object for a portable random number generator. Lines 47-50 create
radian frequencies of our target frequencies and normalize them by the samplerate. Lines 51
and 52 are used in the program (lines 91-96) for calculating the noise on each sensor for each
noise direction. Line 51 is basically a constant angular distribution for the noise from endfire
to endfire, and line 52 is an offset into a noise vector of a size great enough that the time rep-
resented by the sample at the offset is at |east as |arge as the time for awave to traverse the
entire array. This offset is adjusted, plus or minus, to account for the travel time for the noise
from a particular direction and on a particular sensor.

In lines 58-61 we basically calculate a matrix of (normalized) time delays between the first
sensor and any other sensor for all the beams we will calculate in the FFT beamformer. (We
don't actually need all these for this example, but the author did this example from another
example we don’'t cover here, and did not want to change this step).

We call the output matrix gr am In lines 62-66 we initialize the output data matrix to zero
using arowview create-destroy cycle with avector fill. (Thisis not the most efficient way to
doit.)

158 DRAFT TASPVSIPL Core Plus

DRAFT

Inlines 67-73 we fill our noise vectors for each noise direction. In line 72 we set the length to
our datalength of Ns = 512, and inline 71 we scale the Noise. Note that there is nothing
special in the scaling. The author just tried some scaling until he got a noise level he liked.

In line 74 we fill anormalized time vector. The actual time would require a scaling by the
inverse of the sample rate, but we have done that scaling elsewhere.

Finally we are ready to fill our input matrix with (simulated) datain lines 75-99. We must
sample our data at a different time for each sensor so we loop through each sensor (line 75)
and select the proper time delay between sensors for beam Thet a_o =30 inline 76. We then
calculate the narrow band time series and place them in the input datain lines 78-90.

In lines 91-96 we estimate the proper offset in the noise vector for all the noise directions for
the particular phone we are ssimulating datafor. We do thisin the time domain so it is not exact
as the proper delay may be between samples. For noise we don’t need to be exact. The main

purpose of adding the noise is to reproduce the characteristic wedge shape of a kw plot.

All the steps above have been to create some artificial time series data to do the frequency
domain beamforming on. We now have a matrix of data.

In lines 101-102 we window the data to reduce the sidelobes. Note we use an elementwise
vector matrix multiply, first along the row for the time data, then along the column for the
space data. This function does a vector elementwise multiply to each row or column of a
matrix.

In line 105 we finally get to the first multiple FFT. Since we have amatrix of time seriesit is
faster to use the multiple FFT than to do each phone separately. We also have areal array and
only need the positive portion of the frequency domain output so the function we use isthe
real to complex FFT (vsi p_r cf f t mop_f). Note that this function must be done out of place.

In line 102 we do an FFT aong the array. For this function we must use the complex to com-
plex multiple FFT and we do it in place (vsi p_ccf f t ni p_f). We now have transformed our
time and space data to frequency direction data.

Therest of the exampleis spent transforming our output to be suitable for plotting. The author
decided to do this with a gray scale between aminimum of 0 and a maximum of 255 . We
basically find the magnitude squared value of each element of the datain line 114, scale this
output in line 117 so the minimum value is 1.0 (log of oneis zero), then takeitsloginline
119, then scale the log data to between 0 and 255 for plotting. In line 125-128 we move the
origin of our plot so that broadside beams (corresponding to zero (space) frequency) arrive at
the middle in figure 6.

We now back up alittle and look at lines 108-112. Here the author has used knowledge of the
input matrix views attributes to extract a unit stride vector which covers the entire data space
of the matrix. Since the core profile does not have elementwise matrix operations this step is
needed so that the scaling in the paragraph above may be easily done using vector element-
wise operations.

TASPVSIPL Core Plus DRAFT 159

DRAFT

Alsoinlines 125-128 where the origin of the space FFT is moved to the center the author has

used knowledge that the number of sensorsin the array are even. This algorithm will not work
if there are an odd number of sensors.

Finally we print the resultsin line 133.

160 DRAFT TASPVSIPL Core Plus

DRAFT

Example 21 (1 of 4)

1 #include <vsip. h>

2

3 #define D 1.5 /* sensor spacing */

4 #define Fs 1000 /* sanple rate Hz */

5 #define FO 450 /* sonme frequencies for a target */

6 #define F1 300

7 #define F2 150

8 #define F3 50

9 #define Theta_o 30 /* beam nunber of narrow band tones */
10 #define Ns 512 /* sanples in a time series */

11 #define Nn 1024 /* sanple in a noise series */

12 #define M 128 /* sensors in linear array */

13 #define c 1500 /| * propagation speed */

14 #define Nnoise 64 /* nunber of noise directions */

15 #define kaiser 9 /* w ndow paraneter */

16 #define Nfilter 10 /* kernel length for noise filter */
17

18 void VU _nprintgramf(vsip_nviewf*, char*);

19

20 int main()

21 { int init = vsip_init((void*)0),i,j; /* counters */

22 vsip_vview f *wi ndow = vsip_vcreate hanning f(Ns, 0);
23 vsi p_vview f *w ndowp = vsip_vcreate_hanni ng_f (M, 0);
24 vsi p_vview f *kernel =

25 vsi p_vcreate kaiser f(Nfilter, kaiser, 0);

26 vsip_fir_f *fir = vsip_fir_create_f(kernel, VSI P_NONSYM
27 2 * Nn, 2, VSI P_STATE_SAVE, 0, 0) ;

28 vsip vview f *t =vsip vcreate f(Ns,0); /*tine vector*/
29 vsi p_vvi ew_f *noi se[Nnoi se];

30 vsip_vview f *nv = vsip_vcreate f(2 * Nn, 0);

31 vsip vview f *tt = vsip_vcreate f(Ns,0);

32 vsip_nview f *data = vsip_nctreate f(M, Ns, VSIP_RONO),
33 *rnmvi ew,

34 vsip_vview f *data v, *gram.y;

35 vsi p_cvview f *gram data_v;

36 vsip_cnview f *gramdata =

37 vsip_cntreate f(M,Ns/2 + 1,VSIP_CQO,, 0);

38 vsip_nmview f *gram =

39 vsip_ntreate f(M,Ns/2 + 1,VSIP_ROWO0);

40 vsip mview f *Xim=

41 vsi p_nctreate_f (M, Mp+1, VSI P_ROWN0);

42 vsip_scalar _f alpha = (D * Fs) / c;

TASPVSIPL Core Plus DRAFT 161

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

162

DRAFT

Example21 (2 of 4)

vsip_vview f *m = vsip_vcreate f(M,O0);

vsip_vview f *Xi = vsip vcreate f(M + 1,0);

vsi p_randstate *state

vsi p_randcreat e(15, 1, 1, VSI P_PRNG) ;

vsip_scalar_f wo = 2 *
vsip_scalar _f wl = 2 *
vsip_scalar f w2 = 2 *
vsip_scalar_f w3 = 2 *

vsi p_scalar_f cnstl =

vsip_fftmf *rcfftnop_

vsip fftmf *ccfftmp_
vsip_ccfftmp_create_f(My, Ns/2 +

M Pl
M Pl
M_PI
M Pl

*

*
*
*

FO/ Fs;
F1/ Fs;
F2/ Fs;
F3/ Fs;

M _PI / Nnoi se;
vsip_offset offset0 = (vsip_offset)(al pha * Mp + 1);
obj =/* time fft
vsip_rcfftnop_create_f(Mo, Ns, 1, VSIP_RONO, 0);
obj = /*space fft

*/

*/

1, VSI P_FFT_FWD, 1, VSI P_COL, 0, 0) ;

vsip_vranmp _f(0,1,m;
vsi p_vranp_f (0, M PI/ M
vsi p_vcos_f(Xi, Xi);

vsi p_vouter _f(al pha,mXi, Xi n;

{ vsip_vview f *gramyv

vsip vfill _f(0,gram_

, Xi);

= vsi p_nrowiew f(gramO0);
vsip_vputlength f(gramv, Mo*(Ns/2 + 1));

v);

vsi p_vdestroy_f(gramyv);

}

for(j=0; j<Nnoise; j++){
noi se[j] = vsip_vcreate f(Nn,O0);

vsi p_vrandn_f(state

, V) ;

vsip firflt _f(fir,nv,noise[j]);
vsi p_svrul _f(12. 0/ (Nnoi se), noise[j],noise[]]);
vsi p_vputl ength_f(noise[j], Ns);

}
vsip_vranp_f(0,1.0,t);

[* time vector

DRAFT

*/

TASP VSIPL Core Plus

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

DRAFT

Example 21 (3 of 4)

for(i=0; i<M; i++){

/~k
VSi
VSi
/*
VSi
VSi

{/

vsi p_scalar_f Ximval = vsip_nget f(Ximi, Theta_o);
data_v = vsip_nrowiew f(data,i);
vsip_vsmsa_f(t,w0,-w0 * Ximuval,tt);
vsip_vcos f(tt,data_v); /*FO time series */
vsip_vsnmsa_f(t,wl,-wl * Ximuval,tt);
vsip_vcos f(tt,tt); /*F1 time series */
vsip_vadd f(tt,data_v,data v);
vsip_vsnmsa_f(t,w2,-w2 * Ximuval,tt);
vsip_vcos f(tt,tt); /*F2 time series */
vsip_vadd f(tt,data_v,data v);
vsip_vsnmsa_f(t,w3,-w3 * Ximuval,tt);
vsip_vcos f(tt,tt); /*F3 time series */
vsip_svrmul _f(3.0,tt,tt); /* scale by 3.0 */
vsi p_vadd _f(tt,data_v,data_v);
vsi p_svrmul _f(3,data_v,data v);
for(j=0; j<Nnoise; j++){

/* sinple time delay beam form ng for noise */

vsi p_vputoffset f(noise[j],offset0 +

(int)(i * alpha * cos(j * cnstl)));

vsi p_vadd_f(noise[j],data_v,data_v);
}
/* need to destroy before going on to next phone */
vsi p_vdestroy_f(data_v);

w ndow the data and the array to reduce sidel obes */

p_vmul _f(w ndow , dat a, VSI P_ROW dat a) ;

p_vmul _f(w ndowp, dat a, VSI P_CQOL, dat a) ;

do ffts */

p_rcfftnmop_f(rcfftnop_obj, data, gramdata);

p_ccfftmp f(ccfftm p_obj,gramdata);

* scale gramto db, mn O max 255 */

vsi p_i ndex i nd;

gramyv = vsip_nrowiew f(gramO0);

gram data_v = vsip_cntol vi ew_ f (gram data, 0);

rmvi ew = vsip_nreal view f(gramdata);

vsi p_vputlength f(gramyv, Mo*(Ns/2 + 1));

vsi p_cvputlength_f(gramdata_v, Mp*(Ns/2 + 1));

data v = vsip_vrealview f(gramdata v);

vsi p_vcmagsq _f(gram data v, data v);

vsi p_ncopy_f _f(rnview, gram;

vsi p_vdestroy_f(data_ v);

vsip_svadd f(1.0 - vsip_vnminval f(gramyv, & nd),
gramyv, gramyv);

TASPVSIPL Core Plus DRAFT 163

DRAFT

Example 21 (4 of 4)

119 vsi p_vlogl0 f(gramyv, gramyv);

120 vsi p_svrul _f(256.0 / vsip_vmaxval _f(gramyv, & nd),
121 gramyv,gramyv);/* scale */

122 /* reorgani ze the data to place zero in the
123 center for direction space */

124 data_v = vsip_vcl oneview f(gramyv);

125 vsi p_vputlength f(data v, (M/2) * (Ns/2 + 1));
126 vsi p_vputoffset _f(data_v,(M/2) * (Ns/2 + 1));
127 vsi p_vputlength_f(gramv, (Mp/2) * (Ns/2 + 1));
128 vsi p_vswap_f(data_ v, gramyv);

129 vsi p_vdestroy_f(gramyv);

130 vsi p_vdestroy_f(data_v); vsi p_ndestroy_f(rnview);
131 vsi p_cvdestroy f(gramdata v);

132 }

133 VU nprintgramf(gram ”gram out put”);

134 for(j=0; j<Nnoise; j++) vsip_valldestroy f(noise[j]);
135 vsi p_val | destroy_f (w ndow) ;

136 vsi p_val | destroy_f (w ndowp) ;

137 vsi p_val | destroy_f (kernel);

138 vsi p_val l destroy_f(t);vsip_valldestroy f(tt);

139 vsi p_val l destroy_f (nv);

140 vsi p_mal | destroy f(data);

141 vsip_cmal | destroy _f(gram data);

142 vsi p_mal | destroy_f(gram;

143 vsi p_val l destroy_f(m;

144 vsi p_mal | destroy_f(Xin);vsip_valldestroy f(Xi);
145 vsi p_randdestroy(state);vsip _fir_destroy f(fir);
146 vsip _fftmdestroy f(rcfftnop_obj);

147 vsi p_fftmdestroy_f(ccfftm p_obj);

148 vsi p_finalize((void*)0);return O;

149 }

150 void VU nprintgramf(vsip_nmview f* Mchar* fnane)
151 { vsip_length RL = vsip_ngetrow ength_f(M;

152 vsip_length CL = vsip_ngetcollength f(M;
153 FILE *of = fopen(fnane,”w);

154 vsi p_l ength row, col ;

155 for(row = 0; row<CL; rowt++)

156 for(col =0; col <RL; col ++)

157 fprintf(of,”%d %d %3.0f\n",

158 row, col,vsip _nget f(Mrow, col));
159 fcl ose(of);

160 return;

170}

164 DRAFT TASPVSIPL Core Plus

DRAFT

Figure@oher ent plane wave propagation in a 2D medium
7c = ((2m)/A)(cos(B)e, + sin(B)e,)

c = (2mf)/A :oo/é)\ //
p(t,7) = p,exp(ji(k O))exp(—/211/t) 7
/
>
/7 k
> /
sensor }”0$ _ / e
/
Y / Ne
/ / g
’ f :
, 4 sensor 7; s

Figure6 kw for example 21

kcos(8)
0 k/2

—k/2

—k
_ol

50 100 150 200 250 300 350 400 450 500
1 1 1 1 1 1 1 1

Frequency (Hz)

TASPVSIPL Core Plus DRAFT 165

DRAFT

166 DRAFT TASPVSIPL Core Plus

DRAFT

CHAPTER 7 Linear Algebra Functionality in the
VSIPL Core Profile

I ntroduction

The VSIPL Core profile specifies support simple matrix operations such as matrix products,

methods to solve the standard matrix equation A% = b, and methods to solve least squares
problems. VSIPL hides the decomposition of matrices in objects. So in addition to standard
matrix products, specia functions for doing matrix products with decomposition matrices are
provided.

We note that although vectors are treated as column vectors in equations, V SIPL vector views
have only one stride and so the action of the vector within the function is defined only by the
function definition.

In general all matrix views passed into afunction are defined as type const . This means that
the area of the block mapped by the view does not change inside of the function call. For some
of the defined in place operations where the input and output are defined by the same view the
input matrix size may be different than that required by the output data. For these cases the
strides of the input view define where the output datais placed. The first element of the output
datareplacesthefirst element of the input data. The author recommends defining aview of the
output data space for convenience. For a couple of cases the output data space may be bigger
than the input data space. Defining an output data view will ensure that the strides of the input
view and the size of the block are sufficient to hold the output data.

Simple Matrix-Matrix and Vector-Matrix Operations

These matrix products include matrix products, vector matrix products, matrix vector prod-
ucts, outer products, vector dot products, a general matrix product, and a general matrix sum.

Most of the ssimple matrix products may not be donein place. An exceptionisvsi p_cnher m f
which may be donein place only if the matrix is square.

The author notes that the dot product functionality of VSIPL has a complex dot product,

vsi p_cvdot _f , and acomplex conjugate dot product, vsi p_cvj dot _f . The user is cautioned
to not become confused. The complex dot product is a simple complex multiply and add. The
complex conjugate dot product is the more common complex multiply times complex conju-

gate and add.

TASPVSIPL Core Plus DRAFT 167

DRAFT

Simple Solvers

VSIPL has simple one function calls to solve a covariance problem, alinear least square prob-
lem, or a Toeplitz symmetric positive definite symmetric problem. The decision whether to
use a simple solver, or one of the more complicated solvers will depend on the application.

Covariance Problem

Thefunctionvsi p_covsol _f solvesamatrix equation of theform 4" 4X = B whereA isof

size M by N with M = N.Wenotethat A7 4 isof size N by N sotheinput matrix B is of

size N by N. Thisfunction isdone in place and the output data replaces the input data. For
this function the output data will exactly fit in the input view.

It is possible that there will be a memory allocation failure with this function. If this happens
the function returns a value of negative one. If successful it returns avalue of zero. A positive
return value indicates a failure for some other reason.

Linear Least Squares Problem

The function vsi p_I | sgsol _f solvesamatrix equation of theform AX = B where 4 isof

size M by N and M = N . Generally this problem is overdetermined and X is solved for in
the linear least squares sense. The least squares problem iswell covered in many texts and the
author will not go into the details.

Theinput matrix B isof size M by N and the output dataisof size N by N . Thismeans that
the output data will reside in the top part of the input/output view. A view of the output data
matrix may be created by using the matrix sub view function. We note that a view of the out-
put data has the first element at index 0,0 of the input data, and has the same strides as the
input data.

/* exanple of output view for vsip_|lsqgsol _f */
vsi p_nmvi ew f *out put _data = vsip_nsubvi ew f(
i nput _data, 0,0,N,N);

This function returns zero on success, negative one on failure due to amemory allocation
problem, and positive for failure for some other reason.

Toeplitz System

This function, vsi p_t oepsol _f, solvesamatrix equation of the form 4% = b wherethe

matrix A has the special form known as Toeplitz, where the diagonals are constant. In addi-
tion the matrix must be Hermitian and positive definite. This type matrix looks as follows for

the Hermitian case. The real case isthe obvious generalization. Note that »* isthe conjugate

168 DRAFT TASPVSIPL Core Plus

DRAFT

of . Since aHermitian matrix requires 4”7 = 4 we see that the diagonal must have a zero
imaginary component.

ro Fp Fy «o Iy 2Ty
*
T ro 1y Fy-2
% *
ry ry Ty
*
FNZg e e e o r
* * *
_rN_l I/'N_z ------ rl ro_

This functions only has vector arguments. Since al the required information for the matrix
residesin the first row, thisisthe input argument. All the vectors input into this function may
be overwritten in the output calculation. If the datais needed again it must be copied to a safe
place before being input to the function. There is no in-place operation for this function.

The TASP VSIPL library uses the Levinson routine to solve this problem.

This function returns negative one if it fails because of a memory allocation problem, it
returns zero if it completes successfully, and it returns a positive number if it fails for some
other reason.

L U decomposition function set

The general matrix equation 4X = B where A isasquare matrix is solved with the LU
(lower, upper) decomposition. This method iswell covered in many texts and the author will
not go into details. In VSIPL the solution follows afour step procedure.

First an object, called an LUD object, is created. This object is opague and vendor dependent.
It is designed to hold the decomposition, and any information or data space required when
solving the matrix equation. If an allocation failure occurs when creating the object then the
create function returns null.

Second the LUD object and the matrix to be decomposed are passed into the decomposition
function. The matrix view is const , however the data space used by the matrix may be used
by the decomposition. After the decomposition the matrix data space is associated with the
LUD object and should not be used for any purpose. Note that thisis only the data space asso-
ciated with the matrix view. If the matrix is bound to a block with more view bound to it than
just the matrix, portions of the block not mapped by the matrix view are not affected. The
matrix continues to reside in memory, and the view continues to be available. They just should
not be used until the LUD object is destroyed, at which time they may be reused or destroyed

TASPVSIPL Core Plus DRAFT 169

DRAFT

asrequired. The original datais of course not in the view, even after the LUD object is
destroyed.

Third the matrix equation is solved. Note that the vsip_lusol_f function has aflag, the
vsip_mat_op flag, that allows solving 4X = B or 47X = B forthereal case, andAX = B

or A" X = B for the complex case. The TASP VSIPL library will also solve the matrix conju-
gate case, but thisis no longer compliant with the current VSIPL library specification and
should not be used. It will be removed from the library when the author gets around to rewrit-
ing the LUD function set.

It should be noted that LUD was written long ago without much research. It is not one of the
more efficient or better written functionsin the TASP VSIPL implementation. However it
does appear to give the correct answer.

The fourth step isto destroy the LUD object after it is no longer needed.

Example 22 solves a simple problem using the LUD function set.

Example 22
1 /* Asinple LUD exanple */
2 #include<vsip. h>
3 int main()
4 { int init = vsip_init((void*)O0);
5 vsip_nmview f *A =
6 vsi p_nctreate_f (3,3, VSIP_ROWN VSI P_VMVEM NONE) ,
7 *B = vsip_nctreate_f(3,2,VSIP_CO, VSI P_MEM NONE) ;
8 vsip lu f *lud = vsip_lud create f(3);
9 vsi p_mput _f(A 0,0,1);vsip_nput_f(AO,1,2);
10 vsi p_mput _f (A0, 2, 3);
1 vsip _mput f(A 1,0,-1);vsip_nmput f(A 1,1,1);
12 vsip_mput _f(A 1,2,-2);
13 vsi p_nmput _f (A 2,0,1);vsip_nput_f(A 2,1,1);
14 vsi p_mput _f(A 2,2,-3);
15 vsip_mput _f(B,0,0,1); vsip_nput_f(B,0,1,1);
16 vsi p_nput _f(B,1,0,-1); vsip_nput_f(B,1,1,1);
17 vsip_mput f(B,2,0,-2); vsip_nput f(B,2,1,3);
18 printf(“A="); VUnprintmf(“%. 2f " A;
19 printf(“B ="); VUnprintmf(*“%. 2f ", B);
20 if(O0 !'=vsip lud f(lud,A)) return 1;
21 vsi p_lusol _f (Il ud, VSI P_VMAT_NTRANS, B) ;
22 printf(*“X ="); VUnprintmf(“%.3f ”,B);
23 vsip_mal | destroy f(A); vsip_nalldestroy f(B);
24 vsip_lud _destroy f(lud);
25 vsi p_finalize((void*)O0);
26 return O;
271}

170 DRAFT TASPVSIPL Core Plus

DRAFT

The output for example 22 (with liberal formatting) looks as follows:

A =[1.00 2.00 3.00
-1.00 1.00 -2.00
1.001.00-3.00];

B =[1.00 1.00
-1.00 .00
-2.003.00];

X =[-0.235 0.765
-0.176 0.824
0.529-0.4711;

Cholesky Decomposition Function set

The author did not write the Cholesky Decomposition currently in the library, and is not famil-
iar with the properties Cholesky. The function set does appear to work, and is compliant with

the specification. The author will become more familiar with Cholesky in time, but for now is
not prepared to write this section, and so will blow it of until some future release.

QR Decomposition Function set

The QR decomposition function set is similar to the LU decomposition; however it is much
more complicated with extra functions. The LU decomposition solves the fully determined

matrix equation 4AX = B where 4 is square. The QR decomposition is used to solve the
overdetermined matrix equation where 4 isof size M by N where M > N. Thereare also
methods to solve equation with the R matrix from the decomposition, ignoring the O matrix

altogether, and amethod to do matrix products with the O matrix. The author is not expert (or
even dlightly competent) on the uses of QR decomposition, and so will not go into many
details on its use here.

For QRD the author has used only the Householder method. There are optionsto only solve

for skinny O, or for thefull O, or for just R . However for the current TASP VSIPL imple-
mentation it is always done with Householder’s method. The function may fail if the proper

options are not selected, as they are tested for. For instanceif Q isnot required to be saved in

the decomposition, calling a function which requires O will fail. Householder, used properly,
seems to cover al the bases, although it may not be the most efficient or best way for every
case.

The first two steps in using the QR decomposition function set are the same as the LUD func-
tion set.

Thefirst step isto create the decomposition object. During the creation of the object clues are
passed in as to what the user requires from the decomposition. These options require either

TASPVSIPL Core Plus DRAFT 171

DRAFT

just the R matrix, or the R matrix and either the skinny O (also called O1) matrix or the full
O matrix. For explanations of skinny and full matrix please refer to alinear algebratext.

The second step is the decomposition. The decomposition function takes the QRD object, and

theinput matrix A and does the decomposition. The same as LUD the 4 datamatrix (data
space) is owned by the QRD object and should not be touched after the decomposition. The
contents of A is not defined by the specification, and should not be used directly. Even if the

contents of A are recognizable the contents are vendor dependent, and any code produced
which uses the contents, will not be portable. The QRD object must be used along with the
QRD function set.

Once the decomposition has taken place three functions may be called. These are a QRD

product function, alinear system solver based on R, and a covariance or linear least squares
solver based.

For example 23 we use the linear system solver to solve the LUD example22.

Example 23
1 /* Asinple QRD exanple */
2 #include<vsip. h>
3 int main()
4 { int init = vsip_init((void*)O0);
5 vsip_nmview f *A =
6 vsi p_ntreate_f (3,3, VSIP_ROW VSI P_VEM NONE) ,
7 *B = vsip_nctreate_f(3,2,VSIP_CO, VSI P_MEM NONE) ;
8 vsip gr _f *qrd = vsip _grd_create f(3,3,VSIP_QRD SAVEQ) ;
9 vsi p_mput _f(A 0,0,1);vsip_nput_f(AO,1,2);
10 vsi p_mput _f (A0, 2, 3);
1 vsip_mput f(A 1,0,-1);vsip_mput f(A 1,1,1);
12 vsip_mput _f(A 1,2,-2);
13 vsi p_nput _f (A 2,0,1);vsip_nput_f(A 2,1,1);
14 vsi p_mput _f(A 2,2,-3);
15 vsip_nmput _f(B,0,0,1); vsip_nput f(B,0,1,1);
16 vsi p_nput _f(B,1,0,-1); vsip_nput_f(B,1,1,1);
17 vsip_mput f(B,2,0,-2); vsip_nput f(B,2,1,3);
18 printf("A="); VU nprintmf("%. 2f " A;
19 printf("B ="); VUnprintmf("%. 2f ",B);
20 if(0 !'=vsip grd f(grd,A)) return 1;
21 vsi p_grsol _f(qrd,VSIP_LLS, B);
22 printf("X ="); VUnprintmf("%.3f ",B);
23 vsip_mal | destroy f(A); vsip_nalldestroy f(B);
24 vsi p_qgrd_destroy_f(qrd);
25 vsi p_finalize((void*)O0);
26 return O;
271}

172 DRAFT TASPVSIPL Core Plus

DRAFT

We get the same answer as example 22 (hopefully). We note that in line 8 for example 22 only
asingle number is passed, but in example 23 we have two numbers and an option. The option
saysto return an LUD object suitable for calculating afull Q. The LUD input matrix is square
so only the size of the matrix is needed, but the QRD input matrix may have more rows than
columns so the first number is the column length, and the second number is the row length.
Since the QRD solver solves both the least squares problem, and the covariance problem we
need to tell it which oneto solve. Thisiswhat theflag vsI P_LLS doesin line 21.

The Q product function

The function vsi p_qrdpr odg_f supports the product of a matrix with the g_z from the QRD

decomposition. Although we don’t have the actual O, just the QRD object, the O still has an
understood matrix size and the size of the input matrix will depend on it for the matrix product

to be conformant. The size of the O will be M by N (the size of the decomposed matrix) if
the skinny Q save option is selected. If the full Q save option is selected then O will be of size

M by M . The Q product function allows O or 07 (0)to multiply the input matrix on the
right, or to be multiplied by the input matrix on the left. So the following cases are possible.

Real Casesfor O product

Options Operation Left Side Right Side | Output Size

VS| P_QRD_SAVEQ @E M by M M by K M by K
VS| P_NTRANS
VS| P_NMAT_LSI DE

VS| P_QRD_SAVEQ QTE M by M M by K M by K
VS| P_TRANS
VS| P_MAT_LSI DE

VS| P_QRD_SAVEQ 79@ K by M M by M K by M
VS| P_NTRANS

VS| P_MAT_RSI DE

VS| P_QRD _SAVEQ E@T K by M M by M K by M
VS| P_TRANS

VS| P_MAT_RSI DE

VS| P_QRD_SAVEQL @73 M by N N by K M by K
VSl P_NTRANS (Bigger)
VS| P_MVAT_LSI DE

VS| P_QRD_SAVEQL 0B N by M M by K N by K
VS| P_TRANS
VS| P_MAT_LSI DE

TASPVSIPL Core Plus DRAFT 173

DRAFT

Real Casesfor O product
Options Operation Left Side Right Side | Output Size
VS| P_QRD_SAVEQL BO K by M M by N K by N
VS| P_NTRANS
VS| P_NMAT_RSI DE
VS| P_QRD_SAVEQL EQT Kby N N by M K by M
VS| P_TRANS (Bigger)
VS| P_MAT_RSI DE
Complex Cases for O product
Options Operation Left Side Right Side | Output Size
VSI P_QRD_SAVEQ QE M by M M by K M by K
VS| P_NTRANS
VS| P_NMAT_LSI DE
VS| P_QRD_SAVEQ QHE M by M M by K M by K
VS| P_HERM
VS| P_NMAT_LSI DE
VSI P_QRD_SAVEQ EQ K by M M by M Kby M
VS| P_NTRANS
VS| P_MAT_RSI DE
VS| P_QRD _SAVEQ EQH K by M M by M K by M
VS| P_HERM
VS| P_MAT_RSI DE
VS| P_QRD_SAVEQL @E M by N N by K M by K
VS| P_NTRANS (Bigger)
VS| P_NMAT_LSI DE
VSI P_QRD_SAVEQL QHE N by M M by K N by K
VS| P_HERM
VS| P_MAT_LSI DE
VS| P_QRD_SAVEQL EQ K by M M by N K by N
VS| P_HERM
VS| P_MAT_RSI DE
VSI P_QRD_SAVEQL EQH Kby N N by M Kby M
VS| P_HERM (Bigger)
VS| P_NMAT_RSI DE

We note that two cases have been marked Bigger. This meansthat the output datawill not fitin
theinput view. For these cases the user must be careful that the strides of the input matrix view

174 DRAFT TASPVSIPL Core Plus

DRAFT

will also work for aview of the output matrix data. If the input matrix is created as a sub view
of the output matrix thiswill take care of any problems. For example for the case of save
skinny Q, no transform on the left we have the following:

/* create an input viewwth sufficient stride sizes */
vsi p_nmview f *output view =
vsi p_ntreate_f (M K, VSI P_ROW VSI P_VEM NONE) ;
vsi p_mview f *input_view =
vsi p_msubvi ew f (out put _view, 0,0, N, K);

For example 24 we demonstrate the Q product by using some properties of the QR decompo-

sition. We know that Q isorthonormal, that 4 = QR andthat R = O 4. We use the iden-
tity matrix to extract an estimate of Q.

Inlines 12-17 we input our matrix, lines 18-23 initializes the Q matrix to the identity. We do
the decomposition in line 25, and in line 16 we multiply the identity matrix in the Q matrix by

O in place. We had already created a transpose view of the Q matrix in line 8. Inline 28 we
use amatrix product function to multiply the transpose of O times A giving R . We then use
the QRD product functionin line 31 to seeif we can get back the original 4 by multiplying O
and R together.

The output for example 24 (with some formatting) follows:

A =[1.002.00 3.00
-1.00 1.00 -2.00
1.00 1.00-3.00];

Q=1Q=[0577 0.617 0.535
-0.577 0.772 -0.267
0.577 0.154-0.802];

R=QTA =[1.732 1.155 1.155
-0.000 2.160-0.154
-0.000 -0.000 4.543];

A =QR=[1.000 2.000 3.000
-1.000 1.000 -2.000
1.000 1.000-3.000];

TASPVSIPL Core Plus DRAFT 175

© 00N O Ol B~ WN P

W W W W W W WWWMNDNDNDDNDNDNDNDNDNNDNNNDNNNMNNRPRPRPRPRPEPRPERERERERPRPR
00O N O O WNPFP O OO NOD OGP WNPEFEP O OOWLwNO O P WDNPEFE O

DRAFT

Example 24

/* A sinple Q product exanple */

#i ncl ude<vsi p. h>

int main()

{ int init = vsip_init((void*)0);
vsi p_nmvi ew_f

*A = vsip_ncreate_f (3,3, VSI P_ROVNVSI P_VEM NONE) ,
*Q = vsip_ntreate f(3,3,VSIP_RONVSIP_MEM NONE),
*QI = vsip_mtransview f(Q,

*AO = vsip_ntreate_f(3,3,VSIP_CO, VSI P_VEM NONE) ,
*R = vsip_ntreate f(3,3,VSIP_CO, VSI P_VEM NONE) ;

vsip_gr_f *qgrd=vsip_qgrd create f(3,3,VSIP_QRD SAVEQL);
vsi p_mput _f(A 0,0,1);vsip_nput f(AO,1,2);

vsi p_mput _f(A 0, 2, 3);

vsip_mput _f(A 1,0,-1);vsip_nmput_f(A 1,1,1);

vsip_mput _f(A 1,2,-2);

vsip_mput f(A 2,0,1);vsip_nput f(A 2,1,1);

vsi p_mput _f (A 2,2,-3);

vsip_mput _f(QO0,0,1);vsip_nput f(QO,1,0);

vsip_mput _f(Q 0, 2,0);

vsip_mput _f(Q 1,0,0);vsip_nput_f(Q1,1,1);

vsip_mput _f(Q O, 2,0);

vsip_mput f(Q 2,0,0);vsip_nput f(Q 2,1,0);

vsi p_nmput _f(Q 2,2,1); vsip_ncopy_f_f(A AO);
printf("A="); VUnprintmf("%. 2f ", A);

if(0 !'=vsip grd f(grd,A)) return 1;

vsi p_qgrdprodq_f(qgrd, VSI P_MAT _NTRANS, VSI P_VAT_RSI DE, Q) ;
printf("Q=1 Q=");VU nprintmf("%.3f ",Q;

vsi p_nprod_f(QrT, A0, R);

printf("R=Qr A=");VUnprintmf("%.3f ",R;

vsi p_grdprodg_f (qgrd, VSI P_MAT_NTRANS, VSI P_NMAT _LSI DE, R);
printf("A=QR=");VUnprintmf("%.3f ", R;

vsi p_mal | destroy_f (A); vsip_malldestroy_f(A0);

vsi p_mal | destroy_f (R);

vsi p_mdestroy f(QI); vsip_nalldestroy f(Q;
vsip_qgrd_destroy_f(qrd);

vsi p_finalize((void*)0);

return O;

The R solver function

The QRD solve R function, vsi p_grdsol r_f, solvesalinear system of theform RX = aB

or RTX = aB where R isthe upper triangular matrix from the QR decomposition and alpha

176

DRAFT TASP VSIPL Core Plus

DRAFT

isascalar. The calculation isdonein place so that input matrix B is replaced by output matrix
X . Since R is square the input and output are exactly the same size.

Final Remarksfor Linear Algebra.

The decomposition functionsin linear algebra are not well tested. The author does not guaran-
tee, promise, or think the routines are stable for ill conditioned matrices. The routines aso
may not be very efficient. The author intends to keep working on the algorithms with the goal
of reasonable efficiency, and good numerical properties. For the present (and even the future)
the user is cautioned to be suspicious of any results. The author, as aways, welcomes feed-
back and advice on these functions, or any functionsin the TASP VSIPL library.

TASPVSIPL Core Plus DRAFT 177

DRAFT

178 DRAFT TASPVSIPL Core Plus

DRAFT

INDEX
A finalize 48
admitted state 102 FIR 114
ADT 4, 8 FIR filter create 114
API 8 Fourier transforms 157
B Function List 18
block 4 acos 18
Boolean View 136 g op-poos 118
C
vsip_CADD_f 18
COE 1L 8 vsip_cadd f 18
column length 122 vsip_csvadd_f 18
convolution 150 vsi p_cvadd 19
Core 3 | S
Correlation 145 xz E‘&Df[) 1_; °
COTS 1,8 vsip_rcvadd_f 19
covariance solver 168, 172 vsip_rscvadd,f 18
. D vsip_svadd_f 18
den_se matrix 122, 123 vsip_svadd i 19
der!ved b! ock 100 vsip_vadd_f 19
derived view 100 vsip_vadd i 19
DOD 1,8 alldestroy 19
dot product 167 vsip_cmalldestroy f 20
E vsip_cvalldestroy f 19
example1 5 vsip_malldestroy_f 19
example 10 112 vsip_valldestroy bl 19
example 11 116 vsip_valldestroy_f 19
example 12 128 vsip_valldestroy_i 19
example 13 130 vsip_valldestroy_mi 19
example 14 135 vsip_valldestroy vi 19
example 15 137 alltrue 20
example 16 139 vsip_valltrue_bl 20
example 17 140 and 20
example 18 142 vsip_vand_bl 20
example 19 147 vsip_vand_i 20
example 2 98 anytrue 20
example 20 152 vsip_vanytrue_bl 20
example 21 161 arg 20
example 22 170 vsip_arg_f 20
example 23 172 asin 21
example 24 176 vsip_asin_f 21
example 3 atan 21
98 vsip_vatan_f 21
example 4 99 atan2 21
example 5 99 vsip_vatan2_f 21
example 6 101 bind 21
example 7 102 vsip_cmbind_f 22
example 8 104 vsip_cvbind_bl 22
example 9 108 vsip_cvbind_f 21
F vsip_mbind_f 22, 123
FFT 157 vsip_vbind f 21

filter kernel 114

TASP VSIPL Core Plus

DRAFT

vsip_vbind_mi 22

179

vsip_vbind vi 22
blackman 23
vsip_vcreate blackman_f 23
blockadmit 23
vsip_blockadmit_bl 23
vsip_blockadmit_f 23, 135
vsip_blockadmit_i 23
vsip_blockadmit_mi 23
vsip_blockadmit_vi 23
vsip_cblockadmit_f 23
blockbind 23
vsip_blockbind_bl 24
vsip_blockbind_f 24
vsip_blockbind i 24
vsip_blockbind_mi 24
vsip_blockbind vi 24
vsip_cblockbind_f 24
blockcreate 24, 97
vsip_blockcreate bl 25
vsip_blockcreate f 24
vsip_blockcreate i 25
vsip_blockcreate mi 25
vsip_blockcreate vi 25
vsip_cblockcreate f 25
blockdestroy 25
vsip_blockdestroy_bl 25
vsip_blockdestroy f 25
vsip_blockdestroy i 25
vsip_blockdestroy_mi 25
vsip_blockdestroy_vi 25
vsip_cblockdestroy f 25
blockfind 25
vsip_blockfind_bl 26
vsip_blockfind_f 25
vsip_blockfind_i 26
vsip_blockfind_mi 26
vsip_blockfind_vi 26
vsip_cblockfind_f 25
blockrebind 26
vsip_blockrebind_bl 26
vsip_blockrebind_f 26
vsip_blockrebind_i 26
vsip_blockrebind_mi 26
vsip_blockrebind_vi 26
vsip_cblockrebind_f 26
blockrelease 27
vsip_blockrelease bl 27
vsip_blockrelease f 27, 135
vsip_blockrelease i 27
vsip_blockrelease mi 27
vsip_blockrelease vi 27
vsip_chblockrelease f 27
cheby 28
vsip_vcreate cheby f 28

180

DRAFT

DRAFT

chold 28, 171
vsip_cchold_create f 28
vsip_cchold_destroy f 29
vsip_cchold_f 28
vsip_cchold_getattr f 29
vsip_ccholsol_f 29
vsip_chold_create f 28
vsip_chold_destroy_f 29
vsip_chold_f 28
vsip_chold_getattr_f 29
vsip_cholsol_f 29

clip 30
vsip_vclip_f 31
vsip_vclip_i 31

cloneview 29
vsip_cmcloneview_f 30
vsip_cvcloneview_f 29
vsip_mcloneview_f 30
vsip_vcloneview_bl 30
vsip_vcloneview_f 29, 135
vsip_vcloneview_mi 30
vsip_vcloneview_vi 30

cmagsq
vsip_vcmagsg_f 32

cmaxmagsgval 32
vsip_vcmaxmagsqgval 32

cmaxmgsg 32
vsip_vcmaxmgsg_f 32

cminmagsgval 33
vsip_vcminmagsgval 33

cminmgsg 32
vsip_veminmgsg_f 32

cmplx 30
vsip CMPLX_f 30
vsip_cmplx_f 30
vsip_vemplx_f 30

colview 34
vsip_cmcolview_f 34
vsip_mcolview_f 34

conj 34
vsip CONJ f 34
vsip_conj_f 34

convolve 35, 150
vsip_convld create f 35
vsip_convld destroy_f 36
vsip_convld_getattr f 36
vsip_convolveld f 35

copy 33
vsip_cmcopy_f f 34
vsip_cvcopy f f 33
vsip_mcopy_f f 34
vsip_vcopy_bl_bl 33
vsip_vcopy_bl_f 34
vsip_vcopy_f_bl 34

TASP VSIPL Core Plus

TASP VSIPL Core Plus

DRAFT

vsip_vcopy_f f 33
vsip_vcopy_f_i 33
vsip_vcopy_i_f 33
vsip_vcopy_i_i 33
vsip_vcopy_i_vi 33
vsip_vcopy_mi_mi 33
vsip_vcopy_vi_i 33
vsip_vcopy_vi_vi 33

correlate 36, 145
vsip_ccorrld create f 36
vsip_ccorrld destroy f 37
vsip_ccorrld getattr f 37
vsip_ccorrelateld f 37
vsip_corrld create f 36
vsip_corrld destroy f 37
vsip_corrld getattr f 37
vsip_correlateld f 37

cos 38
vsip_vcos f 38

covsol 38, 168
vsip_ccovsol_f 38
vsip_covsol_f 38

create 38
vsip_cmcreate f 39
vsip_cvcreate f 39
vsip_mcreate f 39, 124
vsip_vcreate bl 39
vsip_vcreate f 39
vsip_vcreate i 39
vsip_vcreate mi 39
vsip_vcreate vi 39

cstorage 39
vsip_cstorage 39

cveconj
vsip_cvconj_f 34

destroy 39
vsip_cmdestroy_f 40
vsip_cvdestroy_f 40
vsip_mdestroy_f 40
vsip_vdestroy bl 40
vsip_vdestroy f 39
vsip_vdestroy_i 40
vsip_vdestroy_mi 40
vsip_vdestroy_vi 40

diagview 40
vsip_cmdiagview_f 40
vsip_mdiagview_f 40, 124

div 40
vsip_CDIV_f 40, 41
vsip_cdiv_f 40
vsip_crdiv_f 40
vsip_cvdiv_f 41
vsip_svdiv_f 41
vsip_vdiv_f 41

DRAFT

dot 41
vsip_cvdot_f 41
vsip_cvjdot_f 42
vsip_vdot_f 41

euler 42
vsip_veuler_f 42

exp 42
vsip_ CEXP_f 42
vsip_cexp_f 42
vsip_cvexp_v 42
vsip_vexp f 42

expl0 42
vsip_vexpl0_f 43

expoavg 43
vsip_cvexpoavg_f 43
vsip_vexpoavg_f 43

fft 43, 109, 157
vsip_ccfftip_create f 43
vsip_ccfftip_f 45
vsip_ccfftop_create f 43
vsip_ccfftop_f 44
vsip_crfftmop_create f 46
vsip_crfftop_create f 44
vsip_crfftop_f 45
vsip_fft_destroy f 45
vsip_rcfftmop_create f 46
vsip_rcfftop_create f 44
vsip_rcfftop_f 45

fftm 45, 162
vsip_ccfftmip_create f 46
vsip_ccfftmip_f 47
vsip_ccfftmop_create f 46
vsip_ccfftmop_f 47
vsip_crfftmop_f 48
vsip_fftm_destroy_f 48
vsip_fftm_getattr_f 48
vsip_rcfftmop_f 47

fill 48
vsip_Vfill_f 48
vsip_Vfill_j 48

fir 49, 114

vsip_cfir_create f 49
vsip_cfir_destroy_f 50
vsip_cfir_getattr_f 50
vsip_cfirflt_f 50
vsip_fir_create f 49
vsip_fir_destroy f 50
vsip_fir_getattr f 50
vsip_firflt_f 49

gather 50
vsip_cvgather_f 50
vsip_vgather_f 50
vsip_vgather_i 51

gecolstride

181

182

vsip_cmgetcolstride f 54
vsip_mgetcolstride_f 54

gemp 51
vsip_cgemp_f 51
vsip_gemp f 51

gems 52
vsip_cgems f 52
vsip_gems f 52

get 52
vsip_cmget_f 53
vsip_cvget_f 52
vsip_mget_f 53, 126
vsip_vget bl 53
vsip_vget f 52
vsip_vget i 52
vsip_vget_mi 52
vsip_vget vi 52

getattrib 53

vsip_cmgetattrib_f 53
vsip_cvgetattrib_f 53
vsip_mgetattrib_f 53
vsip_vgetattrib_bl 53
vsip_vgetattrib_f 53
vsip_vgetattrib_i 53
vsip_vgetattrib_mi 53
vsip_vgetattrib_vi 53
getblock 54
vsip_cmgetblock_f 54
vsip_cvgetblock f 54
vsip_mgetblock_f 54
vsip_vgetblock_bl 54
vsip_vgetblock_f 54, 128
vsip_vgetblock_i 54
vsip_vgetblock_mi 54
vsip_vgetblock_vi 54
getcollength 54
vsip_cmgetcollength f 54
vsip_mgetcollength_f 54
getcolstride 54
getlength 55
vsip_cvgetrowlength_f 55
vsip_vgetlength_bl 55
vsip_vgetlength_f 55
vsip_vgetlength_i 55
vsip_vgetlength_mi 55
vsip_vgetlength_vi 55
getoffset 55
vsip_cmgetoffset f 55
vsip_cvgetoffset f 55
vsip_mgetoffset f 55
vsip_vgetoffset bl 55
vsip_vgetoffset f 55
vsip_vgetoffset i 55
vsip_vgetoffset mi 55

DRAFT

DRAFT

vsip_vgetoffset vi 55
getrowlength 55
vsip_cmgetrowlength_f 56
vsip_mgetrowlength_f 56, 128
getrowstride 56
vsip_cmgetrowstride_f 56
vsip_mgetrowstride _f 56
getstride 56
vsip_cvgetstride f 56
vsip_vgetstride_bl 56
vsip_vgetstride f 56
vsip_vgetstride i 56
vsip_vgetstride_mi 56
vsip_vgetstride vi 56

hanning 56
vsip_vcreate_hanning_f 56
histo 57
vsip_vhisto_f 57
hypot 57
vsip_vhypot_f 57
imag 57
vsip_imag_f 57
vsip_vimag_f 57
imagview 58

vsip_mimagview_f 58
vsip_vimagview_f 58
indexbool 58
vsip_vindexbool 58, 139
invclip 58
vsip_vinvclip_f 59
vsip_vinvclip_i 59
kaiser 59
vsip_vcreate kaiser f 59
[Isgsol 60, 168
vsip_cllsgsol_f 60
vsip_llsgsol_f 60
log 60
vsip_vexp_log_f 60
log10 60
vsip_vlogl0 f 60
logical 60
vsip_vleq f(61
vsip_vige f 61
vsip_vigt f 61
vsip_vile f 61
vsip_vlit_f 61
lud 62, 169
vsip_clud_create f 62
vsip_clud_destroy_f 63
vsip_clud_f 62
vsip_clud_getattr f 63
vsip_clusol_f 62
vsip_lud_create f 62, 170
vsip_lud_destroy f 63

TASP VSIPL Core Plus

TASP VSIPL Core Plus

DRAFT

vsip_lud f 62
vsip_lud_gatattr_f 63
vsip_lusol_f 62, 170

mag 63
vsip_cmag_f 63
vsip_cvmag_f 64
vsip_vmag_f 63
vsip_vmag_i 64

matindex 64

max 64

maxmg 65
vsip_vmaxmg_f 65

maxmgval 65
vsip_vmaxmgval_f 65

maxval 65
vsip_vmaxval_f 65

meansgval 65

vsip_cvmeansgval_f 65
vsip_vmeansgva_f 65
meanval 66
vsip_cvmeanval_f 66
vsip_vmeanval_f 66
mherm 66
vsip_cmherm_f 66
min 66
vsip_vmin_f 66
minmg 66
vsip_vminmg_f 66
minmgval 67
vsip_vminmgval_f 67
minval 67
vsip_vminval_f 67
modulate 67
vsip_vmodulate f 67
mprod 68
vsip_cmprod_f 68
vsip_cmprodj_f 68
vsip_cmprodt_f 69
vsip_cmvprod_f 69
vsip_cvmprod_f 69
vsip_mprod_f 68
vsip_mprodt_f 69
vsip_mvprod_f 69
vsip_vmprod_f 68
mtrans 69
vsip_cmtrans f 70
vsip_mtrans_f 69
mul 70
vsip CIMUL_f 71
vsip_cjmul_f 71
vsip CMUL_f 70
vsip_cmul_f 70
vsip_csvmul_f 71
vsip_cvimul_f 71

DRAFT

vsip_cvmmul_f 72
vsip_cvmul_f 70
vsip RCMUL_f 70
vsip_rcmul_f 70
vsip_rcvmul_f 70
vsip_rscvmul_f 71
vsip_rvemmul_f 72
vsip_svmul_f 71
vsip_svmul_i 71
vsip_vmmul_f 72
vsip_vmul_f 70
vsip_vmul_i 70

neg 72
vsip CNEG _f 72
vsip_cneg_f 72
vsip_cvneg_f 73
vsip_vneg f 72
vsip_vneg_i 73

not 73
vsip_vnot_bl 73
vsip_vnot_i 73

or73
vsip_vor_bl 73
vsip_vor_i 73
outer 73

vsip_cvouter_f 74
vsip_vouter_f 73

polar 74
vsip_polar_f 74
vsip_vpolar_f 74

put 74
vsip_cmput_f 75
vsip_cvput_f 74
vsip_mput_f 75
vsip_vput_bl 75
vsip_vput_f 74
vsip_vput_i 74
vsip_vput_mi 75
vsip_vput_vi 75

putattrib 75
vsip_cmputattrib_f 76
vsip_cvputattrib_f 75
vsip_mputattrib_f 76
vsip_vputattrib_bl 76
vsip_vputattrib_f 75
vsip_vputattrib_i 75
vsip_vputattrib_mi 76
vsip_vputattrib_vi 75

putcollength 76
vsip_cmputcollength_f 76
vsip_mputcollength f 76

putcolstride 76
vsip_cmputcolstride f 76
vsip_mputcolstride f 76

183

184

putlength 78
vsip_cvputlength_f 79
vsip_vputlength_f 78
vsip_vputstride f 79

putoffset 77
vsip_cmputoffset_f 77
vsip_cvputoffset f 77
vsip_mputoffset_f 77
vsip_vputoffset_bl 77
vsip_vputoffset f 77
vsip_vputoffset i 77
vsip_vputoffset_mi 77
vsip_vputoffset_vi 77

putrowlength 77
vsip_cmputrowlength f 77
vsip_mputrowlength_f 77

putrowstride 78
vsip_cmputrowstride f 78
vsip_mputrowstride_f 78

putstride 78
vsip_cvputstride f 78
vsip_vputstride bl 78
vsip_vputstride f 78
vsip_vputstride i 78
vsip_vputstride mi 78
vsip_vputstride vi 78

grd 79, 171
vsip_cqrd_create f 79
vsip_cqrd_destroy f 82
vsip_cqrd_f 80
vsip_cqrd_getattr_f 82
vsip_cqgrdprodg_f 80
vsip_cgrdsolr_f 81
vsip_cgrsol_f 82
vsip_qgrd_create f 79, 172
vsip_grd_destroy_f 82, 172
vsip_grd_f 80, 172
vsip_qrd_getattr f 82
vsip_grdprodq_f 80, 173
vsip_grdsolr_f 81
vsip_grsol_f 81, 172

ramp 82
vsip_vramp_f 82
vsip_vramp_i 82

rand 83
vsip_crandn_f 83
vsip_crandu_f 83
vsip_cvrandn_f 84
vsip_cvrandu_f 84
vsip_randcreate 83
vsip_randdestroy 84
vsip_randn_f 83
vsip_randu_f 83
vsip_vrandn_f 84

DRAFT

DRAFT

vsip_vrandu_f 84
real 84
vsip_rea_f 84
vsip_vreal_f 84
realview 85
vsip_mrealview_f 85
vsip_vrealview_f 85
recip 85
vsip_CRECIP_f 85
vsip_crecip_f 85
vsip_cvrecip_f 85
vsip_vrecip_f 85
rect 85
vsip_ RECT _f 86
vsip_rect f 86
vsip_vrect_f 86
rowview 86
vsip_cmrowview_f 86
vsip_mrowview_f 86
rsgrt 86
vsip_vrsgrt_f 86
scatter 87
vsip_cvscatter f 87
vsip_vscatter f 87
vsip_vscatter_i 87

sin 87
vsip_vsin_f 87
sq 87
vsip_vsg f 87
sqrt 87
vsip_CSQRT_f 88
vsip_csart_f 88

vsip_cvsgrt_f 88
vsip_vsort_f 88

sub 88
void vsip_RCSUB_f 88
vsip_CRSUB f 88
vsip_crsub_f 88
vsip_crvsub_f 89
vsip_CSUB _f 88
vsip_csub_f 88
vsip_csvsub_f 89
vsip_cvsub_f 89
vsip_RCSUB _f 88
vsip_rcsub_f 88
vsip_rcvsub_f 89
vsip_rscvsub_f 89
vsip_svsub_f 89
vsip_svsub_i 89
vsip_vsub_f 89
vsip_vsub_i 89

subview 90
vsip_cmsubview_f 91
vsip_cvsubview_f 90

TASP VSIPL Core Plus

DRAFT

vsip_msubview_f 90 K
vsip_vsubview_bl 90 kernel 114
vsip_vsubview_f 90 L
vsip_vsubview_i 90 least squares 168, 172
vsip_vsubview_mi 90 M

vsip_vsubview_vi 90

major 122
wm?/q;'lsj Sthlmsqval fol M_at_r ixView_ 122
sumval 91 - minimum stride length 125
. minor direction 123

vsip_vsumval_f 91

swap 91) _ O
vsip_cvswap_f 91 object oriented 3
vsip_vswap_f 91 offset 4, 122

tan 92 P
vsip_vtan_f 92 Public Types 11

Ternary Functions 92 alg hint 11
vsip_cvam_f 92 bias 11
vsip_cvma f 92 chol_attr 11
vsip_cvmsa _f 93 cmplx_mem 12
vsip_cvmsb_f 93 convld attr 12
vsip_cvsam_f 93 corrld_attr 12
vsip_cvsbm_f 93 fft_attr 13
vsip_cvsma f 94 fft_dir 13
vsip_cvsmsa f 94 fft_place 13
vsip_vam_f 92 fftm_attr 13
vsip_vma_f 92 fir_attr 12
vsip_vmsa_f 92 lu_attr 14
vsip_vmsb_f 93 major 14
vsip_vsam_f 93 mat_op 14
vsip_vsbm_f 93 mat_side 14
vsip_vsma f 93 mattr 14
vsip_vsmsa f 94 memory_hint 15

toepsol 94, 168 grd_attr 15
vsip_ctoepsol_f 94 grd_prob 16
vsip_toepsol_f 94 grd_gopt 16

transview 95 rng 17
vsip_cmtransview_f 95 support_region 16
vsip_mtransview_f 95 Ssymmetry 16

vcmagsg 31 vattr 16
vsip_cmagsg f 31 R

vsip_vsumval_bl
vsip_vsumval_bl 91
xor 95

random number generate 107

released state 102
row length 122

vsip_vxor_hl 95 S
vsip_vxor_i 95 scalar 4
Fundamental Matrix Calculation 124 Scatter 138
G stride length 125
Gather 138 T
H TACS8
HRL 2 TASP 1,8
| TASPVSIPL 2
incomplete type 5 U
init 58 user blocks 102

TASPVSIPL Core Plus DRAFT 185

DRAFT

user data 103
user data arrays 102

V
Vector Boolean Views 133
Vector Index Views 133
vector length 4
vector stride 4
VI_7
view 4
vsip 29
vsip_cblockbind_f 106
vsip_ccfftop_f 113
VSIP_FALSE 134
VSIP_NONSYM 114
vsip_rcfftop_f 113
VSIP_ SYM_EVEN_LEN_EVEN 114
VSIP_ SYM_EVEN_LEN_ODD 114
VSIP_TRUE 134
vsip_vcreate f 7
VSIPL 2, 8
VSIPL blocks 102
VSIPL Forum 2
VSIPL scalar 4
VU_7
VU_mprintm_f 126
VU_vprint_f 105

186 DRAFT

TASP VSIPL Core Plus

DRAFT

Appendix A VSIPL Fundamentals

VSIPL Fundamentalso A-1
INtrOdUCEION.o A-1
DISClaIMES . . .o A-1
INitialiZing VSIPL. . .o A-1
Blocksand Views. A-1

User Data Arrays, VSIPL Data Arrays, Released and Admitted A-1

VSIPL Naming Convention and Functionality Requirements. A-1
Summary of VSIPL TYPeSo e A-2

BasiC Dala TYPES . . oottt et e e A-5
SCalar Dala TYPES. . . ottt A-5

BlOCK Data TYPES . . . o vttt A-6

ViaW Data TYPES. . o ot it e e e e e A-7

Block Requirementso A-7
Derived BIOCKSo A-8

View ReQUITEMENTS. oot et e A-9
Complex Viewsand Derived Real Views., A-10

USer Datao A-10
Development mode reqUIrements.ot it e A-11

TASPVSIPL Core Plus DRAFT

DRAFT

DRAFT

TASP VSIPL Core Plus

DRAFT

VSIPL Fundamentals
Introduction

This appendix contains fundamental information about a VSIPL compliant library including
the basic type definitions, block requirements, view requirements, and basic VSIPL definitions
and terminology.

Note that there are various requirements in the functionality document which pertain to some
small subset of functions. These requirements are not covered here. This document covers the
more general requirements that must be met by virtually all VSIPL implementations, no mat-
ter the profile.

Disclaimer

The VSIPL library is object based, not object oriented. The reader should be careful to not
bring along to this document any object oriented terms which may have specific meaning to
them from another context, but which are being used by the VSIPL forum to mean something
else. The basic terminology used by VSIPL is described below.

Initalizing VSIPL

The VSIPL library requires a call to vsi p_i ni t prior to calling any other VSIPL functions.
Before exiting an application all VSIPL objects are required to be destroyed and a call to
vsi p_final i ze must be made.

It is allowed to initialize the library and finalize the library as often as one wants internal to the
first vsi p_i ni t and the outermost vsi p_fi nal i ze. This allows the user to write subroutines
which use VSIPL and have no external VSIPL interface and use them in a larger VSIPL appli-
cation without the need of the application knowing that VSIPL resides in the subroutine and
vice versa.

Blocks and Views

V SIPL hasanotion of data storagein ablock. A block is an abstract notion of contiguous data
elements available for storage of data. Associated with ablock is ablock object. The block
object contains the information necessary for the VSIPL implementation to access the mem-
ory used by the block for data storage. The design of the block object is implementation
dependent.

VSIPL has anotion of vectors, matrices and three tensors which are views of the block. The
information necessary to access the block data asiif it isavector, matrix or tensor is stored in
the view object.

User Data Arrays, VSIPL Data Arrays, Released and Admitted

Memory alocated by VSIPL for data storage istermed aV SIPL dataarray. Thereisno
method for a user to directly accessaVSIPL data array. This causes a problem when input or
output of datais needed from VSIPL. To address this problem functions are available in

V SIPL to associate a data array allocated by the user to aV SIPL block.

TASPVSIPL Core Plus DRAFT A-1

DRAFT

To insure that use of data stored in a user data array by the application does not conflict with
use of the data by V SIPL functions the block object associated with the data array maintains
state information which informs VV SIPL whether or not the user block is admitted or released.

Note auser block isablock which is associated with auser data array. A VSIPL blockisa
block which is not associated with a user data array. These are states of a block. The block
type (C typedef) of auser block and aVSIPL block areidentical.

Functions are available to admit or release a user block. When ablock isadmitted it isan error
to directly manipulate any datain the user dataarray. When ablock isreleased it isan error to
use any VSIPL function which will read or write datain the block.

VSIPL Naming Convention and Functionality Requirements

While there is nothing to prevent an implementor from writing VSIPL compatible functions,
only those functions that have been approved and are included in formal VSIPL documenta-
tion are a part of VSIPL. Functions outside of the standard should not use the VSIPL naming
conventions to avoid confusion of porting of applications. In particular, function names out-
side of VSIPL should not start with “vsip_".

All VSIPL functionality is called out explicitly in the functionality document except for preci-
sion. The need to allow wide variation in precision to support diverse hardware precluded any
attempt to specify every possible data precision. Specified methods must be followed for
including data precision using a precision affix at the end of the specified VSIPL name. The
approved affixes are covered in the summary of VSIPL types below. Except for copies the pre-
cision affix is usually a suffix. Copies require two precision affix’s to make up the precision
suffix.

Summary of VSIPL Types

All VSIPL type declarations and function names have the data type encoded into the name.
The following are required VSIPL affix notations for use in encoding type data in the names
and type declarations, and a description of the data types supported in VSIPL. It is not
expected that any implementation will support all possible VSIPL data types. The data type
supported will depend in part on the hardware for which the library was developed, and the
expected use of the hardware.

Note that throughout the VSIPL documentation an affix of _p is used to denote a general pre-
cision of any type, and is a method to name functions or data types without having to spell out
every single prefix which might be needed for that function or data type. Also used are _i to
denote any integer, or an _fto denote any float. Note that the generalized affix is in a different
font style than the specific affix. To produce a valid VSIPL name, or data type, use a specified
name, or data type, from the functionality document, and replace the generalized affix with the
selected affix from the tables below.

A-2 DRAFT TASPVSIPL Core Plus

DRAFT

Standard Integer Data Types

Affix Definition

_C ANSI C char

_uc ANSI C unsigned char

_si ANSI C short integer

Standard Floating Point Data Types

Affix Definition

_f ANSI C single precision floating point

d ANSI C double precision floating point

1 ANSI C extra precision floating point

Portable Precision Floating Point Data Types

Affix Definition

_f6 Floating point type with at least 6 decimal digits of accuracy. IEE 754 single precision (32
bit) has 6 decimal digits of accuracy.

_f15 Floating point types with at least 15 decimal digits of accuracy. IEEE 754 double preci-
sion (64 bit) has 15 decimal digits of accuracy.

_fn Floating point type with at least n decimal digits of accuracy. If the system supports such
a precision, it resolves to the smallest C type based on the values of FLT_MANT_DI G
DBL_NMANT_DI G or LDBL_MANT_DI G(which are defined in f | oat . h).

Standard Integer Data Types

Affix Definition

_us ANSI C unsigned short integer

_ ANSI C integer

u ANSI C unsigned integer

i ANSI C long integer

_ul ANSI C unsigned long integer

11 Long, long integer, implementation dependent

_ull Unsigned long, long integer, implementation dependent

TASPVSIPL Core Plus DRAFT

A-3

DRAFT

Portable Precision Integer Data Types

Affix Definition
118 int of at least 8 bits
_il16 int of at least 16 bits
_1132 int of at least 32 bits
_i164 int of at least 64 bits
iln int of at least n bits
_ul8 unsigned int of at least 8§ bits
_ullé6 unsigned inf of at least 16 bits
_ul32 unsigned int of at least 32 bits
_ul64 unsigned int of at least 64 bits
ul n unsigned int of at least n bits
_ie8 int of exactly 8 bits
_1el6 int of exactly 16 bits
_ie32 int of exactly 32 bits
_ie64 int of exactly 64 bits
i en int of exactly n bits
_ue8 unsigned int of exactly 8 bits
_uel6 unsigned int of exactly 16 bits
_ue32 unsigned int of exactly 32 bits
_ue64 | unsigned int of exactly 64 bits
_uen unsigned int of exactly n bits
_if8 fastest int of at least 8 bits
_ifl6 fastest int of at least 16 bits
_i1f32 fastest int of at least 32 bits
-1f64 fastest int of at least 64 bits
_ifn fastest int of at least n bits
_uf¥ unsigned fastest int of at least 8 bits
_ufl6 unsigned fastest int of at least 16 bits

A-4

DRAFT

TASP VSIPL Core Plus

DRAFT

_uf32 unsigned fastest int of at least 32 bits

_uf64 unsigned fastest int of at least 64 bits

_ufn unsigned fastest int of at least » bits

Other Data Types

Affix Definition

_bl Boolean Data Type. Logical false for 0, and Logical true for non-zero.

_vi Vector Index. This is an unsigned integer of sufficient precision to index any VSIPL vec-
tor.

_mi Matrix Index. This is a data type used for accessing matrix elements. The precision of the

type is the same as _vi. The matrix index of the element x; ; is the 2-tuple {i, j}.

_ti Tensor Index. This is a data type used for accessing tensor elements. The precision of the
type is the same as _vi. The fensor index of the element x; ; 4 is the 3-tuple {7, j, k}.

Basic Data Types

VSIPL has three basic data types, scalars, blocks, and views. VSIPL also has other special
data types and structures, used for defining special objects, which are used in a single function
or a small subset of functions. These special structures and data types are defined in the func-
tionality document, but not here. Structures required for VSIPL block creation are defined
below. Also defined below are structures for complex scalars and scalar indices.

Scalar Data Types

All supported VSIPL scalars have a type definition of

vsi p_scal ar_p

for real scalars, and a type definition of

vsi p_cscal ar_p

for complex scalars. Complex scalars are only supported for float and integer data types.

Note: For VSIPL 1.0 there are support functions for complex integers, but no other functions
which use complex integers are defined.

Below find an example of a VSIPL header definition for a scalar float, and a scalar unsigned
integer.

typedef float vsip_scalar_f;

t ypedef unsigned int vsip_scal ar_u;
The following definitions (if the type is supported) must be included with the library. Some of
the information is implementation dependent. Implementation dependent information will be
indicated with a bracket (<?...7>) around the dependent section

TASPVSIPL Core Plus DRAFT A-5

DRAFT

Complex typedef struct {vsip_scalar_p r, i;} vsip_cscalar_p;
Boolean t ypedef <?char?> vsip_scal ar_bl;
t ypedef vsip_scal ar_bl vsip_bool;
#define VSIP_FALSE 0
#define VSIP_TRUE 1
Vector t ypedef unsigned <?long int?> vsip_scal ar_vi
index t ypedef vsip_scal ar_vi vsip_index;
Matrix typedef struct {vsip_scalar_vi r,c;} vsip_scalar_m;
index
Tensor typedef struct {vsip_scalar_vi |,r,c;} vsip_scalar_ti;
index
Offset typedef vsip_scalar_vi vsip_offset;
Stride t ypedef signed <?long int?> vsip_stride;
length typedef vsip_scal ar_vi vsip_length;

Note: The data type for the vector index (vsi p_scal ar _vi) is implementation dependent. It
must be an unsigned integer of sufficient size to allow indexing any possible view element of
the implementation.

Note: The stride data type must be a signed integer of the same number of bits precision as the
vector index.

Block Data Types
All supported VSIPL blocks have a type definition as described in the following table.

Type VSIPL blocks

vsi p_bl ock_p | For real blocks, index blocks, and boolean blocks

vsi p_cbl ock_p | For complex blocks. Complex blocks are only supported for float
and integer data.

Examples of incomplete type definitions for blocks included in vsip.h

struct vsip_bl ockobject _bl; /* bool ean bl ock structure */
typedef struct vsip_bl ockobject_bl vsip_bl ock_bl;

struct vsip_bl ockobject vi; /* vector index block structure */
typedef struct vsip_bl ockobject vi vsip_block vi;

struct vsip_bl ockobject _d; /* double block structure */
typedef struct vsip_bl ockobject_d vsip_bl ock_d;

struct vsip_cbl ockobject _d; /* conpl ex double block structure */
typedef struct vsip_cbl ockobject _d vsip_chlock d;

A-6 DRAFT TASPVSIPL Core Plus

DRAFT

Note that the above structures vsi p_bl ockobj ect _bl, vsi p_bl ockobj ect _vi,

vsi p_bl ockobj ect _d, and vsi p_cbl ockobj ect _d all may reside in a VSIPL header file
which is private to the implementation developer. The names of all these structures are imple-
mentation dependent. The only required naming convention is the block type necessary for

declaring VSIPL objects in the user application. For the examples above these are in bold.

The following hint structure must be included with an implementation. It is not required that

the hints be supported (in the functions where they are required), but the structure must be

available for portability reasons. Additional details of the hint are available on the functional-

ity page where it is defined.

t ypedef enum {
VSI P_MEM NONE = 0,
VS| P_MEM RDONLY = 1,
VS| P_VEM CONST = 2,
VS| P_VEM SHARED = 3,
VS| P_VEM SHARED RDONLY = 4,
VS| P_VEM SHARED CONST = 5
} vsip_menory_hint;

View Data Types
All supported VSIPL views have a type definition as follows

vsi p_vvi ew p For real vector views, boolean vector views and index vector
views.

vsip_cvview p | For complex vector views.

vsi p_nvi ew_p For real matrix views and boolean matrix views.

vsi p_cnvi ew_p For complex matrix views

vsip_tviewp For real tensor views

vsi p_ctview p | For complex tensor views

Note that all index views are vectors. There are only types vsi p_vvi ew_vi, vsi p_vvi ew ni,

and types vsi p_vview ti .

Examples of incomplete type definitions for views

struct vsip_vviewobject_bl; /* bool ean vector view struct */
t ypedef struct vsip_vviewobject bl vsip_vview bl;

struct vsip_vviewobject vi; /* vector index view struct */
typedef struct vsip_vviewobject_vi vsip_block_vi;

struct vsip_vviewobject_d; /* double vector view struct */
t ypedef struct vsip_bl ockobject d vsip_block_d;

typedef struct vsip_cvvi ewobject_d vsip_cbl ock_d;

struct vsip_cvvi ewobject _d; /* conplex double vector view struct */

Note that the above structures vsi p_vvi ewobj ect _bl , vsi p_vvi ewobj ect _vi,

vsi p_vvi ewobj ect _d, and vsi p_cvvi ewobj ect _d may all reside in a VSIPL header file

TASPVSIPL Core Plus DRAFT

DRAFT

which is private to the implementation developer. The names of all these structures are imple-
mentation dependent. The only required naming convention is the view type needed by the
user to declare view objects. For the examples above these are in bold.

Block Requirements

A block is a VSIPL type representing an object where data is stored. The block is conceptually
a one dimensional data array of elements of a single data type. Mixed data types are not sup-
ported. The user supplies the size of the block on its creation.

The data in a block is accessed using views. The attributes stored in a view describe a portion
of a blocks data using offset from the beginning of the block, stride through the block, and
number of elements of the block described by the view (the length attribute). The block loca-
tion of the first element is at zero, and the block location of the final element is at N-1, where
N is the total length of the block.

There are two kinds of blocks, user and VSIPL. A user block is one which is created using a
data array which is allocated directly by the application so that the application has a pointer to
the data array. A VSIPL block is one which is not associated with a user data array, and the
user has no (proper) method to retrieve a pointer to the blocks data array.

A user block is either in a released or an admitted state to VSIPL. It is an error for a released
user blocks data array to be accessed by any VSIPL function which will read or write ele-
ments in the data array. Access to a released user blocks data must be through direct manipu-
lation of the data array. Access to an admitted user block must be through VSIPL functions. It
is an error to directly manipulate or read a user blocks data array after it has been admitted to
VSIPL. After admission only VSIPL functions should be used to access the data. A VSIPL
block is created in the admitted state and can not be released. A user block is created in the
released state, and can be admitted or released as required by the application.

A VSIPL block is created with a VSIPL creation function. When a VSIPL block is created, the
data array bound to it is created at the same time. The details of the physical storage of the
data array is implementation dependent; however the data array appears as contiguous data
elements for the purpose of assigning strides and offsets in views of the block. VSIPL blocks
are always admitted and the data array can only be manipulated with VSIPL function calls.

Except for a released user block, there is no function available to make a block and then at
some later time attach a data array to it. It is possible to create a user block using a NULL data
pointer. A user block bound to a NULL pointer can not be admitted until the block is re-bound
to a data pointer which is not NULL. A user block in the released state can be re-bound to any
valid pointer of the proper data type for the block. There is no function available in VSIPL 1.0
to allow rebinding an admitted block to different data array.

For released user blocks the user data must be contiguous with the following exception. For
complex user blocks the attached data can be contiguous, or it can consist of two separate con-
tiguous data arrays of equal size.

When a released block is admitted the implementation is free to do whatever is necessary
without concern for the released data layout. The user array data layout must be restored to
the same location and layout when the block is released.

A-8 DRAFT TASPVSIPL Core Plus

DRAFT

A user block, admitted or released, and a VSIPL block, which contain data of the same type,
have a single block data type. Any information needed by the implementation developer
regarding the state of the block (admitted, released, user, VSIPL, etc.) is hidden from the
application using some implementation dependent method such as hidden attributes of the
block object.

Derived Blocks

There are functions defined to derive real views from complex views. These functions produce
a derived block to bind the real views to. The derived block is of type vsi p_bl ock_p.

The required derived block data space must encompass the entire real portion of the complex
block if a real view is derived, or the entire imaginary portion of the underlying complex block
if an imaginary view is derived. The derived block can encompass other portions of the com-
plex block outside the range of the required real or imaginary data space; however the imple-
mentation is only required to maintain views bound to the required derived block data space.

It is an error to bind new views to a derived block which will encompass both real and imagi-
nary portions of the original complex block. The result is implementation dependent.

The derived block is destroyed when the complex block is destroyed. It is an error to destroy a
derived block directly. The implementation must maintain sufficient state information in the
complex block, and the derived real block, to support the proper behavior of the derived block.

The internal format of any admitted block is implementation dependent so underlying memory
layout of the complex block is unknown. The following conditions must be met by an imple-
mentation for derived blocks.

1. A derived block bound to a user complex block can not be released. The derived block
is released when the complex block it is bound to is released.

2. A derived block bound to a user complex block can not be admitted. The derived block
is admitted when the complex block it is bound to is admitted.

View Requirements

A view 1s a VSIPL type representing some portion of the data in a block. A block can have
many views bound to it; however a view can only be bound to a single block.

When a view is created it is bound to a block There is no method in VSIPL 1.0 to create a view
that is not bound to a block. A view must have a user attribute which defines the block the view
is bound to. The views block attribute is not setable by the application after the views initial
creation.

A view must have an offset attribute which indicates the number of elements from the begin-
ning of the block where the first element of the view is located within the block. The offset
attribute is indexed starting at zero so that an offset of zero implies the first element of the
view is the first element of the block. The offset attribute is setable by the application.

A view will have one or more stride attributes. The magnitude of the stride attribute defines
the distance between two consecutive elements in some view dimension. For example, the row
stride indicates how many elements (through the block) from one element in the row to the
next element in the row. The distance defined is through the block. The sign of the stride

TASPVSIPL Core Plus DRAFT A-9

DRAFT

attribute defines what direction the view description moves through the block as the index
value of the view description increases. A stride of zero must be supported. The stride
attribute is settable

A view will have a length attribute for each stride attribute. A length attribute is a positive
integer describing the number of elements in the dimension direction, such as the number of
elements in the row of a matrix. The length attribute is settable.

For vectors there is only one dimension so there is only one stride, and one length. For matri-
ces there are two view dimensions, so there are two strides, and two lengths. For three tensors
there are three strides and three lengths.

Additional information on offset, stride, and length attributes are available in the functionality
document.

Complex Views and Derived Real Views.

It is required that it be possible to create a derived view of the real or imaginary portion of a
complex view. Note that this is not a copy. Replacing an element in the real or imaginary view
derived from the complex view replaces the corresponding element in the complex view. Simi-
larly replacing a complex element in the complex view replaces the corresponding element in
the real and imaginary view. The real view and imaginary view of the complex view are real
and are not complex. They must be bound to a block of type vsi p_bl ock_p. The real block
bound to the real or imaginary view of a complex view is termed a derived block since it is
derived from the complex block.

The method of instantiating a derived block is implementation dependent.

Note: Because of the implementation dependent nature of derived blocks the stride and offset
of derived views are not determined until after the view is created.

User Data

This section covers the required data layout of user data arrays. The implementation devel-
oper must support, and the application developer must use, the required data array formats for
user data. These formats allow for portable input of user data into VSIPL, and portable output
of VSIPL results to the application.

For float the user data array is a contiguous memory segment of type vsi p_scal ar _f.
For integer the user data array is a contiguous memory segment of type vsi p_scal ar _i.
For boolean the user data array is a contiguous memory segment of type vsi p_scal ar _bl .

For vector index the user data array is a contiguous memory segment of type
vsi p_scal ar _vi .

For matrix index the user data array is a contiguous memory segment of type

vsi p_scal ar _vi . The matrix index element in a user data array is two consecutive elements
of type vsi p_scal ar _vi . The first element is the row index, the second is the column index.
Note that the matrix index element in a user data array is not the same as vsi p_scal ar _mi .
This corresponds to the interleaved method described below for complex.

A-10 DRAFT TASPVSIPL Core Plus

DRAFT

For tensor index the user data array is a contiguous memory segment of type

vsi p_scal ar _vi . The tensor index element in a user data array is three consecutive elements
of type vsi p_scal ar _vi . The first value in the element is the leg index, the second is the row
index, and the third is the column index. Note that the tensor index element in a user data array
is not the same as vsi p_scal ar _ti.

For complex float or complex integer the user data array is either interleaved or split as
described below. Both the interleaved and split formats must be supported for user data. Note
that the data format for complex float user data arrays is not of type vsi p_cscal ar _p

Interleaved: The user data array is a contiguous memory segment of type
vsi p_scal ar _p. The complex element is two consecutive elements of type
vsi p_scal ar_p. The first element is real, the second imaginary.

Split: The user data array consists of two contiguous memory segments of equal
length, each of type vsi p_scal ar _p. The order of the arguments when the data is
bound to a block determines the real and imaginary portions.

Development mode requirements

The functionality portion of VSIP 1.0 has required error checks for development mode. The
basic requirement is that the implementation developer of a library supporting development
mode must maintain sufficient information within the implementation to support the required
error checks for every function supported by the implementation.

TASPVSIPL Core Plus DRAFT A-11

DRAFT

A-12 DRAFT TASPVSIPL Core Plus

	TITLE PAGE
	TABLE OF CONTENTS
	REQUIRED CORE PUBLIC TYPES
	CORE FUNCTION LIST
	CHAPTER 1 Introduction To TASP VSIPL Core Plus Implementation
	Introduction
	Code History
	TASP and the TASP COE
	The VSIP Library Effort and the VSIPL Forum
	The TASP VSIPL Demonstration Library
	The Core Profile

	VSIP Fundamentals
	VSIPL Initialization and Finalization
	VSIPL Objects and Data Types

	A Simple First Example
	Add two vectors example.

	List of Acronyms

	CHAPTER 2 Functions
	Introduction
	Required Core Public Types
	alg_hint
	bias
	chol_attr
	cmplx_mem
	conv1d_attr
	corr1d_attr
	fir_attr
	fft_attr
	fft_dir
	fft_place
	fftm_attr
	lu_attr
	major
	mat_op
	mat_side
	mattr
	memory_hint
	obj_state
	qrd_attr
	qrd_prob
	qrd_qopt
	support_region
	symmetry
	vattr
	rng

	Core Function List
	acos
	add
	alldestroy
	alltrue
	and
	anytrue
	arg
	asin
	atan
	atan2
	bind
	blackman
	blockadmit
	blockbind
	blockcreate
	blockdestroy
	blockfind
	blockrebind
	blockrelease
	cheby
	chold
	cloneview
	cmplx
	clip
	cmagsq
	cmaxmgsq
	cmaxmagsqval
	cminmgsq
	cminmagsqval
	copy
	colview
	conj
	convolve
	correlate
	cos
	covsol
	create
	cstorage
	destroy
	diagview
	div
	dot
	euler
	exp
	exp10
	expoavg
	fft
	fftm
	fill
	finalize
	fir
	gather
	gemp
	gems
	get
	getattrib
	getblock
	getcollength
	getcolstride
	getlength
	getoffset
	getrowlength
	getrowstride
	getstride
	hanning
	histo
	hypot
	imag
	imagview
	indexbool
	init
	invclip
	kaiser
	llsqsol
	log
	log10
	logical
	lud
	mag
	matindex
	max
	maxmg
	maxmgval
	maxval
	meansqval
	meanval
	mherm
	min
	minmg
	minmgval
	minval
	modulate
	mprod
	mtrans
	mul
	neg
	not
	or
	outer
	polar
	put
	putattrib
	putcollength
	putcolstride
	putoffset
	putrowlength
	putrowstride
	putstride
	putlength
	qrd
	ramp
	rand
	real
	realview
	recip
	rect
	rowview
	rsqrt
	scatter
	sin
	sq
	sqrt
	sub
	subview
	sumsqval
	sumval
	swap
	tan
	Ternary Functions
	toepsol
	transview
	xor

	CHAPTER 3 Introduction to VSIPL Programming using the Core Lite Profile
	Introduction
	Support Functions
	Block Creation
	Vector Creation
	Other methods of view creation and view modification.
	Viewing the Real and Imaginary portions of a Complex Vector

	VSIPL Input and Output Methods
	Rebinding user data to a user block
	I/O Example
	Complex User Data

	Scalar Functions
	VSIPL Elementwise Functions
	Random Number Generation

	Signal Processing Functions
	The Fourier Transform
	The Finite Impulse Response Filter
	Summary

	CHAPTER 4 Introduction to VSIPL Matrices
	Introduction
	Matrix Fundamentals
	A Matrix
	Matrix Views
	Matrix Creation
	Extracting Vector views from Matrix Views
	Fundamental Matrix Calculation

	Simple Matrix Manipulations
	A Simple Print Function
	General Elementwise Matrix Operation Using Row or Column View

	CHAPTER 5 Introduction to Vector Index Views, Boolean views, Gather, Scatter, and Indexbool
	Introduction
	Vector Index Views
	Vector Boolean Views
	A first example using the scalar vector index

	Boolean and Vector Index Views
	Gather and Scatter

	CHAPTER 6 Signal Processing Functionality in the VSIPL Core Profile
	Introduction
	Window Creation
	Convolution, Correlation and FIR Filtering
	Correlation
	Convolution

	Fourier Transforms
	Wavenumber/Frequency plot
	Demonstration for

	CHAPTER 7 Linear Algebra Functionality in the VSIPL Core Profile
	Introduction
	Simple Matrix-Matrix and Vector-Matrix Operations
	Simple Solvers
	Covariance Problem
	Linear Least Squares Problem
	Toeplitz System

	LU decomposition function set
	Cholesky Decomposition Function set
	QR Decomposition Function set
	The Q product function
	The R solver function

	Final Remarks for Linear Algebra.

	INDEX
	Appendix A VSIPL Fundamentals
	VSIPL Fundamentals
	Introduction
	VSIPL Naming Convention and Functionality Requirements
	Basic Data Types
	Block Requirements
	1. A derived block bound to a user complex block can not be released. The derived block is releas...
	2. A derived block bound to a user complex block can not be admitted. The derived block is admitt...

	View Requirements
	User Data
	Development mode requirements

